1
|
Broderick K, Moutaoufik MT, Aly KA, Babu M. Sanitation enzymes: Exquisite surveillance of the noncanonical nucleotide pool to safeguard the genetic blueprint. Semin Cancer Biol 2023; 94:11-20. [PMID: 37211293 DOI: 10.1016/j.semcancer.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are common products of normal cellular metabolism, but their elevated levels can result in nucleotide modifications. These modified or noncanonical nucleotides often integrate into nascent DNA during replication, causing lesions that trigger DNA repair mechanisms such as the mismatch repair machinery and base excision repair. Four superfamilies of sanitization enzymes can effectively hydrolyze noncanonical nucleotides from the precursor pool and eliminate their unintended incorporation into DNA. Notably, we focus on the representative MTH1 NUDIX hydrolase, whose enzymatic activity is ostensibly nonessential under normal physiological conditions. Yet, the sanitization attributes of MTH1 are more prevalent when ROS levels are abnormally high in cancer cells, rendering MTH1 an interesting target for developing anticancer treatments. We discuss multiple MTH1 inhibitory strategies that have emerged in recent years, and the potential of NUDIX hydrolases as plausible targets for the development of anticancer therapeutics.
Collapse
Affiliation(s)
- Kirsten Broderick
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
2
|
Fan J, Lv X, Yang S, Geng S, Yang J, Zhao Y, Zhang Z, Liu Z, Guan G, Luo J, Zeng Q, Yin H, Niu Q. OGG1 inhibition suppresses African swine fever virus replication. Virol Sin 2023; 38:96-107. [PMID: 36435451 PMCID: PMC10006199 DOI: 10.1016/j.virs.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
African swine fever virus (ASFV) is an important pathogen that causes a highly contagious and lethal disease in swine, for which neither a vaccine nor treatment is available. The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises the oxidative base lesion 8-oxo-7,8-dihydroguanine (8-oxoG), has been linked to the pathogenesis of different diseases associated with viral infections. However, the role of OGG1-base excision repair (BER) in ASFV infection has been poorly investigated. Our study aimed to characterize the alteration of host reactive oxygen species (ROS) and OGG1 and to analyse the role of OGG1 in ASFV infection. We found that ASFV infection induced high levels and dynamic changes in ROS and 8-oxoG and consistently increased the expression of OGG1. Viral yield, transcription level, and protein synthesis were reduced in ASFV-infected primary alveolar macrophages (PAMs) treated by TH5487 or SU0268 inhibiting OGG1. The expression of BER pathway associated proteins of ASFV was also suppressed in OGG1-inhibited PAMs. Furthermore, OGG1 was found to negatively regulate interferon β (IFN-β) production during ASFV infection and IFN-β could be activated by OGG1 inhibition with TH5487 and SU0268, which blocked OGG1 binding to 8-oxoG. Additionally, the interaction of OGG1 with viral MGF360-14-L protein could disturb IFN-β production to further affect ASFV replication. These results suggest that OGG1 plays the crucial role in successful viral infection and OGG1 inhibitors SU0268 or TH5487 could be used as antiviral agents for ASFV infection.
Collapse
Affiliation(s)
- Jie Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xinqian Lv
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Saixia Yang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuxian Geng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jifei Yang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yaru Zhao
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhonghui Zhang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhijie Liu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Guiquan Guan
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jianxun Luo
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Hong Yin
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Qingli Niu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
3
|
MUTYH is associated with hepatocarcinogenesis in a non-alcoholic steatohepatitis mouse model. Sci Rep 2021; 11:3599. [PMID: 33574380 PMCID: PMC7878918 DOI: 10.1038/s41598-021-83138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH)-related HCC is associated with oxidative stress. However, the mechanisms underlying the development of NASH-related HCC is unclear. MUTYH is one of the enzymes that is involved in repair of oxidative DNA damage. The aim of this study was to investigate the association between MUTYH and NASH-related hepatocarcinogenesis. MUTYH wild-type (Mutyh+/+), heterozygous (Mutyh+/-), and MUTYH-null (Mutyh-/-) mice were fed a high-fat high-cholesterol (HFHC) diet or HFHC + high iron diet (20 mice per group) for 9 months. Five of 20 Mutyh-/- mice fed an HFHC + high iron diet developed liver tumors, and they developed more liver tumors than other groups (especially vs. Mutyh+/+ fed an HFHC diet, P = 0.0168). Immunohistochemical analysis revealed significantly higher accumulation of oxidative stress markers in mice fed an HFHC + high iron diet. The gene expression profiles in the non-tumorous hepatic tissues were compared between wild-type mice that developed no liver tumors and MUTYH-null mice that developed liver tumors. Gene Set Enrichment Analysis identified the involvement of the Wnt/β-catenin signaling pathway and increased expression of c-Myc in MUTYH-null liver. These findings suggest that MUTYH deficiency is associated with hepatocarcinogenesis in patients with NASH with hepatic iron accumulation.
Collapse
|
4
|
Lin Y, McMahon A, Driscoll G, Bullock S, Zhao J, Yan S. Function and molecular mechanisms of APE2 in genome and epigenome integrity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108347. [PMID: 34083046 DOI: 10.1016/j.mrrev.2020.108347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
APE2 is a rising vital player in the maintenance of genome and epigenome integrity. In the past several years, a series of studies have shown the critical roles and functions of APE2. We seek to provide the first comprehensive review on several aspects of APE2 in genome and epigenome integrity. We first summarize the distinct functional domains or motifs within APE2 including EEP (endonuclease/exonuclease/phosphatase) domain, PIP box and Zf-GRF motifs from eight species (i.e., Homo sapiens, Mus musculus, Xenopus laevis, Ciona intestinalis, Arabidopsis thaliana, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Trypanosoma cruzi). Then we analyze various APE2 nuclease activities and associated DNA substrates, including AP endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-5' exonuclease activities. We also examine several APE2 interaction proteins, including PCNA, Chk1, APE1, Myh1, and homologous recombination (HR) factors such as Rad51, Rad52, BRCA1, BRCA2, and BARD1. Furthermore, we provide insights into the roles of APE2 in various DNA repair pathways (base excision repair, single-strand break repair, and double-strand break repair), DNA damage response (DDR) pathways (ATR-Chk1 and p53-dependent), immunoglobulin class switch recombination and somatic hypermutation, as well as active DNA demethylation. Lastly, we summarize critical functions of APE2 in growth, development, and diseases. In this review, we provide the first comprehensive perspective which dissects all aspects of the multiple-function protein APE2 in genome and epigenome integrity.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Garrett Driscoll
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Sharon Bullock
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States.
| |
Collapse
|
5
|
Mori Y, Oikawa S, Kurimoto S, Kitamura Y, Tada-Oikawa S, Kobayashi H, Yamashima T, Murata M. Proteomic analysis of the monkey hippocampus for elucidating ischemic resistance. J Clin Biochem Nutr 2020; 67:167-173. [PMID: 33041514 PMCID: PMC7533853 DOI: 10.3164/jcbn.19-78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023] Open
Abstract
It is well-known that the cornu Ammonis 1 (CA1) sector of hippocampus is vulnerable for the ischemic insult, whereas the dentate gyrus (DG) is resistant. Here, to elucidate its underlying mechanism, alternations of protein oxidation and expression of DG in the monkey hippocampus after ischemia-reperfusion by the proteomic analysis were studied by comparing CA1 data. Oxidative damage to proteins such as protein carbonylation interrupt the protein function. Carbonyl modification of molecular chaperone, heat shock 70 kDa protein 1 (Hsp70.1) was increased remarkably in CA1, but slightly in DG. In addition, expression levels of nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-2 (SIRT2) was significantly increased in DG after ischemia, but decreased in CA1. Accordingly, it is likely that SIRT2 upregulation and negligible changes of carbonylation of Hsp70.1 exert its neuroprotective effect in DG. On the contrary, carbonylation level of dihydropyrimidinase related protein 2 (DRP-2) and l-lactate dehydrogenase B chain (LDHB) were slightly increased in CA1 as shown previously, but remarkably increased in DG after ischemia. It is considered that DRP-2 and LDHB are specific targets of oxidative stress by ischemia insult and high carbonylation levels of DRP-2 may play an important role in modulating ischemic neuronal death.
Collapse
Affiliation(s)
- Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shota Kurimoto
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka-motomachi, Chikusa-ku, Nagoya, Aichi 464-8662, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsumori Yamashima
- Departments of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Takakura-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| |
Collapse
|
6
|
Inokuchi S, Itoh S, Yoshizumi T, Yugawa K, Yoshiya S, Toshima T, Takeishi K, Iguchi T, Sanefuji K, Harada N, Sugimachi K, Ikegami T, Kohashi K, Taguchi K, Yonemasu H, Fukuzawa K, Oda Y, Mori M. Mitochondrial expression of the DNA repair enzyme OGG1 improves the prognosis of pancreatic ductal adenocarcinoma. Pancreatology 2020; 20:1175-1182. [PMID: 32741713 DOI: 10.1016/j.pan.2020.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES 8-Hydroxydeoxyguanosine (8-OHdG) is an indicator of oxidative stress and causes transversion mutations and carcinogenesis. 8-OHdG is excision repaired by 8-OHdG DNA glycosylase 1 (OGG1), which is classified as nuclear and mitochondrial subtypes. We aimed to clarify the role of OGG1 in pancreatic ductal adenocarcinoma (PDAC). METHODS Ninety-two patients with PDAC who had undergone surgical resection at multiple institutions were immunohistochemically analyzed. The OGG1 and 8-OHdG expression levels were scored using the Germann Immunoreactive Score. The cutoff values of OGG1, as well as that of 8-OHdG, were determined. RESULTS The low nuclear OGG1 expression group (n = 41) showed significantly higher carbohydrate antigen (CA)19-9 (p = 0.026), and higher s-pancreas antigen (SPAN)-1 (p = 0.017) than the high expression group (n = 51). Nuclear OGG1 expression has no effect on the prognosis. The low mitochondrial OGG1 expression group (n = 40) showed higher CA19-9 (p = 0.041), higher SPAN-1 (p = 0.032), and more histological perineural invasion (p = 0.037) than the high expression group (n = 52). The low mitochondrial OGG1 expression group had a significantly shorter recurrence-free survival (p = 0.0080) and overall survival (p = 0.0073) rates. The Cox proportional hazards model revealed that low mitochondrial OGG1 expression is an independent risk factor of the PDAC prognosis. OGG1 expression was negatively correlated with 8-OHdG expression (p = 0.0004), and high 8-OHdG expression shortened the recurrence-free survival of patients with PDAC. CONCLUSIONS Low mitochondrial OGG1 expression might aggravate the PDAC prognosis.
Collapse
Affiliation(s)
- Shoichi Inokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Kyohei Yugawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan; Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 812-8582, Japan
| | - Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Kazuki Takeishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Tomohiro Iguchi
- Department of Hepatobiliary-Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, 811-1395, Japan
| | - Kensaku Sanefuji
- Department of Surgery, Oita Red Cross Hospital, 870-0033, Oita, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Keishi Sugimachi
- Department of Hepatobiliary-Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, 811-1395, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 812-8582, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, 811-1395, Japan
| | - Hirotoshi Yonemasu
- Department of Anatomic Pathology, Oita Red Cross Hospital, 870-0033, Oita, Japan
| | - Kengo Fukuzawa
- Department of Surgery, Oita Red Cross Hospital, 870-0033, Oita, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 812-8582, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| |
Collapse
|
7
|
Tahara YK, Kietrys AM, Hebenbrock M, Lee Y, Wilson DL, Kool ET. Dual Inhibitors of 8-Oxoguanine Surveillance by OGG1 and NUDT1. ACS Chem Biol 2019; 14:2606-2615. [PMID: 31622553 PMCID: PMC7061906 DOI: 10.1021/acschembio.9b00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative damage in DNA is one of the primary sources of mutations in the cell. The activities of repair enzymes 8-oxoguanine DNA glycosylase (OGG1) and human MutT Homologue 1 (NUDT1 or MTH1), which work together to ameliorate this damage, are closely linked to mutagenesis, genotoxicity, cancer, and inflammation. Here we have undertaken the development of small-molecule dual inhibitors of the two enzymes as tools to test the relationships between these pathways and disease. The compounds preserve key structural elements of known inhibitors of the two enzymes, and they were synthesized and assayed with recently developed luminescence assays of the enzymes. Further structural refinement of initial lead molecules yielded compound 5 (SU0383) with IC50(NUDT1) = 0.034 μM and IC50(OGG1) = 0.49 μM. The compound SU0383 displayed low toxicity in two human cell lines at 10 μM. Experiments confirm the ability of SU0383 to increase sensitivity of tumor cells to oxidative stress. Dual inhibitors of these two enzymes are expected to be useful in testing multiple hypotheses regarding the roles of 8-oxo-dG in multiple disease states.
Collapse
Affiliation(s)
- Yu-ki Tahara
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marian Hebenbrock
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yujeong Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Köger N, Brieger A, Hinrichsen IM, Zeuzem S, Plotz G. Analysis of MUTYH alternative transcript expression, promoter function, and the effect of human genetic variants. Hum Mutat 2019; 40:472-482. [PMID: 30653782 DOI: 10.1002/humu.23709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
Abstract
The human DNA repair gene MUTYH, whose mutational loss causes a colorectal polyposis and cancer predisposition, contains three alternative first exons. In order to analyze alternative transcription and the effect of genetic alterations found in humans, we established a cell-based minigene experimental model supporting transcription and splicing and thoroughly verified its functionality. We identified highly conserved promoter areas and inactivated them in the minigene, and also introduced six human variants. Moreover, the potential contribution of CpG island methylation and specific transcription factors on MUTYH transcription was addressed. The findings allowed to attribute regulatory roles to three conserved motifs in the promoter: an M4 motif, a transcription factor IIB recognition element, and a GC box. Moreover, the data showed that three patient variants compromised MUTYH expression and therefore have the potential to cause pathogenic effects. We did not find evidence for a biologically relevant contribution of CpG island methylation or a direct transcriptional activation by DNA damage. Besides insight into the regulation of MUTYH transcription, the work therefore provides a functional MUTYH minigene experimental system suitable as a diagnostic tool for analyzing patient variants, and a functional map of the promotor that also can facilitate pathogenicity classifications of human variants.
Collapse
Affiliation(s)
- Nicole Köger
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Angela Brieger
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Inga M Hinrichsen
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Stefan Zeuzem
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Guido Plotz
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| |
Collapse
|
9
|
Sakurada A, Miyanishi K, Tanaka S, Sato M, Sakamoto H, Kawano Y, Takada K, Nakabeppu Y, Kobune M, Kato J. An intronic single nucleotide polymorphism in the MUTYH gene is associated with increased risk for HCV-induced hepatocellular carcinoma. Free Radic Biol Med 2018; 129:88-96. [PMID: 30218772 DOI: 10.1016/j.freeradbiomed.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The role of base excision repair genes in human hepatocarcinogenesis has not yet been explored. Here, we investigated relationships between variants of these genes and the risk of developing hepatocellular carcinoma (HCC). METHODS Nineteen tagging SNPs in base excision repair genes (including MUTYH, OGG1 and MTH1) were genotyped using iPLEX assays; one significant SNP was found and confirmed in Japanese patients with chronic hepatitis C (CHC) (n = 38 HCC and 55 controls). The effects of modifying the intronic variants were determined by luciferase assays. MUTYH-null mice were used to examine the involvement of oxidative stress and DNA repair enzymes in hepatocarcinogenesis. RESULTS Significant associations were found for a single intron SNP (rs3219487) in the MUTYH gene. The risk of developing HCC in patients with A/A or G/A genotypes was higher than in those with the G/G genotype (OR = 9.27, 95% CI = 2.39 -32.1, P = 0.0005). MUTYH mRNA levels in both peripheral mononuclear cells were significantly lower in G/A or A/A genotyped subjects (P = 0.0157 and 0.0108, respectively). We found that -2000 in the MUTYH promoter region is involved in enhanced expression of MUTYH by insertion of a major allele sequence of rs3219487. Liver tumors were observed in MUTYH-null mice after 12 months´ high iron diet, but no tumors developed when dietary anti-oxidant (N-Acetyl-L-cysteine) was also provided. CONCLUSIONS CHC patients with the rs3219487 adenine allele had a significantly increased risk of developing HCC. MUTYH-null mice with iron-associated oxidative stress were susceptible to development of liver tumors unless prevented by dietary anti-oxidants.
Collapse
MESH Headings
- Aged
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- DNA Glycosylases/genetics
- DNA Repair Enzymes/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genotype
- Hep G2 Cells
- Hepacivirus/pathogenicity
- Hepacivirus/physiology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Humans
- Introns
- Iron/administration & dosage
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphoric Monoester Hydrolases/genetics
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Akira Sakurada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Shingo Tanaka
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Sakamoto
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yutaka Kawano
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Masayoshi Kobune
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
10
|
Chunli W, Liang Z, Meimei W, Yuntiao J, Xiaoping L, Song H, Xiaojun Z. Antioxidative and hepatoprotective activities of the ethyl acetate fraction separated from the fruit of Livistona chinensis. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30884-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Kumagae Y, Hirahashi M, Takizawa K, Yamamoto H, Gushima M, Esaki M, Matsumoto T, Nakamura M, Kitazono T, Oda Y. Overexpression of MTH1 and OGG1 proteins in ulcerative colitis-associated carcinogenesis. Oncol Lett 2018; 16:1765-1776. [PMID: 30008864 DOI: 10.3892/ol.2018.8812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress, demonstrated by an accumulation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), results in DNA damage, which is normally repaired by base excision repair enzymes including 8-OHdG DNA glycosylase (OGG1) and human MutY homolog (MUTYH), in addition to nucleotide pool sanitizing enzymes including MutT Homolog 1 (MTH1). Abnormalities of this repair system are present in various cancer types. The present study aimed to elucidate the clinicopathological significance of altered expression levels of inducible nitric oxide synthase (iNOS), 8-OHdG, OGG1, MTH1 and MUTYH in ulcerative colitis (UC) and UC-associated neoplasms. Immunohistochemical staining for these markers and p53 in 23 cases of UC-associated neoplasm (Group A, 14 carcinomas and nine dysplasias), 16 cases of UC without neoplasm (Group B) and 17 cases of normal colon specimens (Group C) was performed. Mutation analyses was conducted for KRAS proto-oncogene, GTPase (K-ras), tumor protein P53 (TP53) and isocitrate dehydrogenase (NADP (+)) 1, cytosolic (IDH1) genes. Immunohistochemically, the iNOS, 8-OHdG, OGG1 and MTH1 expression levels were increased in Groups A and B compared with Group C. The OGG1 and MTH1 expression levels in Group A were also increased compared with Group B. Group A and Group B exhibited increased cytoplasmic expression and decreased nuclear expression of MUTYH compared with Group C. Mutations of K-ras and TP53 were detected in 2/21 (9.5%) and 10/22 (45.5%) cases of Group A, respectively. IDH1 mutation was not detected in any cases. These findings suggest that, as a response to oxidative damage, OGG1 and MTH1 may be upregulated in UC through an inflammatory condition that progresses to cancer formation. Persisting oxidative damage stress may play a role in the pathogenesis of UC-associated tumors.
Collapse
Affiliation(s)
- Yoshiteru Kumagae
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Minako Hirahashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Katsumi Takizawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaki Gushima
- Department of Medical Gastroenterology, Shimonoseki Hospital, Yamaguchi, Yamaguchi 750-8520, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Masafumi Nakamura
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Wang JY, Liu GZ, Wilmott JS, La T, Feng YC, Yari H, Yan XG, Thorne RF, Scolyer RA, Zhang XD, Jin L. Skp2-Mediated Stabilization of MTH1 Promotes Survival of Melanoma Cells upon Oxidative Stress. Cancer Res 2017; 77:6226-6239. [PMID: 28947420 DOI: 10.1158/0008-5472.can-17-1965] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022]
Abstract
MTH1 helps prevent misincorporation of ROS-damaged dNTPs into genomic DNA; however, there is little understanding of how MTH1 itself is regulated. Here, we report that MTH1 is regulated by polyubiquitination mediated by the E3 ligase Skp2. In melanoma cells, MTH1 was upregulated commonly mainly due to its improved stability caused by K63-linked polyubiquitination. Although Skp2 along with other components of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex was physically associated with MTH1, blocking the SCF function ablated MTH1 ubiquitination and expression. Conversely, overexpressing Skp2-elevated levels of MTH1 associated with an increase in its K63-linked ubiquitination. In melanoma cell lines and patient specimens, we observed a positive correlation of Skp2 and MTH1 expression. Mechanistic investigations showed that Skp2 limited DNA damage and apoptosis triggered by oxidative stress and that MAPK upregulated Skp2 and MTH1 to render cells more resistant to such stress. Collectively, our findings identify Skp2-mediated K63-linked polyubiquitination as a critical regulatory mechanism responsible for MTH1 upregulation in melanoma, with potential implications to target the MAPK/Skp2/MTH1 pathway to improve its treatment. Cancer Res; 77(22); 6226-39. ©2017 AACR.
Collapse
Affiliation(s)
- Jia Yu Wang
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Guang Zhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China
| | - James S Wilmott
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China.,School of Environmental and Life Sciences, The University of Newcastle, New South Wales, Australia
| | - Richard A Scolyer
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China. .,School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China. .,School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| |
Collapse
|
13
|
Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochem Soc Trans 2017; 45:1053-1066. [DOI: 10.1042/bst20160433] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Unlike DNA, oxidative damage to RNA has received little attention presumably due to the assumed transient nature of RNA. However, RNAs including mRNA can persist for several hours to days in certain tissues and are demonstrated to sustain greater oxidative damage than DNA. Because neuronal cells in the brain are continuously exposed to reactive oxygen species due to a high oxygen consumption rate, it is not surprising that neuronal RNA oxidation is observed as a common feature at an early stage in a series of neurodegenerative disorders. A recent study on a well-defined bacterial translation system has revealed that mRNA containing 8-oxo-guanosine (8-oxoGuo) has little effect on fidelity despite the anticipated miscoding. Indeed, 8-oxoGuo-containing mRNA leads to ribosomal stalling with a reduced rate of peptide-bond formation by 3–4 orders of magnitude and is subject to no-go decay, a ribosome-based mRNA surveillance mechanism. Another study demonstrates that transfer RNA oxidation catalyzed by cytochrome c (cyt c) leads to its depurination and cross-linking, which may facilitate cyt c release from mitochondria and subsequently induce apoptosis. Even more importantly, a discovery of oxidized microRNA has been recently reported. The oxidized microRNA causes misrecognizing the target mRNAs and subsequent down-regulation in the protein synthesis. It is noteworthy that oxidative modification to RNA not only interferes with the translational machinery but also with regulatory mechanisms of noncoding RNAs that contribute toward the biological complexity of the mammalian brain. Oxidative RNA damage might be a promising therapeutic target potentially useful for an early intervention of diverse neuropsychiatric disorders.
Collapse
|
14
|
Samaranayake GJ, Huynh M, Rai P. MTH1 as a Chemotherapeutic Target: The Elephant in the Room. Cancers (Basel) 2017; 9:cancers9050047. [PMID: 28481306 PMCID: PMC5447957 DOI: 10.3390/cancers9050047] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/26/2022] Open
Abstract
Many tumors sustain elevated levels of reactive oxygen species (ROS), which drive oncogenic signaling. However, ROS can also trigger anti-tumor responses, such as cell death or senescence, through induction of oxidative stress and concomitant DNA damage. To circumvent the adverse consequences of elevated ROS levels, many tumors develop adaptive responses, such as enhanced redox-protective or oxidatively-generated damage repair pathways. Targeting these enhanced oxidative stress-protective mechanisms is likely to be both therapeutically effective and highly specific to cancer, as normal cells are less reliant on such mechanisms. In this review, we discuss one such stress-protective protein human MutT Homolog1 (MTH1), an enzyme that eliminates 8-oxo-7,8-dihydro-2’-deoxyguanosine triphosphate (8-oxodGTP) through its pyrophosphatase activity, and is found to be elevated in many cancers. Our studies, and subsequently those of others, identified MTH1 inhibition as an effective tumor-suppressive strategy. However, recent studies with the first wave of MTH1 inhibitors have produced conflicting results regarding their cytotoxicity in cancer cells and have led to questions regarding the validity of MTH1 as a chemotherapeutic target. To address the proverbial "elephant in the room" as to whether MTH1 is a bona fide chemotherapeutic target, we provide an overview of MTH1 function in the context of tumor biology, summarize the current literature on MTH1 inhibitors, and discuss the molecular contexts likely required for its efficacy as a therapeutic target.
Collapse
Affiliation(s)
- Govindi J Samaranayake
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL 33136, USA.
| | - Mai Huynh
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33146, USA.
| | - Priyamvada Rai
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
15
|
Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:221-231. [PMID: 28567432 PMCID: PMC5437736 DOI: 10.1016/j.omtm.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/30/2017] [Indexed: 11/23/2022]
Abstract
Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs) superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs), exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP) internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.
Collapse
|
16
|
Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 2016; 15:99. [PMID: 27903278 PMCID: PMC5131407 DOI: 10.1186/s12937-016-0217-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Plant derived phenolic compounds have been shown to inhibit the initiation and progression of cancers by modulating genes regulating key processes such as: (a) oncogenic transformation of normal cells; (b) growth and development of tumors; and (c) angiogenesis and metastasis. Recent studies focusing on identifying the molecular basis of plant phenolics-induced cancer cell death have demonstrated down-regulation of: (a) oncogenic survival kinases such as PI3K and Akt; (b) cell proliferation regulators that include Erk1/2, D-type Cyclins, and Cyclin Dependent Kinases (CDKs); (c) transcription factors such as NF-kβ, NRF2 and STATs; (d) histone deacetylases HDAC1 and HDAC2; and (e) angiogenic factors VEGF, FGFR1 and MIC-1. Furthermore, while inhibiting oncogenic proteins, the phenolic compounds elevate the expression of tumor suppressor proteins p53, PTEN, p21, and p27. In addition, plant phenolic compounds and the herbal extracts rich in phenolic compounds modulate the levels of reactive oxygen species (ROS) in cells thereby regulate cell proliferation, survival and apoptosis. Furthermore, recent studies have demonstrated that phenolic compounds undergo transformation in gut microbiota thereby acquire additional properties that promote their biological activities. In vitro observations, preclinical and epidemiological studies have shown the involvement of plant phenolic acids in retarding the cancer growth. However, to date, there is no clinical trial as such testing the role of plant phenolic compounds for inhibiting tumor growth in humans. More over, several variations in response to phenolic acid rich diets-mediated treatment among individuals have also been reported, raising concerns about whether phenolic acids could be used for treating cancers. Therefore, we have made an attempt to (a) address the key structural features of phenolic acids required for exhibiting potent anti-cancer activity; (b) review the reported findings about the mechanisms of action of phenolic compounds and their transformation by gut microbiota; and (c) update the toxicological aspects and anti-tumor properties of phenolic compounds and extracts containing phenolic compounds in animals.
Collapse
Affiliation(s)
- Preethi G Anantharaju
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India
| | - Prathima C Gowda
- Department of Pharmacology, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India
| | | | - SubbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India.
| |
Collapse
|
17
|
Cividini F, Scott BT, Dai A, Han W, Suarez J, Diaz-Juarez J, Diemer T, Casteel DE, Dillmann WH. O-GlcNAcylation of 8-Oxoguanine DNA Glycosylase (Ogg1) Impairs Oxidative Mitochondrial DNA Lesion Repair in Diabetic Hearts. J Biol Chem 2016; 291:26515-26528. [PMID: 27816939 DOI: 10.1074/jbc.m116.754481] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/03/2016] [Indexed: 11/06/2022] Open
Abstract
mtDNA damage in cardiac myocytes resulting from increased oxidative stress is emerging as an important factor in the pathogenesis of diabetic cardiomyopathy. A prevalent lesion that occurs in mtDNA damage is the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which can cause mutations when not repaired properly by 8-oxoguanine DNA glycosylase (Ogg1). Although the mtDNA repair machinery has been described in cardiac myocytes, the regulation of this repair has been incompletely investigated. Here we report that the hearts of type 1 diabetic mice, despite having increased Ogg1 protein levels, had significantly lower Ogg1 activity than the hearts of control, non-type 1 diabetic mice. In diabetic hearts, we further observed increased levels of 8-OHdG and an increased amount of mtDNA damage. Interestingly, Ogg1 was found to be highly O-GlcNAcylated in diabetic mice compared with controls. In vitro experiments demonstrated that O-GlcNAcylation inhibits Ogg1 activity, which could explain the mtDNA lesion accumulation observed in vivo Reducing Ogg1 O-GlcNAcylation in vivo by introducing a dominant negative O-GlcNAc transferase mutant (F460A) restored Ogg1 enzymatic activity and, consequently, reduced 8-OHdG and mtDNA damage despite the adverse hyperglycemic milieu. Taken together, our results implicate hyperglycemia-induced O-GlcNAcylation of Ogg1 in increased mtDNA damage and, therefore, provide a new plausible biochemical mechanism for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Federico Cividini
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| | - Brian T Scott
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| | - Anzhi Dai
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| | - Wenlong Han
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| | - Jorge Suarez
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| | - Julieta Diaz-Juarez
- the Department of Pharmacology, Instituto Nacional de Cardiología, Juan Badiano 41, Barrio Belisario Domínguez Secc XVI, 14080 Tlalpan, DF, Mexico
| | - Tanja Diemer
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| | - Darren E Casteel
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| | - Wolfgang H Dillmann
- From the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671 and
| |
Collapse
|
18
|
Kohno Y, Yamamoto H, Hirahashi M, Kumagae Y, Nakamura M, Oki E, Oda Y. Reduced MUTYH, MTH1, and OGG1 expression and TP53 mutation in diffuse-type adenocarcinoma of gastric cardia. Hum Pathol 2016; 52:145-52. [DOI: 10.1016/j.humpath.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 02/08/2023]
|
19
|
Yoshimura K, Ogawa T, Tsujimura M, Ishikawa K, Shigeoka S. Ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, confers enhanced tolerance to oxidative stress in arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:1534-1543. [PMID: 24928220 DOI: 10.1093/pcp/pcu083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxidized nucleotides produced by oxidative stress cause DNA mutations and the production of abnormal proteins. Thus, mammalian cells have developed multiple MutT-type Nudix hydrolases that exhibit pyrophosphohydrolase activity toward oxidized nucleotides in the cytosol, mitochondria and nucleus. On the other hand, AtNUDX1 is the only MutT-type Nudix hydrolase in the cytosol of Arabidopsis plants. To clarify the physiological significance of the defenses against oxidatively induced DNA damage in plant organelles, we analyzed the effects of the ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, which was localized in the cytosol (cyt-hMTH1), chloroplasts (chl-hMTH1) and mitochondria (mit-hMTH1) of Arabidopsis cells, on tolerance to oxidative stress. Tolerance to oxidative stress caused by heating and paraquat (PQ) treatment was higher in the mit-hMTH1 and chl-hMTH1 plants than in the control and cyt-hMTH1 plants. The accumulation of H2O2 and the frequency of dead cells were lower in the mit-hMTH1 and chl-hMTH1 plants under stressful conditions. The poly(ADP-ribosyl)ation (PAR) reaction, which regulates repair systems for damaged DNA, was activated in the mit-hMTH1 and chl-hMTH1 plants under heat stress and PQ treatment. Furthermore, DNA fragmentation, which caused programmed cell death, was clearly suppressed in the mit-hMTH1 and chl-hMTH1 plants under heat stress. These results demonstrated that the ectopic expression of hMTH1 in the chloroplasts and mitochondria of Arabidopsis enhanced oxidative stress tolerance by activating the PAR reaction and suppressing programmed cell death.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kazuya Ishikawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| |
Collapse
|
20
|
Kubo N, Morita M, Nakashima Y, Kitao H, Egashira A, Saeki H, Oki E, Kakeji Y, Oda Y, Maehara Y. Oxidative DNA damage in human esophageal cancer: clinicopathological analysis of 8-hydroxydeoxyguanosine and its repair enzyme. Dis Esophagus 2014; 27:285-93. [PMID: 23902537 DOI: 10.1111/dote.12107] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both internal and external oxidative stresses act on DNA and can induce carcinogenesis. 8-hydroxydeoxyguanosine (8-OHdG) is an indicator of oxidative stress and it leads to transversion mutations and carcinogenesis. 8-OHdG is excision-repaired by 8-OHdG DNA glycosylase (OGG1). The purpose of this study is to clarify the effect of oxidative DNA damage and repair enzymes on esophageal carcinogenesis. The levels of 8-OHdG and OGG1 were immunohistochemically evaluated in resected specimens, including squamous cell carcinoma (SCC) in 97 patients with esophageal cancer. Higher levels of 8-OHdG in normal esophageal epithelium were associated with a higher smoking index (P = 0.0464). The 8-OHdG level was higher in cancerous areas than in normal epithelia (P = 0.0061), whereas OGG1 expression was weaker in cancerous areas than in normal epithelia (P < 0.0001). An increase of OGG1 expression in normal epithelium was observed as 8-OHdG levels increased (P = 0.0011). However, this correlation was not observed in cancerous areas. High OGG1 expression in the cytoplasm was related to deeper tumors (P = 0.0023), node metastasis (P = 0.0065) and stage (P = 0.0019). Oxidative DNA damage, which is attributable to smoking as well as disturbances in DNA repair systems, appears to be closely related to esophageal carcinogenesis and its progression.
Collapse
Affiliation(s)
- N Kubo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jalland CMO, Benestad SL, Ersdal C, Scheffler K, Suganthan R, Nakabeppu Y, Eide L, Bjørås M, Tranulis MA. Accelerated clinical course of prion disease in mice compromised in repair of oxidative DNA damage. Free Radic Biol Med 2014; 68:1-7. [PMID: 24296244 DOI: 10.1016/j.freeradbiomed.2013.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
The detailed mechanisms of prion-induced neurotoxicity are largely unknown. Here, we have studied the role of DNA damage caused by reactive oxygen species in a mouse scrapie model by characterizing prion disease in the ogg1(-/-)mutyh(-/-) double knockout, which is compromised in oxidative DNA base excision repair. Ogg1 initiates removal of the major oxidation product 8-oxoguanine (8-oxoG) in DNA, and Mutyh initiates removal of adenine that has been misincorporated opposite 8-oxoG. Our data show that the onset of clinical signs appeared unaffected by Mutyh and Ogg1 expression. However, the ogg1(-/-)mutyh(-/-) mice displayed a significantly shorter clinical phase of the disease. Thus, accumulation of oxidative DNA damage might be of particular importance in the terminal clinical phase of prion disease. The prion-induced pathology and lesion profile were similar between knockout mice and controls. The fragmentation pattern of protease-resistant PrP as revealed in Western blots was also identical between the groups. Our data show that the fundamentals of prion propagation and pathological manifestation are not influenced by the oxidative DNA damage repair mechanisms studied here, but that progressive accumulation of oxidative lesions may accelerate the final toxic phase of prion disease.
Collapse
Affiliation(s)
| | | | - Cecilie Ersdal
- Norwegian School of Veterinary Science, NO-0033 Oslo, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry and Oslo University Hospital, University of Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital, University of Oslo, Norway
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Lars Eide
- Department of Medical Biochemistry and Oslo University Hospital, University of Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, University of Oslo, Norway
| | | |
Collapse
|
22
|
Bradley-Whitman MA, Timmons MD, Beckett TL, Murphy MP, Lynn BC, Lovell MA. Nucleic acid oxidation: an early feature of Alzheimer's disease. J Neurochem 2013; 128:294-304. [PMID: 24032632 DOI: 10.1111/jnc.12444] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Studies of oxidative damage during the progression of Alzheimer's disease (AD) suggest its central role in disease pathogenesis. To investigate levels of nucleic acid oxidation in both early and late stages of AD, levels of multiple base adducts were quantified in nuclear and mitochondrial DNA from the superior and middle temporal gyri (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of age-matched normal control subjects, subjects with mild cognitive impairment, preclinical AD, late-stage AD, and non-AD neurological disorders (diseased control; DC) using gas chromatography/mass spectrometry. Median levels of multiple DNA adducts in nuclear and mitochondrial DNA were significantly (p ≤ 0.05) elevated in the SMTG, IPL, and CER in multiple stages of AD and in DC subjects. Elevated levels of fapyguanine and fapyadenine in mitochondrial DNA suggest a hypoxic environment early in the progression of AD and in DC subjects. Overall, these data suggest that oxidative damage is an early event not only in the pathogenesis of AD but is also present in neurodegenerative diseases in general. Levels of oxidized nucleic acids in nDNA and mtDNA were found to be significantly elevated in mild cognitive impairment (MCI), preclinical Alzheimer's disease (PCAD), late-stage AD (LAD), and a pooled diseased control group (DC) of frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) subjects compared to normal control (NC) subjects. Nucleic acid oxidation peaked early in disease progression and remained elevated. The study suggests nucleic acid oxidation is a general event in neurodegeneration.
Collapse
Affiliation(s)
- Melissa A Bradley-Whitman
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
23
|
Singh B, Chatterjee A, Ronghe AM, Bhat NK, Bhat HK. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer. BMC Cancer 2013; 13:253. [PMID: 23697596 PMCID: PMC3665669 DOI: 10.1186/1471-2407-13-253] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/07/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. METHODS Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. RESULTS The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. CONCLUSIONS Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Room 5251, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
24
|
Genome-wide gene expression profiles in antioxidant pathways and their potential sex differences and connections to vitamin C in mice. Int J Mol Sci 2013; 14:10042-62. [PMID: 23665904 PMCID: PMC3676827 DOI: 10.3390/ijms140510042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/07/2013] [Accepted: 04/28/2013] [Indexed: 12/13/2022] Open
Abstract
Vitamin C (VC) is well known as an antioxidant in humans, primates and guinea pigs. Studies have suggested gender differences in VC requirements in humans, and gender differences in oxidant injury vulnerability in early life may represent a biological mechanism contributing to gender disparity in later life. Using spontaneous bone fracture (sfx) mice, which lack the gene for L-Gulonolactone oxidase (Gulo), we studied the potential sex difference in expression profiles of oxidative genes at the whole-genome level. Then, we analyzed data of gene expressions in a mouse population of recombinant inbred (RI) strains originally derived by crossing C57BL/6J (B6) and DBA/2J (D2) mice. Our data indicated that there were sex differences in the regulation of pre- and pro-oxidative genes in sfx mice. The associations of expression levels among Gulo, its partner genes and oxidative genes in the BXD (B6 × D2) RI strains showed a sex difference. Transcriptome mapping suggests that Gulo was regulated differently between female and male mice in BXD RI strains. Our study indicates the importance of investigating sex differences in Gulo and its oxidative function by using available mouse models.
Collapse
|
25
|
Oxidative Damage to RNA in Aging and Neurodegenerative Disorders. Neurotox Res 2012; 22:231-48. [DOI: 10.1007/s12640-012-9331-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 05/13/2012] [Accepted: 05/17/2012] [Indexed: 12/14/2022]
|
26
|
Plotz G, Casper M, Raedle J, Hinrichsen I, Heckel V, Brieger A, Trojan J, Zeuzem S. MUTYHgene expression and alternative splicing in controls and polyposis patients. Hum Mutat 2012; 33:1067-74. [DOI: 10.1002/humu.22059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/03/2012] [Indexed: 12/16/2022]
|
27
|
Kassab A, Piwowar A. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 2012; 94:1837-48. [PMID: 22333037 DOI: 10.1016/j.biochi.2012.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Most known pathways of diabetic complications involve oxidative stress. The mitochondria electron transport chain is a significant source of reactive oxygen species (ROS) in insulin secretory cells, insulin peripheral sensitive cells and endothelial cells. Elevated intracellular glucose level induces tricarboxylic acid cycle electron donor overproduction and mitochondrial proton gradient increase leading to an increase in electron transporter lifetime. Subsequently, the electrons leaked combine with respiratory oxygen (O(2)) resulting in superoxide anion ((•)O(2)(-)) production. Advanced glycation end products derive ROS via interaction with their receptors. Elevated diacylglycerol and ROS activate the protein kinase C pathway which, in turn, activates NADPH oxidases. A vicious circle of pathway derived ROS installs. Pathologic pathways induced ROS are activated and persistent though glycemia returns to normal due to hyperglycemia memory. Endothelial nitric oxide synthase may produce both superoxide anion ((•)O(2)(-)) and nitric oxide (NO) leading to peroxynitrite ((•)ONOO(-)) generation. Homocysteine is also implicated in oxidative stress pathogenesis. In this paper we have highlighted the pathologic mechanisms of ROS on atherosclerosis, renal dysfunction, retina dysfunction and nerve dysfunction in type 2 diabetes. Cell oxidant stress delivery have pivotal role in cell dysfunction onset and progression of angiopathies but an early introduction of good glycemic control may protect cells more efficiently than antioxidants.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry Laboratory, CHU Farhat Hached, Sousse, Tunisia.
| | | |
Collapse
|
28
|
Mansego ML, Redon J, Martinez-Hervas S, Real JT, Martinez F, Blesa S, Gonzalez-Albert V, Saez GT, Carmena R, Chaves FJ. Different impacts of cardiovascular risk factors on oxidative stress. Int J Mol Sci 2011; 12:6146-63. [PMID: 22016650 PMCID: PMC3189774 DOI: 10.3390/ijms12096146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/01/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023] Open
Abstract
The objective of the study was to evaluate oxidative stress (OS) status in subjects with different cardiovascular risk factors. With this in mind, we have studied three models of high cardiovascular risk: hypertension (HT) with and without metabolic syndrome, familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH) with and without insulin resistance. Oxidative stress markers (oxidized/reduced glutathione ratio, 8-oxo-deoxyguanosine and malondialdehide) together with the activity of antioxidant enzyme triad (superoxide dismutase, catalase, glutathione peroxidase) and activation of both pro-oxidant enzyme (NAPDH oxidase components) and AGTR1 genes, as well as antioxidant enzyme genes (CuZn-SOD, CAT, GPX1, GSR, GSS and TXN) were measured in mononuclear cells of controls (n = 20) and patients (n = 90) by assessing mRNA levels. Activity of some of these antioxidant enzymes was also tested. An increase in OS and pro-oxidant gene mRNA values was observed in patients compared to controls. The hypertensive group showed not only the highest OS values, but also the highest pro-oxidant activation compared to those observed in the other groups. In addition, in HT a significantly reduced antioxidant activity and mRNA induction of antioxidant genes were found when compared to controls and the other groups. In FH and FCH, the activation of pro-oxidant enzymes was also higher and antioxidant ones lower than in the control group, although it did not reach the values obtained in hypertensives. The thioredoxin system was more activated in patients as compared to controls, and the highest levels were in hypertensives. The increased oxidative status in the presence of cardiovascular risk factors is a consequence of both the activation of pro-oxidant mechanisms and the reduction of the antioxidant ones. The altered response of the main cytoplasmic antioxidant systems largely contributes to OS despite the apparent attempt of the thioredoxin system to control it.
Collapse
Affiliation(s)
- Maria L. Mansego
- Genotyping and Genetic Diagnosis Unit, Research Foundation of Hospital Clínico; Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mails: (S.B); (V.G.-A.); (F.J.C.)
- CIBER of obesity (CIBERob), Santiago de Compostela 15706, Spain; E-Mails: (J.R.); (F.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-963-983-916; Fax: +34-963-864-926
| | - Josep Redon
- CIBER of obesity (CIBERob), Santiago de Compostela 15706, Spain; E-Mails: (J.R.); (F.M.)
- Hypertension Unit, Hospital Clinico; Avenida Blasco Ibañez, 17, Valencia 46010, Spain
| | - Sergio Martinez-Hervas
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario, Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mails: (S.M.-H.); (J.T.R.); (R.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona 08017, Spain
| | - Jose T. Real
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario, Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mails: (S.M.-H.); (J.T.R.); (R.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona 08017, Spain
| | - Fernando Martinez
- CIBER of obesity (CIBERob), Santiago de Compostela 15706, Spain; E-Mails: (J.R.); (F.M.)
- Hypertension Unit, Hospital Clinico; Avenida Blasco Ibañez, 17, Valencia 46010, Spain
| | - Sebastian Blesa
- Genotyping and Genetic Diagnosis Unit, Research Foundation of Hospital Clínico; Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mails: (S.B); (V.G.-A.); (F.J.C.)
| | - Veronica Gonzalez-Albert
- Genotyping and Genetic Diagnosis Unit, Research Foundation of Hospital Clínico; Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mails: (S.B); (V.G.-A.); (F.J.C.)
| | - Guillermo T. Saez
- Department of Biochemistry and Molecular Biology, University of Valencia, Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mail:
| | - Rafael Carmena
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario, Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mails: (S.M.-H.); (J.T.R.); (R.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona 08017, Spain
| | - Felipe J. Chaves
- Genotyping and Genetic Diagnosis Unit, Research Foundation of Hospital Clínico; Avenida Blasco Ibañez, 17, Valencia 46010, Spain; E-Mails: (S.B); (V.G.-A.); (F.J.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona 08017, Spain
| |
Collapse
|
29
|
Fotouhi A, Skiöld S, Shakeri-Manesh S, Osterman-Golkar S, Wojcik A, Jenssen D, Harms-Ringdahl M, Haghdoost S. Reduction of 8-oxodGTP in the nucleotide pool by hMTH1 leads to reduction in mutations in the human lymphoblastoid cell line TK6 exposed to UVA. Mutat Res 2011; 715:13-8. [PMID: 21784087 DOI: 10.1016/j.mrfmmm.2011.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 07/01/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
UVA has been suggested to play an important role in UV-induced mutagenesis. The mechanisms by which UVA induces mutations are still a matter of debate. Our aim was to investigate the protective capacity of hMTH1, a nucleotide pool sanitization enzyme with 8-oxodGTPase activity. Human B lymphoblastoid cells were stably transfected with shRNA directed against hMTH1. Clonogenic survival, mutations, intracellular and extracellular levels of 8-oxodG (8-oxo-7, 8-dihydro-2'-deoxyguanosine) and dG in the nucleotide pool of UVA-irradiated transfected and non-transfected cells were investigated. Mutations were determined in the thymidine kinase locus. Intracellular 8-oxodG and dG were measured using a modified ELISA and HPLC, respectively, after extraction of the nucleotide pool and conversion of nucleotides to their corresponding nucleosides. 8-oxodG in the medium was measured using ELISA. UVA-induced mutations were significantly higher while the survival was slightly lower in transfected compared to non-transfected cells. The increased mutation rate in transfected cells at increased exposure correlated with enhanced levels of 8-oxodG in the nucleotide pool, and a somewhat reduced level of 8-oxodG in the medium. The results indicate that the nucleotide pool is a significant target for UVA-induced mutations and implicates that hMTH1 plays an important role in protecting cells from UVA-induced oxidative stress.
Collapse
Affiliation(s)
- Asal Fotouhi
- Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsuda S, Matsui S, Shimizu Y, Matsuda T. Genotoxicity of colloidal fullerene C₆₀. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4133-8. [PMID: 21480588 DOI: 10.1021/es1036942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Previous genotoxicity tests of aqueous fullerene C₆₀) suspension (aqu-C₆₀) yielded both positive and negative results. In the present study, aqu-C₆₀ elicited positive responses in two bacterial genotoxicity tests, the Bacillus subtilis Rec-assay and the umu test at concentrations as low as 0.048 mg/L and 0.43 mg/L, respectively. In mammalian cell experiments, aqu-C₆₀ showed a significant growth inhibitory effect on human hepatocarcinoma HepG2 cells at 0.46 mg/L. The level of the oxidative DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine, measured by liquid chromatography tandem mass spectrometry, was slightly but not significantly increased in HepG2 cells treated with 0.46 mg/L for 24 h, whereas the level of the lipid peroxidation-related DNA lesion α-methyl-γ-hydroxy-1,N²)-propano-2'-deoxyguanosine was not changed. Under the same conditions, we did not detect any bulky DNA adducts, as measured by ³²P-postlabeling/polyacrylamide gel electrophoresis analysis. Our data suggest that aqu-C₆₀ has DNA-damaging potential and that the DNA damage is not due to covalent DNA adduct formation by C₆₀ itself.
Collapse
Affiliation(s)
- Shun Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga 5200811, Japan.
| | | | | | | |
Collapse
|
31
|
Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions. J Cereb Blood Flow Metab 2011; 31:680-92. [PMID: 20736962 PMCID: PMC3049522 DOI: 10.1038/jcbfm.2010.147] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1(-/-) mice compared with OGG1(+/+) mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome.
Collapse
|
32
|
Rai P. Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house. Mutat Res 2010; 703:71-81. [PMID: 20673809 DOI: 10.1016/j.mrgentox.2010.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 12/20/2022]
Abstract
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation.
Collapse
Affiliation(s)
- Priyamvada Rai
- Division of Gerontology and Geriatric Medicine, Department of Medicine, Rosenstiel Medical Sciences Building, Rm#7094/Locator Code: D-503, 1600 NW 10th Ave, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
33
|
Nakabeppu Y, Oka S, Sheng Z, Tsuchimoto D, Sakumi K. Programmed cell death triggered by nucleotide pool damage and its prevention by MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase. Mutat Res 2010; 703:51-8. [PMID: 20542142 DOI: 10.1016/j.mrgentox.2010.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 01/10/2023]
Abstract
Accumulation of oxidized bases such as 8-oxoguanine in either nuclear or mitochondrial DNA triggers various cellular dysfunctions including mutagenesis, and programmed cell death or senescence. Recent studies have revealed that oxidized nucleoside triphosphates such as 8-oxo-dGTP in the nucleotide pool are the main source of oxidized bases accumulating in the DNA of cells under oxidative stress. To counteract such deleterious effects of nucleotide pool damage, mammalian cells possess MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase and related enzymes, thus minimizing the accumulation of oxidized bases in cellular DNA. Depletion or increased expression of the MTH1 protein have revealed its significant roles in avoiding programmed cell death or senescence as well as mutagenesis, and accumulating evidences indicate that MTH1 is involved in suppression of degenerative disorders such as neurodegeneration.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
34
|
Nunomura A, Honda K, Takeda A, Hirai K, Zhu X, Smith MA, Perry G. Oxidative damage to RNA in neurodegenerative diseases. J Biomed Biotechnol 2010; 2006:82323. [PMID: 17047315 PMCID: PMC1559934 DOI: 10.1155/jbb/2006/82323] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since 1999, oxidative damage to RNA molecules has been described
in several neurological diseases including Alzheimer's
disease, Parkinson's disease, Down syndrome, dementia
with Lewy bodies, prion disease, subacute sclerosing
panencephalitis, and xeroderma pigmentosum. An early involvement
of RNA oxidation of vulnerable neuronal population in the
neurodegenerative diseases has been demonstrated, which is
strongly supported by a recent observation of increased RNA
oxidation in brains of subjects with mild cognitive impairment.
Until recently, little is known about consequences and cellular
handling of the RNA damage. However, increasing body of evidence
suggests detrimental effects of the RNA damage in protein
synthesis and the existence of several coping mechanisms including
direct repair and avoiding the incorporation of the damaged
ribonucleotides into translational machinery. Further
investigations toward understanding of the consequences and
cellular handling mechanisms of the oxidative RNA damage may
provide significant insights into the pathogenesis and therapeutic
strategies of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Akihiko Nunomura
- Department of Psychiatry and Neurology, Asahikawa Medical College, Asahikawa 078-8510, Japan
- *Akihiko Nunomura:
| | - Kazuhiro Honda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Atsushi Takeda
- Department of Neurology, School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Keisuke Hirai
- Pharmaceutical Research Laboratories I, Pharmaceutical Research Division, Takeda Chemical Industries Limited,
Osaka 532-8686, Japan
| | - Xiongwei Zhu
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark A. Smith
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - George Perry
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Park MJ, Park JH, Hahm SH, Ko SI, Lee YR, Chung JH, Sohn SY, Cho Y, Kang LW, Han YS. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex. DNA Repair (Amst) 2009; 8:1190-200. [PMID: 19615952 DOI: 10.1016/j.dnarep.2009.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/15/2009] [Accepted: 06/16/2009] [Indexed: 01/23/2023]
Abstract
Rad9-Rad1-Hus1 (9-1-1) is a checkpoint protein complex playing roles in DNA damage sensing, cell cycle arrest, DNA repair or apoptosis. Human 8-oxoguanine DNA glycosylase (hOGG1) is the major DNA glycosylase responsible for repairing a specific aberrantly oxidized nucleotide, 7,8-dihydro-8-oxoguanine (8-oxoG). In this study, we identified a novel interaction between hOGG1 and human 9-1-1, and investigated the functional consequences of this interaction. Co-immunoprecipitation assays using transiently transfected HEK293 cells demonstrated an interaction between hOGG1 and the 9-1-1 proteins. Subsequently, GST pull-down assays using bacterially expressed and purified hOGG1-His and GST-fused 9-1-1 subunits (GST-hRad9, GST-hRad1, and GST-hHus1) demonstrated that hOGG1 interacted directly with the individual subunits of the human 9-1-1 complex. In vitro excision assay, which employed a DNA duplex containing an 8-oxoG/C mismatch, showed that hRad9, hRad1, and hHus1 enhanced the 8-oxoG excision and beta-elimination activities of hOGG1. In addition, the presence of hRad9, hRad1, and hHus1 enhanced the formation of covalently cross-linked hOGG1-8-oxoG/C duplex complexes, as determined by a trapping assay using NaBH(4). A trimeric human 9-1-1 complex was purified from Escherichia coli cell transformed with hRad9, His-fused hRad1, or His-fused hHus1 expressing vectors. It also showed the similar activity to enhance in vitro hOGG1 glycosylase activity, compared with individual human 9-1-1 subunits. Detection of 8-oxoG in HEK293 cells using flow cytometric and spectrofluorometric analysis revealed that over-expression of hOGG1 or human 9-1-1 reduced the formation of 8-oxoG residues following the H(2)O(2) treatment. The highest 8-oxoG reduction was observed in HEK293 cells over-expressing hOGG1 and all the three subunits of human 9-1-1. These indicate that individual human 9-1-1 subunits and human 9-1-1 complex showed almost the same abilities to enhance the in vitro 8-oxoG excision activity of hOGG1, but that the greatest effect to remove 8-oxoG residues in H(2)O(2)-treated cells was derived from the 9-1-1 complex as a whole.
Collapse
Affiliation(s)
- Min Ju Park
- Department of Advanced Technology Fusion, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Espinosa O, Jiménez-Almazán J, Chaves FJ, Tormos MC, Clapes S, Iradi A, Salvador A, Fandos M, Redón J, Sáez GT. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), a reliable oxidative stress marker in hypertension. Free Radic Res 2009; 41:546-54. [PMID: 17454137 DOI: 10.1080/10715760601164050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
UNLABELLED The potential use of oxidative stress products as disease markers and progression is an important aspect of biomedical research. In the present study, the quantification of urine 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) concentration has been used to express the oxidation status of hypertensive subjects. 8-oxo-dG has been simultaneously isolated and assayed in nuclear (nDNA) and mitochondrial DNA (mtDNA). In addition, oxidative stress of mononuclear cells has been estimated by means of GSH and GSSG levels and GSSG/GSH ratio in hypertensive subjects before and after antihypertensive treatment. It is shown that oxidative stress decreases significantly in hypertensive patients after treatment the effect being accompanied by reduction of their blood pressure. A significant correlation is observed comparing the yield of urine 8-oxo-dG and that isolated from mitochondria DNA. Moreover, urinary excretion of 8-oxo-dG also correlates with the GSSG/GSH ratio of cells. CONCLUSION urine 8-oxo-dG assay is a good marker for monitoring oxidative stress changes in hypertensives.
Collapse
Affiliation(s)
- Olga Espinosa
- Oxidative Pathology Unit, Department of Biochemistry and Molecular Biology, School of Medicine, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 2009; 118:151-66. [PMID: 19271225 DOI: 10.1007/s00401-009-0508-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
RNA oxidation and its biological effects are less well studied compared to DNA oxidation. However, RNA may be more susceptible to oxidative insults than DNA, for RNA is largely single-stranded and its bases are not protected by hydrogen bonding and less protected by specific proteins. Also, cellular RNA locates in the vicinity of mitochondria, the primary source of reactive oxygen species. Oxidative modification can occur not only in protein-coding RNAs, but also in non-coding RNAs that have been recently revealed to contribute towards the complexity of the mammalian brain. Damage to coding and non-coding RNAs will cause errors in proteins and disturbances in the regulation of gene expression. While less lethal than mutations in the genome and not inheritable, such sublethal damage to cells might be associated with underlying mechanisms of degeneration, especially age-associated neurodegeneration that is commonly found in the elderly population. Indeed, oxidative RNA damage has been described recently in most of the common neurodegenerative disorders including Alzheimer disease, Parkinson disease, dementia with Lewy bodies and amyotrophic lateral sclerosis. Of particular interest, the accumulating evidence obtained from studies on either human samples or experimental models coincidentally suggests that oxidative RNA damage is a feature in vulnerable neurons at early-stage of these neurodegenerative disorders, indicating that RNA oxidation actively contributes to the onset or the development of the disorders. Further investigations aimed at understanding of the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative disorders and lead to better therapeutic strategies.
Collapse
|
38
|
Sublethal RNA oxidation as a mechanism for neurodegenerative disease. Int J Mol Sci 2008; 9:789-806. [PMID: 19325784 PMCID: PMC2635712 DOI: 10.3390/ijms9050789] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 12/27/2022] Open
Abstract
Although cellular RNA is subjected to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigations of the biological consequences of free radical damage. In fact, because it is largely single-stranded and its bases lack the protection of hydrogen bonding and binding by specific proteins, RNA may be more susceptible to oxidative insults than is DNA. Oxidative damage to protein-coding RNA or non-coding RNA will, in turn, potentially cause errors in proteins and/or dysregulation of gene expression. While less lethal than mutations in the genome, such sublethal insults to cells might be associated with underlying mechanisms of several chronic diseases, including neurodegenerative disease. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage can be demonstrated in vulnerable neurons early in disease, suggesting that RNA oxidation may actively contribute to the onset of the disease. An increasing body of evidence suggests that, mechanistically speaking, the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of protective mechanisms that prevent the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations aimed at understanding the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative and other degenerative diseases and lead to better therapeutic strategies.
Collapse
|
39
|
Wulff BC, Schick JS, Thomas-Ahner JM, Kusewitt DF, Yarosh DB, Oberyszyn TM. Topical Treatment with OGG1 Enzyme Affects UVB-induced Skin Carcinogenesis. Photochem Photobiol 2008; 84:317-21. [DOI: 10.1111/j.1751-1097.2007.00257.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 2007; 8:449. [PMID: 18053205 PMCID: PMC2234433 DOI: 10.1186/1471-2164-8-449] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/04/2007] [Indexed: 11/30/2022] Open
Abstract
Background In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei) using Rapid Subtraction Hybridization (RaSH). Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function. Results The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i) ENVOY-mediated upregulation by light; (ii) ENVOY-independent upregulation by light; (iii) ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv) ENVOY-independent repression by light; and (v) both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness. Conclusion The different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.
Collapse
Affiliation(s)
- Andrè Schuster
- Division of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria.
| | | | | | | | | |
Collapse
|
41
|
Ohtsubo T, Ohya Y, Nakamura Y, Kansui Y, Furuichi M, Matsumura K, Fujii K, Iida M, Nakabeppu Y. Accumulation of 8-oxo-deoxyguanosine in cardiovascular tissues with the development of hypertension. DNA Repair (Amst) 2007; 6:760-9. [PMID: 17280880 DOI: 10.1016/j.dnarep.2007.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/31/2006] [Accepted: 01/03/2007] [Indexed: 12/22/2022]
Abstract
Accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in DNA is associated with mutagenesis and cell death. Little attention has been given to the biological significance of 8-oxo-dG accumulation in cardiovascular tissues during the different stage of hypertension and its prevention. We thus investigated the levels and localization of both 8-oxo-dG accumulation and expression of MTH1, which hydrolyzes 8-oxo-dGTP to prevent its incorporation into DNA, in the thoracic aorta prepared from stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wister-Kyoto rats (WKY), aged 5-32 weeks. HPLC-MS/MS analysis revealed that the levels of nuclear 8-oxo-dG in the aorta increased significantly in SHRSP, but not WKY, with aging. Immunohistochemical study revealed that both TUNEL reactivity and 8-oxo-dG immunoreactivity were increased in smooth muscle cells (SMC) and endothelial cells (EC) of the aorta with aging, and they exhibited similar distributions in serial sections. The number of 8-oxo-dG and TUNEL positive cells in EC, but not in SMC, was significantly higher in SHRSP than WKY at 32 weeks of age. In contrast, the expression levels of Mth1mRNA and MTH1 protein in the aorta were similarly decreased both in SHRSP and WKY with aging. However, the number of MTH1 expressing EC was remarkably increased in the older SHRSP compared to the younger ones or age-matched WKY. Hypertension significantly increased not only 8-oxo-dG accumulation but also the expression of MTH1 in EC of the aorta during aging. While accumulation of 8-oxo-dG in SMC of the aorta was slightly increased, the expression of MTH1 protein in SMC was rather decreased by hypertension. We thus suggest that MTH1 may protect EC in the aorta from the oxidative damage increased by hypertension.
Collapse
Affiliation(s)
- Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee HW, Lee HJ, Hong CM, Baker DJ, Bhatia R, O’Connor TR. Monitoring repair of DNA damage in cell lines and human peripheral blood mononuclear cells. Anal Biochem 2007; 365:246-59. [PMID: 17449003 PMCID: PMC3614353 DOI: 10.1016/j.ab.2007.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/13/2007] [Accepted: 03/16/2007] [Indexed: 11/20/2022]
Abstract
We introduce a method to follow DNA repair that is suitable for both clinical and laboratory samples. An episomal construct with a unique 8-oxoguanine (8-oxoG) base at a defined position was prepared in vitro using single-stranded phage harboring a 678-bp tract from exons 5 to 9 of the human P53 gene. Mixing curve experiments showed that the real-time PCR method has a linear response to damage, suggesting that it is useful for DNA repair studies. The episomal construct with a unique 8-oxoG base was introduced into AD293 cells or human peripheral blood mononuclear cells, and plasmids were recovered as a function of time. The quantitative real-time PCR assay demonstrated that repair of the 8-oxoG was 80% complete in less than 48 h in AD293 cells. Transfection of small interfering RNAs down-regulated OGG1 expression in AD293 cells and reduced the repair of 8-oxoG to 30%. Transfection of the episome into unstimulated white blood cells showed that 8-oxoG repair had a half-life of 2 to 5h. This method is a rapid, reproducible, and robust way to monitor repair of specific adducts in virtually any cell type.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - Hae-Jung Lee
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - Chong-mu Hong
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - David J. Baker
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - Ravi Bhatia
- Department of Hematology and Bone Marrow Transplantation, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | | |
Collapse
|
43
|
Haghdoost S, Maruyama Y, Pecoits-Filho R, Heimburger O, Seeberger A, Anderstam B, Suliman ME, Czene S, Lindholm B, Stenvinkel P, Harms-Ringdahl M. Elevated serum 8-oxo-dG in hemodialysis patients: a marker of systemic inflammation? Antioxid Redox Signal 2006; 8:2169-73. [PMID: 17034359 DOI: 10.1089/ars.2006.8.2169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Does inflammation, as assessed by high sensitivity C-reactive protein (hs-CRP), in patients with end-stage renal disease (ESRD) tightly associate with increased serum levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8- oxo-dG)? Increased oxidative stress and inflammation have both been highlighted among several nontraditional risk factors for cardiovascular disease, which is the main cause of mortality in ESRD patients. In contrast to oxidative stress effects on proteins and lipids, DNA base damage has not been well demonstrated in ESRD. Two groups of hemodialysis patients were studied, one group with persistent inflammation (n = 13, with constant elevation of CRP > 10 mg/L for 6 months) and one group of noninflamed patients (n = 19, with constant CRP < 10 mg/L for 6 months). Serum 8-oxo-dG was significantly elevated in persistent inflammation in comparison to noninflamed patients. At an individual level, a significant correlation was found between serum 8-oxo-dG and hsCRP. Extracellular 8-oxo-dG leads to intracellular oxidative damage on the nucleotide pool, thus providing a sensitive marker for inflammatory response. Serum levels of 8-oxo-dG, in combination with other inflammatory markers, serve as useful diagnostic tools for identification of patients in risk for inflammatory complications.
Collapse
Affiliation(s)
- Siamak Haghdoost
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Elahi MM, Matata BM. Free radicals in blood: Evolving concepts in the mechanism of ischemic heart disease. Arch Biochem Biophys 2006; 450:78-88. [PMID: 16620764 DOI: 10.1016/j.abb.2006.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 02/07/2023]
Abstract
There has been a considerable debate over past decade on how reactive oxidant species (ROS) in blood augment the cell signaling processes involved in the pathogenesis of coronary heart disease. In particular, it is not clear whether ROS is an important component of the cross-talk between blood and elements of the vasculature during the initial and latter stages of vascular injury and development of atherosclerotic lesions. Features like the recruitment of the circulating activated monocytes, T cells and granulocytes occur extensively in patients with acute coronary syndromes. It is not known what drives the infiltration of these cells into the vessel wall in the active stages of atherosclerosis and whether ROS plays an intermediate part. Currently, the thinking is that although inflammatory processes may be prompted by different etiological factors from that of coronary heart disease, the presence of ROS in circulating blood is the key intermediary related to vascular injury and organ dysfunction. We review, the clinical and experimental data of the mechanisms involved, and evaluate the wider implications of this concept.
Collapse
Affiliation(s)
- M M Elahi
- The Cardiothoracic Centre, Liverpool NHS Trust, Thomas Drive, Liverpool, L14 3PE, UK
| | | |
Collapse
|
45
|
Yamaguchi H, Kajitani K, Dan Y, Furuichi M, Ohno M, Sakumi K, Kang D, Nakabeppu Y. MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ 2005; 13:551-63. [PMID: 16273081 DOI: 10.1038/sj.cdd.4401788] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We previously reported that 8-oxoguanine (8-oxoG) accumulates in the cytoplasm of dopamine neurons in the substantia nigra of patients with Parkinson's disease and the expression of MTH1 carrying an oxidized purine nucleoside triphosphatase activity increases in these neurons, thus suggesting that oxidative damage in nucleic acids is involved in dopamine neuron loss. In the present study, we found that levels of 8-oxoG in cellular DNA and RNA increased in the mouse nigrostriatal system during the tyrosine hydroxylase (TH)-positive dopamine neuron loss induced by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MTH1-null mice exhibited a greater accumulation of 8-oxoG in mitochondrial DNA accompanied by a more significant decrease in TH and dopamine transporter immunoreactivities in the striatum after MPTP administration, than in wild-type mice. We thus demonstrated that MTH1 protects the dopamine neurons from oxidative damage in the nucleic acids, especially in the mitochondrial DNA of striatal nerve terminals of dopamine neurons.
Collapse
Affiliation(s)
- H Yamaguchi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 2005; 5:89-108. [PMID: 16050976 DOI: 10.1016/j.mito.2005.02.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/31/2005] [Accepted: 02/03/2005] [Indexed: 02/08/2023]
Abstract
Mitochondrial DNA (mtDNA) alterations are implicated in a broad range of human diseases and alterations of the mitochondrial genome are assumed to be a result of its high susceptibility to oxidative damage and its limited DNA repair compared to nuclear DNA (nDNA). Characterization of DNA repair mechanisms has generally focused on these processes in nDNA but increasing interest and research effort have contributed to our knowledge of the mechanisms underlying DNA repair in mitochondria. In this review, we make comparisons between nDNA and mtDNA repair pathways and propose a model for how these pathways interact in mitochondria.
Collapse
Affiliation(s)
- Nicolai Balle Larsen
- Department of Life Sciences and Chemistry, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | | | | |
Collapse
|