1
|
Bhattacharya B, Xiao S, Chatterjee S, Urbanowski M, Ordonez A, Ihms EA, Agrahari G, Lun S, Berland R, Pichugin A, Gao Y, Connor J, Ivanov AR, Yan BS, Kobzik L, Koo BB, Jain S, Bishai W, Kramnik I. The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. J Clin Invest 2021; 131:130319. [PMID: 33301427 PMCID: PMC7843230 DOI: 10.1172/jci130319] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanism by which only some individuals infected with Mycobacterium tuberculosis develop necrotic granulomas with progressive disease while others form controlled granulomas that contain the infection remains poorly defined. Mice carrying the sst1-suscepible (sst1S) genotype develop necrotic inflammatory lung lesions, similar to human tuberculosis (TB) granulomas, which are linked to macrophage dysfunction, while their congenic counterpart (B6) mice do not. In this study we report that (a) sst1S macrophages developed aberrant, biphasic responses to TNF characterized by superinduction of stress and type I interferon pathways after prolonged TNF stimulation; (b) the late-stage TNF response was driven via a JNK/IFN-β/protein kinase R (PKR) circuit; and (c) induced the integrated stress response (ISR) via PKR-mediated eIF2α phosphorylation and the subsequent hyperinduction of ATF3 and ISR-target genes Chac1, Trib3, and Ddit4. The administration of ISRIB, a small-molecule inhibitor of the ISR, blocked the development of necrosis in lung granulomas of M. tuberculosis-infected sst1S mice and concomitantly reduced the bacterial burden. Hence, induction of the ISR and the locked-in state of escalating stress driven by the type I IFN pathway in sst1S macrophages play a causal role in the development of necrosis in TB granulomas. Interruption of the aberrant stress response with inhibitors such as ISRIB may offer novel host-directed therapy strategies.
Collapse
Affiliation(s)
- Bidisha Bhattacharya
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shiqi Xiao
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sujoy Chatterjee
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Urbanowski
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro Ordonez
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth A. Ihms
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garima Agrahari
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shichun Lun
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Berland
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander Pichugin
- Department of Cellular Immunology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Yuanwei Gao
- Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), Merck, West Point, Pennsylvania, USA
| | - John Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexander R. Ivanov
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Zhongzheng District, Taipei City, Taiwan
| | - Lester Kobzik
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bang-Bon Koo
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sanjay Jain
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Bishai
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zámbó V, Simon-Szabó L, Sarnyai F, Mátyási J, Gór-Nagy Z, Somogyi A, Szelényi P, Kereszturi É, Tóth B, Csala M. Investigation of the putative rate-limiting role of electron transfer in fatty acid desaturation using transfected HEK293T cells. FEBS Lett 2019; 594:530-539. [PMID: 31557308 DOI: 10.1002/1873-3468.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 11/09/2022]
Abstract
Elevated fatty acid (FA) levels contribute to severe metabolic diseases. Unbalanced oversupply of saturated FAs is particularly damaging, which renders stearoyl-CoA desaturase (SCD1) activity an important factor of resistance. A SCD1-related oxidoreductase protects cells against palmitate toxicity, so we aimed to test whether desaturase activity is limited by SCD1 itself or by the associated electron supply. Unsaturated/saturated FA ratio was markedly elevated by SCD1 overexpression while it remained unaffected by the overexpression of SCD1-related electron transfer proteins in HEK293T cells. Electron supply was not rate-limiting either in palmitate-treated cells or in cells with enhanced SCD1 expression. Our findings indicate the rate-limiting role of SCD1 itself, and that FA desaturation cannot be facilitated by reinforcing the electron supply of the enzyme.
Collapse
Affiliation(s)
- Veronika Zámbó
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Laura Simon-Szabó
- Pathobiochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University (MTA-SE), Budapest, Hungary
| | - Farkas Sarnyai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Zsófia Gór-Nagy
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Hungary
| | - Anna Somogyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Éva Kereszturi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Mukherjee A, Adhikari A, Das P, Biswas S, Mukherjee S, Adak S. Loss of virulence in NAD(P)H cytochrome b5 oxidoreductase deficient Leishmania major. Biochem Biophys Res Commun 2018; 503:371-377. [PMID: 29906460 DOI: 10.1016/j.bbrc.2018.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 11/28/2022]
Abstract
Leishmania promastigotes have the ability to synthesize essential polyunsaturated fatty acids de novo and can grow in lipid free media. Recently, we have shown that NAD(P)H cytochrome b5 oxidoreductase (Ncb5or) enzyme in Leishmania acts as the redox partner for Δ12 fatty acid desaturase, which catalyses the conversion of oleate to linoleate. So far, the exact role of Leishmania derived linoleate synthesis is still incomplete in the literature. The viability assay by flow cytometry as well as microscopic studies suggests that linoleate is an absolute requirement for Leishmania promastigote survival in delipidated media. Western blot analysis suggested that infection with log phase linoleate deficient mutant (KO) results in increased level of NF-κBp65, IκB and IKKβ phosphorylation in RAW264.7 cells. Similarly, the log phase KO infected RAW264.7 cells show dramatic increment of COX-2 expression and TNF-α secretion, compared to control or Ncb5or complement (CM) cell lines. The activation of inflammatory signaling pathways by KO mutant is significantly reduced when the RAW264.7 cells are pre-treated with BSA bound linoleate. Together, these findings confirmed that the leishmanial linoleate inhibits both COX-2 and TNF-α expression in macrophage via the inactivation of NF-κB signaling pathway. The stationary phase of KO promastigotes shows avirulence after infection in macrophages as well as inoculation into BALB/c mice; whereas CM cell lines show virulence. Collectively, these data provide strong evidence that de novo linoleate synthesis in Leishmania is an essential for parasite survival at extracellular promastigote stage as well as intracellular amastigote stage.
Collapse
Affiliation(s)
- Aditi Mukherjee
- From the Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Ayan Adhikari
- From the Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Priya Das
- From the Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Saroj Biswas
- From the Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Supratim Mukherjee
- From the Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Subrata Adak
- From the Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
4
|
Kaluzhny Y, Kinuthia MW, Truong T, Lapointe AM, Hayden P, Klausner M. New Human Organotypic Corneal Tissue Model for Ophthalmic Drug Delivery Studies. ACTA ACUST UNITED AC 2018; 59:2880-2898. [DOI: 10.1167/iovs.18-23944] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yulia Kaluzhny
- MatTek Corporation, Ashland, Massachusetts, United States
| | | | - Thoa Truong
- MatTek Corporation, Ashland, Massachusetts, United States
| | | | - Patrick Hayden
- MatTek Corporation, Ashland, Massachusetts, United States
| | | |
Collapse
|
5
|
Black AJ, Ravi S, Jefferson LS, Kimball SR, Schilder RJ. Dietary Fat Quantity and Type Induce Transcriptome-Wide Effects on Alternative Splicing of Pre-mRNA in Rat Skeletal Muscle. J Nutr 2017; 147:1648-1657. [PMID: 28768832 PMCID: PMC5572497 DOI: 10.3945/jn.117.254482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Fat-enriched diets produce metabolic changes in skeletal muscle, which in turn can mediate changes in gene regulation.Objective: We examined the high-fat-diet-induced changes in skeletal muscle gene expression by characterizing variations in pre-mRNA alternative splicing.Methods: Affymetrix Exon Array analysis was performed on the transcriptome of the gastrocnemius/plantaris complex of male obesity-prone Sprague-Dawley rats fed a 10% or 60% fat (lard) diet for 2 or 8 wk. The validation of exon array results was focused on troponin T (Tnnt3). Tnnt3 splice form analyses were extended in studies of rats fed 10% or 30% fat diets across 1- to 8-wk treatment periods and rats fed 10% or 45% fat diets with fat sources from lard or mono- or polyunsaturated fats for 2 wk. Nuclear magnetic resonance (NMR) was used to measure body composition.Results: Consumption of a 60% fat diet for 2 or 8 wk resulted in alternative splicing of 668 and 726 pre-mRNAs, respectively, compared with rats fed a 10% fat diet. Tnnt3 transcripts were alternatively spliced in rats fed a 60% fat diet for either 2 or 8 wk. The high-fat-diet-induced changes in Tnnt3 alternative splicing were observed in rats fed a 30% fat diet across 1- to 8-wk treatment periods. Moreover, this effect depended on fat type, because Tnnt3 alternative splicing occurred in response to 45% fat diets enriched with lard but not in response to diets enriched with mono- or polyunsaturated fatty acids. Fat mass (a proxy for obesity as measured by NMR) did not differ between groups in any study.Conclusions: Rat skeletal muscle responds to overconsumption of dietary fat by modifying gene expression through pre-mRNA alternative splicing. Variations in Tnnt3 alternative splicing occur independently of obesity and are dependent on dietary fat quantity and suggest a role for saturated fatty acids in the high-fat-diet-induced modifications in Tnnt3 alternative splicing.
Collapse
Affiliation(s)
- Adam J Black
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Suhana Ravi
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Leonard S Jefferson
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Scot R Kimball
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Rudolf J Schilder
- Departments of Entomology and Biology, Penn State University, University Park, State College, PA
| |
Collapse
|
6
|
Martin-Montalvo A, Sun Y, Diaz-Ruiz A, Ali A, Gutierrez V, Palacios HH, Curtis J, Siendones E, Ariza J, Abulwerdi GA, Sun X, Wang AX, Pearson KJ, Fishbein KW, Spencer RG, Wang M, Han X, Scheibye-Knudsen M, Baur JA, Shertzer HG, Navas P, Villalba JM, Zou S, Bernier M, de Cabo R. Cytochrome b5 reductase and the control of lipid metabolism and healthspan. NPJ Aging Mech Dis 2016; 2:16006. [PMID: 28721264 PMCID: PMC5515006 DOI: 10.1038/npjamd.2016.6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022] Open
Abstract
Cytochrome b5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yaning Sun
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vincent Gutierrez
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Hector H Palacios
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jessica Curtis
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Emilio Siendones
- Centro Andaluz de Biología del Desarrollo, and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla, Spain
| | - Julia Ariza
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Gelareh A Abulwerdi
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Xiaoping Sun
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Annie X Wang
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Kenneth W Fishbein
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard G Spencer
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | - Xianlin Han
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joe A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard G Shertzer
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla, Spain
| | - Jose Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Sige Zou
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
7
|
Stoianov AM, Robson DL, Hetherington AM, Sawyez CG, Borradaile NM. Elongation Factor 1A-1 Is a Mediator of Hepatocyte Lipotoxicity Partly through Its Canonical Function in Protein Synthesis. PLoS One 2015; 10:e0131269. [PMID: 26102086 PMCID: PMC4478042 DOI: 10.1371/journal.pone.0131269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 01/22/2023] Open
Abstract
Elongation factor 1A-1 (eEF1A-1) has non-canonical functions in regulation of the actin cytoskeleton and apoptosis. It was previously identified through a promoter-trap screen as a mediator of fatty acid-induced cell death (lipotoxicity), and was found to participate in this process downstream of ER stress. Since ER stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), we investigated the mechanism of action of eEF1A-1 in hepatocyte lipotoxicity. HepG2 cells were exposed to excess fatty acids, followed by assessments of ER stress, subcellular localization of eEF1A-1, and cell death. A specific inhibitor of eEF1A-1 elongation activity, didemnin B, was used to determine whether its function in protein synthesis is involved in lipotoxicity. Within 6 h, eEF1A-1 protein was modestly induced by high palmitate, and partially re-localized from its predominant location at the ER to polymerized actin at the cell periphery. This early induction and subcellular redistribution of eEF1A-1 coincided with the onset of ER stress, and was later followed by cell death. Didemnin B did not prevent the initiation of ER stress by high palmitate, as indicated by eIF2α phosphorylation. However, consistent with sustained inhibition of eEF1A-1-dependent elongation activity, didemnin B prevented the recovery of protein synthesis and increase in GRP78 protein that are normally associated with later phases of the response to ongoing ER stress. This resulted in decreased palmitate-induced cell death. Our data implicate eEF1A-1, and its function in protein synthesis, in hepatocyte lipotoxicity.
Collapse
Affiliation(s)
- Alexandra M. Stoianov
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Debra L. Robson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Alexandra M. Hetherington
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Cynthia G. Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
- Department of Medicine, Western University, London, ON, Canada, N6A 5C1
- Robarts Research Institute, Western University, London, ON, Canada, N6A 5C1
| | - Nica M. Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
- * E-mail:
| |
Collapse
|
8
|
Nikiforova AB, Saris NEL, Kruglov AG. External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3? Free Radic Biol Med 2014; 74:74-84. [PMID: 24945955 DOI: 10.1016/j.freeradbiomed.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
Abstract
It was reported that VDAC1 possesses an NADH oxidoreductase activity and plays an important role in the activation of xenobiotics in the outer mitochondrial membrane. In the present work, we evaluated the participation of VDAC1 and Cyb5R3 in the NADH-dependent activation of various redox cyclers in mitochondria. We show that external NADH oxidoreductase caused the redox cycling of menadione ≫ lucigenin>nitrofurantoin. Paraquat was predominantly activated by internal mitochondria oxidoreductases. An increase in the ionic strength stimulated and suppressed the redox cycling of negatively and positively charged acceptors, as was expected for the Cyb5R3-mediated reduction. Antibodies against Cyb5R3 but not VDAC substantially inhibited the NADH-related oxidoreductase activities. The specific VDAC blockers G3139 and erastin, separately or in combination, in concentrations sufficient for the inhibition of substrate transport, exhibited minimal effects on the redox cycler-dependent NADH oxidation, ROS generation, and reduction of exogenous cytochrome c. In contrast, Cyb5R3 inhibitors (6-propyl-2-thiouracil, p-chloromercuriobenzoate, quercetin, mersalyl, and ebselen) showed similar patterns of inhibition of ROS generation and cytochrome c reduction. The analysis of the spectra of the endogenous cytochromes b5 and c in the presence of nitrofurantoin and the inhibitors of VDAC and Cyb5R3 demonstrated that the redox cycler can transfer electrons from Cyb5R3 to endogenous cytochrome c. This caused the oxidation of outer membrane-bound cytochrome b5, which is in redox balance with Cyb5R3. The data obtained argue against VDAC1 and in favor of Cyb5R3 involvement in the activation of redox cyclers in the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Anna B Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Nils-Erik L Saris
- Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Alexey G Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
9
|
Kálmán FS, Lizák B, Nagy SK, Mészáros T, Zámbó V, Mandl J, Csala M, Kereszturi E. Natural mutations lead to enhanced proteasomal degradation of human Ncb5or, a novel flavoheme reductase. Biochimie 2013; 95:1403-10. [PMID: 23523930 DOI: 10.1016/j.biochi.2013.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/08/2013] [Indexed: 01/12/2023]
Abstract
NADH cytochrome b5 oxidoreductase (Ncb5or) protects β-cells against oxidative stress and lipotoxicity. The predominant phenotype of lean Ncb5or-null mouse is insulin-dependent diabetes due to β-cell death. This suggests the putative role of NCB5OR polymorphism in human diabetes. Therefore, we aimed to investigate the effect of natural missense mutations on the expression of human NCB5OR. Protein and mRNA levels of five non-synonymous coding variants were analyzed in transfected HEK293 and HepG2 cells. Although the mRNA levels were only slightly affected by the mutations, the amount of Ncb5or protein was largely reduced upon two Glu to Gly replacements in the third exon (p.E87G, p.E93G). These two mutations remarkably and synergistically shortened the half-life of Ncb5or and their effect could be attenuated by proteasome inhibitors. Our results strongly indicate that p.E87G, p.E93G mutations lead to enhanced proteasomal degradation due to manifest conformational alterations in the b5 domain. These data provide first evidence for natural mutations in NCB5OR gene resulting in decreased protein levels and hence having potential implications in human pathology.
Collapse
Affiliation(s)
- Fanni S Kálmán
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, POB 260, 1444 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mukherjee S, Sen Santara S, Das S, Bose M, Roy J, Adak S. NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. J Biol Chem 2012; 287:34992-35003. [PMID: 22923617 DOI: 10.1074/jbc.m112.389338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
NAD(P)H cytochrome b(5) oxidoreductase (Ncb5or), comprising cytochrome b(5) and cytochrome b(5) reductase domains, is widely distributed in eukaryotic organisms. Although Ncb5or plays a crucial role in lipid metabolism of mice, so far no Ncb5or gene has been reported in the unicellular parasitic protozoa Leishmania species. We have cloned, expressed, and characterized Ncb5or gene from Leishmania major. Steady state catalysis and spectral studies show that NADH can quickly reduce the ferric state of the enzyme to the ferrous state and is able to donate an electron(s) to external acceptors. To elucidate its exact physiological role in Leishmania, we attempted to create NAD(P)H cytochrome b(5) oxidoreductase from L. major (LmNcb5or) knock-out mutants by targeted gene replacement technique. A free fatty acid profile in knock-out (KO) cells reveals marked deficiency in linoleate and linolenate when compared with wild type (WT) or overexpressing cells. KO culture has a higher percentage of dead cells compared with both WT and overexpressing cells. Increased O(2) uptake, uncoupling and ATP synthesis, and loss of mitochondrial membrane potential are evident in KO cells. Flow cytometric analysis reveals the presence of a higher concentration of intracellular H(2)O(2), indicative of increased oxidative stress in parasites lacking LmNcb5or. Cell death is significantly reduced when the KO cells are pretreated with BSA bound linoleate. Real time PCR studies demonstrate a higher Δ12 desaturase, superoxide dismutase, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA with a concomitant fall in Δ9 desaturase mRNA expression in LmNcb5or null cell line. Together these findings suggest that decreased linoleate synthesis, and increased oxidative stress and apoptosis are the major consequences of LmNcb5or deficiency in Leishmania.
Collapse
Affiliation(s)
- Supratim Mukherjee
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sumit Sen Santara
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Shantanabha Das
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Moumita Bose
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Jayasree Roy
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
11
|
High fat feeding exacerbates endoplasmic reticulum stress and beta cell demise. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 2011; 18:59-68. [PMID: 21889406 DOI: 10.1016/j.molmed.2011.07.010] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 01/07/2023]
Abstract
The endoplasmic reticulum (ER) stress response, also commonly known as the unfolded protein response (UPR), is an adaptive response used to align ER functional capacity with demand. It is activated in various tissues under conditions related to obesity and type 2 diabetes. Hypothalamic ER stress contributes to inflammation and leptin/insulin resistance. Hepatic ER stress contributes to the development of steatosis and insulin resistance, and components of the UPR regulate liver lipid metabolism. ER stress in enlarged fat tissues induces inflammation and modifies adipokine secretion, and saturated fats cause ER stress in muscle. Finally, prolonged ER stress impairs insulin synthesis and causes pancreatic β cell apoptosis. In this review, we discuss ways in which ER stress operates as a common molecular pathway in the pathogenesis of obesity and diabetes.
Collapse
Affiliation(s)
- Miriam Cnop
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), CP-618, Route de Lennik 808, 1070 Brussels, Belgium.
| | | | | |
Collapse
|
13
|
Wang W, Guo Y, Xu M, Huang HH, Novikova L, Larade K, Jiang ZG, Thayer TC, Frontera JR, Aires D, Ding H, Turk J, Mathews CE, Bunn HF, Stehno-Bittel L, Zhu H. Development of diabetes in lean Ncb5or-null mice is associated with manifestations of endoplasmic reticulum and oxidative stress in beta cells. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1532-41. [PMID: 21839170 DOI: 10.1016/j.bbadis.2011.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 01/01/2023]
Abstract
NADH-cytochrome b5 oxidoreductase (Ncb5or) is an endoplasmic reticulum (ER)-associated redox enzyme involved in fatty acid metabolism, and phenotypic abnormalities of Ncb5or(-/-) mice include diabetes and lipoatrophy. These mice are lean and insulin-sensitive but become hyperglycemic at age 7 weeks as a result of β-cell dysfunction and loss. Here we examine early cellular and molecular events associated with manifestations of β-cell defects in Ncb5or(-/-) mice. We observe lower islet β-cell content in pancreata at age 4 weeks and prominent ER distention in β-cells by age 5 weeks. Ultrastructural changes progress rapidly in severity from age 5 to 6 weeks, and their frequency rises from 10% of β-cells at 5 weeks to 33% at 6 weeks. These changes correlate temporally with the onset of diabetes. ER stress responses and lipid load in Ncb5or(-/-) β-cells were assessed with isolated islets from mice at age 5 weeks. Expression levels of the stress marker protein Grp78/BiP and of phosphorylated eIF2α protein were found to be reduced, although their transcript levels did not decline. This pattern stands in contrast to the canonical unfolded protein response. Ncb5or(-/-) β-cells also accumulated higher intracellular levels of palmitate and other free fatty acids and exhibited greater reactive oxygen species production than wild-type cells. An alloxan-susceptible genetic background was found to confer accelerated onset of diabetes in Ncb5or(-/-) mice. These findings provide the first direct evidence that manifestations of diabetes in lean Ncb5or(-/-) mice involve saturated free fatty acid overload of β-cells and ER and oxidative stress responses.
Collapse
Affiliation(s)
- Wenfang Wang
- Department of Physical Therapy and Rehabilitation Science, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu M, Wang W, Frontera JR, Neely MC, Lu J, Aires D, Hsu FF, Turk J, Swerdlow RH, Carlson SE, Zhu H. Ncb5or deficiency increases fatty acid catabolism and oxidative stress. J Biol Chem 2011; 286:11141-54. [PMID: 21300801 DOI: 10.1074/jbc.m110.196543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endoplasmic reticulum-associated NADH cytochrome b(5) oxidoreductase (Ncb5or) is widely distributed in animal tissues. Ncb5or(-/-) mice develop diabetes at age 7 weeks and have increased susceptibility to the diabetogenic oxidant streptozotocin. Ncb5or deficiency also results in lipoatrophy and increased hepatocyte sensitivity to cytotoxic effects of saturated fatty acids. Here we investigate the mechanisms of these phenomena in prediabetic Ncb5or(-/-) mice and find that, despite increased rates of fatty acid uptake and synthesis and higher stearoyl-CoA desaturase (SCD) expression, Ncb5or(-/-) liver accumulates less triacylglycerol (TAG) than wild type (WT). Increased fatty acid catabolism and oxidative stress are evident in Ncb5or(-/-) hepatocytes and reflect increased mitochondrial content, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) expression, fatty acid oxidation rates, oxidative stress response gene expression, and oxidized glutathione content. Ncb5or(-/-) hepatocytes readily incorporate exogenous fatty acids into TAG but accumulate more free fatty acids (FFA) and have greater palmitate-induced oxidative stress responses and cell death than WT, all of which are alleviated by co-incubation with oleate via TAG channeling. A high fat diet rich in palmitate and oleate stimulates both lipogenesis and fatty acid catabolism in Ncb5or(-/-) liver, resulting in TAG levels similar to WT but increased intracellular FFA accumulation. Hepatic SCD-specific activity is lower in Ncb5or(-/-) than in WT mice, although Ncb5or(-/-) liver has a greater increase in Scd1 mRNA and protein levels. Together, these findings suggest that increased FFA accumulation and catabolism and oxidative stress are major consequences of Ncb5or deficiency in liver.
Collapse
Affiliation(s)
- Ming Xu
- Department of Physical Therapy and Rehabilitation Science, University of of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deng B, Parthasarathy S, Wang W, Gibney BR, Battaile KP, Lovell S, Benson DR, Zhu H. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain. J Biol Chem 2010; 285:30181-91. [PMID: 20630863 DOI: 10.1074/jbc.m110.120329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NADH cytochrome b(5) oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b(5) (b(5)), CHORD-SGT1 (CS), and cytochrome b(5) reductase (b(5)R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b(5) and b(5)R domains (Ncb5or-b(5) and Ncb5or-b(5)R, respectively) and compared them with human microsomal b(5) (Cyb5A) and b(5)R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b(5) reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His(89) and His(112), consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b(5) family shown to have such a heme environment. Like other b(5) family members, Ncb5or-b(5) has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b(5) differs from Cyb5A with respect to location of the second heme ligand (His(112)) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b(5)R to Ncb5or-b(5) is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b(5) and b(5)R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b(5)R domains suggest that the CS domain facilitates docking of the b(5) and b(5)R domains. Trp(114) is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b(5)R domain to the b(5) domain.
Collapse
Affiliation(s)
- Bin Deng
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hellemans KH, Hannaert JC, Denys B, Steffensen KR, Raemdonck C, Martens GA, Van Veldhoven PP, Gustafsson JA, Pipeleers D. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase. PLoS One 2009; 4:e7266. [PMID: 19787047 PMCID: PMC2746288 DOI: 10.1371/journal.pone.0007266] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 09/02/2009] [Indexed: 01/22/2023] Open
Abstract
Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/-) and LXRalphabeta(-/-)), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.
Collapse
Affiliation(s)
- Karine H Hellemans
- Diabetes Research Center, Brussels Free University-VUB, and JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|