1
|
Das S, Komnenov D, Newhouse L, Rishi AK, Rossi NF. Paraventricular Nucleus V 1a Receptor Knockdown Blunts Neurocardiovascular Responses to Acute Stress in Male Rats after Chronic Mild Unpredictable Stress. Physiol Behav 2022; 253:113867. [PMID: 35661787 DOI: 10.1016/j.physbeh.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Chronic stress and depression impart increased risk for adverse cardiovascular events. Autonomic dysregulation, particularly sympathoexcitation, has long been associated with poor cardiovascular outcomes. Vasopressin (AVP) receptors with the paraventricular nucleus (PVN), known as an integrating locus for hemodynamic and autonomic function, have been implicated in behavior and stress. The present studies were designed to test the hypothesis that knockdown of vasopressin V1aR within the PVN in male Sprague Dawley rats subjected to chronic mild unpredictable stress (CMS) would result in lower resting hemodynamics and renal sympathetic nerve activity (RSNA) and mitigate the responses to acute stressors. Male rats underwent CMS for 4 weeks; controls were housed in standard caging. Twenty days into the paradigm, the PVN was injected with either small interfering RNA (siRNA) directed against V1aR or scrambled RNA (scrRNA). Arterial pressure, heart rate and RSNA were ascertained by telemetry with the animals in their home cages. Pretreatment with siRNA to V1aR prevented the increase in arterial pressure to PVN microinjection with exogenous AVP. Basal mean arterial pressure (MAP) was significantly higher in scrRNA-treated but not in siRNA-treated CMS rats vs control rats. Paradoxically, basal RSNA was approximately two-fold higher in siRNA-treated CMS rats. Acute emotional stress delivered as 15-sec air-jet resulted in greater peak and duration of the MAP and RSNA responses in scrRNA-treated CMS rats vs control; siRNA treatment inhibited the responses. The 15-sec exposure to ammonia to test the nasopharyngeal reflex, whose circuitry does not include the PVN, produced similar increases in arterial pressure, heart rate, and RSNA in controls and both groups of CMS rats. Thus, CMS increases arterial pressure and predisposes to greater hemodynamic and RSNA responses to acute emotional stress. The higher basal RSNA in siRNA-treated rats may be due to functional and/or anatomical neuroplasticity occurring during more protracted inhibition of V1aR PVN signaling. Vasopressinergic signaling via V1aR in PVN modulates the cardiovascular and sympathetic responses to both the chronic and acute stress.
Collapse
Affiliation(s)
- Shibandri Das
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI, US
| | - Dragana Komnenov
- Departments of Internal Medicine and Physiology, Wayne State University, Detroit, MI, US
| | - Lauren Newhouse
- Department of Internal Medicine, University of Illinois, Chicago, IL, US
| | - Arun K Rishi
- Department of Oncology, Wayne State University, US; John D. Dingell VA Medical Center, Detroit, MI, US
| | - Noreen F Rossi
- Departments of Internal Medicine and Physiology, Wayne State University, Detroit, MI, US; John D. Dingell VA Medical Center, Detroit, MI, US.
| |
Collapse
|
2
|
Komnenov D, Quaal H, Rossi NF. V 1a and V 1b vasopressin receptors within the paraventricular nucleus contribute to hypertension in male rats exposed to chronic mild unpredictable stress. Am J Physiol Regul Integr Comp Physiol 2021; 320:R213-R225. [PMID: 33264070 DOI: 10.1152/ajpregu.00245.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 01/06/2023]
Abstract
Depression is an independent nontraditional risk factor for cardiovascular disease and mortality. The chronic unpredictable mild stress (CMS) rat model is a validated model of depression. Within the paraventricular nucleus (PVN), vasopressin (VP) via V1aR and V1bR have been implicated in stress and neurocardiovascular dysregulation. We hypothesized that in conscious, unrestrained CMS rats versus control, unstressed rats, PVN VP results in elevated arterial pressure (MAP), heart rate, and renal sympathetic nerve activity (RSNA) via activation of V1aR and/or V1bR. Male rats underwent 4 wk of CMS or control conditions. They were then equipped with hemodynamic telemetry transmitters, PVN cannula, and left renal nerve electrode. V1aR or V1bR antagonism dose-dependently inhibited MAP after VP injection. V1aR or V1bR blockers at their ED50 doses did not alter baseline parameters in either control or CMS rats but attenuated the pressor response to VP microinjected into PVN by ∼50%. Combined V1aR and V1bR inhibition completely blocked the pressor response to PVN VP in control but not CMS rats. CMS rats required combined maximally inhibitory doses to block either endogenous VP within the PVN or responses to microinjected VP. Compared with unstressed control rats, CMS rats had higher plasma VP levels and greater abundance of V1aR and V1bR transcripts within PVN. Thus, the CMS rat model of depression results in higher resting MAP, heart rate, and RSNA, which can be mitigated by inhibiting vasopressinergic mechanisms involving both V1aR and V1bR within the PVN. Circulating VP may also play a role in the pressor response.
Collapse
Affiliation(s)
- Dragana Komnenov
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Harrison Quaal
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Noreen F Rossi
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
3
|
Bayerl DS, Bosch OJ. Brain vasopressin signaling modulates aspects of maternal behavior in lactating rats. GENES BRAIN AND BEHAVIOR 2018; 18:e12517. [DOI: 10.1111/gbb.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Doris S. Bayerl
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| |
Collapse
|
4
|
Abstract
Atosiban, an oxytocin/vasopressin receptor antagonist, is used to decrease preterm uterine activity. The risk of preterm delivery is undoubtedly associated with stress, but potential side effects of atosiban on neuroendocrine functions and stress-related pathways are mostly unknown. These studies were designed to test the hypothesis that the chronic treatment of rats with atosiban modulates neuroendocrine functions under stress conditions. Male rats were treated (osmotic minipumps) with atosiban (600 μg/kg per day) or vehicle and were restrained for 120 min/day for 14 days. All animals were treated with a marker of cell proliferation 5-bromo-2-deoxyuridine. Anxiety-like behavior was measured using an elevated plus-maze. Treatment with atosiban failed to modify plasma concentrations of the stress hormones ACTH and corticosterone, but led to a rise in circulating copeptin. Atosiban increased prolactin levels in the non-stressed group. Oxytocin receptor mRNA levels were increased in rats exposed to stress. Treatment with atosiban, in both control and stressed animals, resulted in a decrease in oxytocin receptor gene expression in the hypothalamus. No changes were observed in vasopressin receptor 1A and 1B gene expression. The decrease in hippocampal cell proliferation induced by stress exposure was not modified by atosiban treatment. This study provides the first data, to our knowledge, revealing the effect of atosiban on gene expression of oxytocin receptors in the brain. Atosiban-induced enhancement of plasma copeptin indicates an elevation in vasopressinergic tone with potential influence on water-electrolyte balance.
Collapse
Affiliation(s)
- S Babic
- Laboratory of Pharmacological NeuroendocrinologyInstitute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, SlovakiaDepartment of Pharmacology and ToxicologyFaculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, SlovakiaBiotechnology CenterNational Taiwan University, 50, Lane 155, Keelong Road, Section 3, Taipei, Taiwan
| | - M Pokusa
- Laboratory of Pharmacological NeuroendocrinologyInstitute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, SlovakiaDepartment of Pharmacology and ToxicologyFaculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, SlovakiaBiotechnology CenterNational Taiwan University, 50, Lane 155, Keelong Road, Section 3, Taipei, Taiwan
| | - V Danevova
- Laboratory of Pharmacological NeuroendocrinologyInstitute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, SlovakiaDepartment of Pharmacology and ToxicologyFaculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, SlovakiaBiotechnology CenterNational Taiwan University, 50, Lane 155, Keelong Road, Section 3, Taipei, Taiwan Laboratory of Pharmacological NeuroendocrinologyInstitute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, SlovakiaDepartment of Pharmacology and ToxicologyFaculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, SlovakiaBiotechnology CenterNational Taiwan University, 50, Lane 155, Keelong Road, Section 3, Taipei, Taiwan
| | - S T Ding
- Laboratory of Pharmacological NeuroendocrinologyInstitute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, SlovakiaDepartment of Pharmacology and ToxicologyFaculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, SlovakiaBiotechnology CenterNational Taiwan University, 50, Lane 155, Keelong Road, Section 3, Taipei, Taiwan
| | - D Jezova
- Laboratory of Pharmacological NeuroendocrinologyInstitute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, SlovakiaDepartment of Pharmacology and ToxicologyFaculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, SlovakiaBiotechnology CenterNational Taiwan University, 50, Lane 155, Keelong Road, Section 3, Taipei, Taiwan
| |
Collapse
|
5
|
Milik E, Szczepanska-Sadowska E, Dobruch J, Cudnoch-Jedrzejewska A, Maslinski W. Altered expression of V1a receptors mRNA in the brain and kidney after myocardial infarction and chronic stress. Neuropeptides 2014; 48:257-66. [PMID: 25169016 DOI: 10.1016/j.npep.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/10/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022]
Abstract
Vasopressin released during myocardial infarction and in response to stress regulates blood pressure through multiple actions exerted in the brain, cardiovascular system and kidney. The aim of the present study was to determine whether myocardial infarction influences expression of vasopressin V1a receptor (V1aR) mRNA and protein in the brain and kidney and whether stress has an impact on expression of these parameters during the post-infarct state. Male, adult Sprague Dawley rats were subjected to myocardial infarction or sham surgery. Seven days later some rats were exposed to mild stress for 4weeks whereas other stayed at rest. Tissue fragments were harvested from four groups of rats (control, infarct, stress, infarct+stress). Expression of V1aR mRNA (Real time PCR) was determined in the preoptic, diencephalic, mesencephalopontine and medullary regions of the brain and in the renal cortex and medulla. Protein V1aR expression (Western blotting) was determined in the brain mesencephalopontine region and in the kidney medulla. In the preoptic, diencephalic, and mesencephalopontine regions, V1aR mRNA expression was significantly lower in the infarcted rats than in the sham-operated unstressed controls. The infarcted rats manifested also lower expression of V1aR protein in the mesencephalopontine region than the other groups. The stressed group demonstrated significantly higher V1aR mRNA expression in the brain medulla and in the renal cortex and renal medulla than the control group. In all brain regions and in the kidney, V1aR mRNA expression was significantly higher in the stressed rats than in the infarcted rats. The stressed rats showed also higher expression of V1aR protein in the renal medulla than the other groups. It is concluded that myocardial infarction and chronic stress cause significant but differential changes in the regulation of V1a receptors expression in the brain and the kidney.
Collapse
Affiliation(s)
- E Milik
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - E Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-106 Warsaw, Poland.
| | - J Dobruch
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - A Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - W Maslinski
- Department of Pathophysiology, Immunology and Pathology, Institute of Rheumatology, Warsaw, Poland
| |
Collapse
|
6
|
Berquist Ii MD, Mooney-Leber SM, Feifel D, Prus AJ. Assessment of attention in male and female Brattleboro rats using a self-paced five-choice serial reaction time task. Brain Res 2013; 1537:174-9. [PMID: 24055104 DOI: 10.1016/j.brainres.2013.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/23/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
The Brattleboro rat is a mutant variation of the Long-Evans strain that exhibits negligible central nervous system levels of vasopressin, a neuropeptide that may influence behavioral and cognitive processes. Compared to Long-Evans rats, Brattleboro rats exhibit diminished fear conditioning and have impairments in spatial memory and sensory gating. The present study sought to further evaluate the cognitive profile of vasopressin-deficient rats by studying attention in male and female Brattleboro and heterozygous rats using a self-paced version of the five-choice serial reaction time task. Male Brattleboro rats required significantly more sessions to meet the training criteria than those by heterozygotic and Long-Evans (wild type) rats. Female Brattleboro rats displayed significantly poorer attention accuracy compared to heterozygotic and Long-Evans rats. Taken together, the present findings add further evidence that vasopressin deficiency diminishes cognitive functioning.
Collapse
Affiliation(s)
- Michael D Berquist Ii
- Psychology Department, Northern Michigan University, Gries Hall, 1401 Presque Isle Avenue, Marquette, MI 49855, USA
| | | | | | | |
Collapse
|
7
|
Stevenson EL, Caldwell HK. The vasopressin 1b receptor and the neural regulation of social behavior. Horm Behav 2012; 61:277-82. [PMID: 22178035 PMCID: PMC3310934 DOI: 10.1016/j.yhbeh.2011.11.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022]
Abstract
To date, much of the work in rodents implicating vasopressin (Avp) in the regulation of social behavior has focused on its action via the Avp 1a receptor (Avpr1a). However, there is mounting evidence that the Avp 1b receptor (Avpr1b) also plays a significant role in Avp's modulation of social behavior. The Avpr1b is heavily expressed on the anterior pituitary cortiocotrophs where it acts as an important modulator of the endocrine stress response. In the brain, the Avpr1b is prominent in the CA2 region of the hippocampus, but can also be found in areas such as the paraventricular nucleus of the hypothalamus and the olfactory bulb. Studies that have employed genetic knockouts or pharmacological manipulation of the Avpr1b point to the importance of central Avpr1b in the modulation of social behavior. However, there continues to be a knowledge gap in our understanding of where in the brain this is occurring, as well as how and if the central actions of Avp acting via the Avpr1b interact with the stress axis. In this review we focus on the genetic and pharmacological studies that have implicated the Avpr1b in the neural regulation of social behaviors, including social forms of aggressive behavior, social memory, and social motivation. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Erica L Stevenson
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242,, USA
| | | |
Collapse
|
8
|
Abstract
The distribution, pharmacology and function of the arginine vasopressin (Avp) 1b receptor subtype (Avpr1b) has proved more challenging to investigate compared to other members of the Avp receptor family. Avp is increasingly recognised as an important modulator of the hypothalamic-pituitary-adrenal (HPA) axis, an action mediated by the Avpr1b present on anterior pituitary corticotrophs. The Avpr1b is also expressed in some peripheral tissues including pancreas and adrenal, and in the hippocampus (HIP), paraventricular nucleus and olfactory bulb of the rodent brain where its function is unknown. The central distribution of Avpr1bs is far more restricted than that of the Avpr1a, the main Avp receptor subtype found in the brain. Whether Avpr1b expression in rodent tissues is dependent on differences in the length of microsatellite dinucleotide repeats present in the 5' promoter region of the Avpr1b gene remains to be determined. One difficulty of functional studies on the Avpr1b, especially its involvement in the HPA axis response to stress, which prompted the generation of Avpr1b knockout (KO) mouse models, was the shortage of commercially available Avpr1b ligands, particularly antagonists. Research on mice lacking functional Avpr1bs has highlighted behavioural deficits in social memory and aggression. The Avpr1b KO also appears to be an excellent model to study the contribution of the Avpr1b in the HPA axis response to acute and perhaps some chronic (repeated) stressors where corticotrophin-releasing hormone and other genes involved in the HPA axis response to stress do not appear to compensate for the loss of the Avpr1b.
Collapse
Affiliation(s)
- Ja Roper
- Henry Wellcome LINE, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | | | | | | |
Collapse
|
9
|
Saleem U, Khaleghi M, Morgenthaler NG, Bergmann A, Struck J, Mosley TH, Kullo IJ. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J Clin Endocrinol Metab 2009; 94:2558-64. [PMID: 19366852 PMCID: PMC2708945 DOI: 10.1210/jc.2008-2278] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CONTEXT Stress-mediated hypothalamic-pituitary-adrenal axis activation, regulated by arginine vasopressin (AVP), may have a role in the pathophysiology of metabolic syndrome (MetSyn). OBJECTIVE The objective of the study was to investigate whether plasma C-terminal provasopressin fragment (copeptin), a surrogate for circulating AVP, was associated with measures of insulin resistance and presence of MetSyn. DESIGN, SETTING, AND PARTICIPANTS This was a multicenter, community-based study, investigating novel biomarkers for vascular disease. Participants included 1293 African-Americans (AA) (64 +/- 9 yr) and 1197 non-Hispanic whites (NHW) (59 +/- 10 yr) belonging to hypertensive sibships. MAIN OUTCOME MEASURES Plasma copeptin levels were measured by an immunoluminometric assay. MetSyn was defined per Adult Treatment Panel III criteria. Generalized estimating equations were used to assess whether plasma copeptin was associated with measures of insulin resistance and MetSyn. RESULTS The prevalence of MetSyn was 50% in AA and 49% in NHW. In each group, after adjustment for age and sex, plasma copeptin levels significantly correlated with body mass index, fasting plasma glucose and insulin, homeostasis model assessment of insulin resistance, triglycerides, and (inversely) high-density lipoprotein cholesterol (P < 0.05 for each variable). In multivariable logistic regression models that adjusted for age, sex, smoking, statin use, serum creatinine, education, physical activity, and diuretic use, plasma copeptin levels in the highest quartile were associated with an increased odds ratio of having MetSyn compared with bottom quartile: odds ratio (95% confidence interval) in AA, 2.07 (1.45-2.95); in NHW, 1.74 (1.21-2.5). CONCLUSIONS Our findings indicate a novel cross-sectional association between plasma copeptin and measures of insulin resistance and MetSyn.
Collapse
Affiliation(s)
- Umer Saleem
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Rice CJ, Sandman CA, Lenjavi MR, Baram TZ. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology 2008; 149:4892-900. [PMID: 18566122 PMCID: PMC2582918 DOI: 10.1210/en.2008-0633] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic early-life stress (ES) exerts profound acute and long-lasting effects on the hypothalamic-pituitary-adrenal system, with relevance to cognitive function and affective disorders. Our ability to determine the molecular mechanisms underlying these effects should benefit greatly from appropriate mouse models because these would enable use of powerful transgenic methods. Therefore, we have characterized a mouse model of chronic ES, which was provoked in mouse pups by abnormal, fragmented interactions with the dam. Dam-pup interaction was disrupted by limiting the nesting and bedding material in the cages, a manipulation that affected this parameter in a dose-dependent manner. At the end of their week-long rearing in the limited-nesting cages, mouse pups were stressed, as apparent from elevated basal plasma corticosterone levels. In addition, steady-state mRNA levels of CRH in the hypothalamic paraventricular nucleus of ES-experiencing pups were reduced, without significant change in mRNA levels of arginine vasopressin. Rearing mouse pups in this stress-provoking cage environment resulted in enduring effects: basal plasma corticosterone levels were still increased, and CRH mRNA levels in paraventricular nucleus remained reduced in adult ES mice, compared with those of controls. In addition, hippocampus-dependent learning and memory functions were impaired in 4- to 8-month-old ES mice. In summary, this novel, robust model of chronic early life stress in the mouse results in acute and enduring neuroendocrine and cognitive abnormalities. This model should facilitate the examination of the specific genes and molecules involved in the generation of this stress as well as in its consequences.
Collapse
Affiliation(s)
- Courtney J Rice
- Department of Anatomy and Neurobiology, Med Sci I, Zot: 4475, University of California, Irvine, Irvine, California 92697-4475, USA
| | | | | | | |
Collapse
|
12
|
Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience 2008; 154:1132-42. [PMID: 18501521 DOI: 10.1016/j.neuroscience.2008.04.019] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/06/2008] [Accepted: 04/04/2008] [Indexed: 01/05/2023]
Abstract
BACKGROUND Early-life emotional stress may be associated with affective and cognitive disorders later in life, yet satisfactory animal models for studying the underlying mechanisms are limited. Because maternal presence and behavior critically influence molecular and behavioral stress responses in offspring, we sought to create a model of dysfunctional, fragmented maternal nurturing behavior that would, in turn, provoke chronic early-life stress in the offspring. METHODS Sprague-Dawley rat dams' nursing and nurturing behaviors were altered by limiting their ability to create satisfactory nests during postpartum days 2-9. Maternal behavior was observed throughout the diurnal cycle, and the frequency and duration of nurturing behaviors were scored. In addition, potential stress and anxiety of the dams were assessed using behavioral, molecular and hormonal measures. RESULTS Both the quantity and the quality of dams' care of their pups were profoundly influenced by restriction of nesting materials in their cages: licking/grooming activities decreased and the frequency of leaving the pups increased, resulting in fragmented interactions between the dams and pups. The abnormal activity patterns of the dams were accompanied by increased anxiety-like behavior in the open field, but not in the elevated plus maze tests. Additionally, dams' plasma corticosterone levels and adrenal weights were augmented, suggesting chronic stress of these dams. By the end of the limited-nesting, stress-inducing period, hypothalamic corticotropin releasing hormone (CRH) mRNA expression was reduced in the limited-nesting dams, while arginine-vasopressin (AVP) mRNA levels were not significantly affected. CONCLUSION Limiting dams' ability to construct a nest for their pups leads to an abnormal repertoire of nurturing behaviors, possibly as a result of chronic stress and mild anxiety of the dams. Because the fragmented and aberrant maternal behavior provoked chronic stress in the pups, the limited-nesting paradigm provides a useful tool for studying the mechanisms and consequences of such early-life stress experience in the offspring.
Collapse
|
13
|
|
14
|
Affiliation(s)
- Roberto Arban
- Department of Biology, GlaxoSmithKline Group, Psychiatry Centre of Excellence for Drug Discovery, Medicines Research Centre, Via Fleming, 4, 37135 Verona, Italy.
| |
Collapse
|
15
|
Subburaju S, Aguilera G. Vasopressin mediates mitogenic responses to adrenalectomy in the rat anterior pituitary. Endocrinology 2007; 148:3102-10. [PMID: 17412807 DOI: 10.1210/en.2007-0103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine whether increased vasopressinergic activity during chronic stress or adrenalectomy mediates trophic changes in the corticotroph, we examined the effect of peripheral V1 receptor blockade in rats, using the antagonist, dGly[Phaa1,D-tyr(et), Lys, Arg]vasopressin (VP), on the number of pituitary cells taking up bromodeoxyuridine (BrdU) and cells containing immunoreactive ACTH (irACTH). Adrenalectomy significantly increased the number of BrdU- and ACTH-labeled cells at 3 and 6 d, and a much larger increase was observed at 28 d. Minipump infusion of V1 antagonist for 28 d, at doses blocking the increases in ACTH and corticosterone induced by exogenous VP, prevented the increases in BrdU incorporation, but not irACTH cells observed 28 d after adrenalectomy. Unexpectedly, colocalization of BrdU with ACTH-positive cells was minor (about three cells per pituitary section), and this was unaffected by adrenalectomy or V1 antagonist infusion. In contrast, adrenalectomy for 6 or 14 d failed to increase BrdU incorporation or irACTH cells in V1b receptor knockout mice while inducing the expected increase in wild-type mice. The data show that VP is required for pituitary mitogenesis after adrenalectomy but, at least in rats, not for increasing the number of corticotrophs. The lack of colocalization of ACTH in mitotic cells suggests that recruitment of corticotrophs during adrenalectomy occurs from undifferentiated cells.
Collapse
Affiliation(s)
- Sivan Subburaju
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Building 10 Room 10N262, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
16
|
Caldwell HK, Stewart J, Wiedholz LM, Millstein RA, Iacangelo A, Holmes A, Young WS, Wersinger SR. The acute intoxicating effects of ethanol are not dependent on the vasopressin 1a or 1b receptors. Neuropeptides 2006; 40:325-37. [PMID: 17049983 DOI: 10.1016/j.npep.2006.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/14/2006] [Accepted: 08/05/2006] [Indexed: 11/18/2022]
Abstract
Studies of the role of vasopressin (Avp) in mediating the effects of ethanol have focused on Avp's role in altering kidney function via its action through the vasopressin 2 receptor. However, alcohol consumption also has central effects that are poorly understood. There is evidence that Avp may mediate ethanol consumption as well as some of ethanol's behavioral effects. Centrally only two Avp receptor subtypes are expressed: the 1a receptor (Avpr1a) and the 1b receptor (Avpr1b). To determine the extent to which these receptors mediate the behavioral effects of alcohol, we used mice with targeted disruptions of either their Avpr1a or Avpr1b gene. We examined the effects of genotype on the acute intoxicating effects of ethanol as well as on voluntary ethanol consumption. Surprisingly, our findings indicate that there is no interaction between either the Avpr1a or Avpr1b and ethanol on motor coordination, hypothermia, mood, or voluntary ethanol consumption.
Collapse
Affiliation(s)
- Heather K Caldwell
- Section on Neural Gene Expression, National Institute of Mental Health, NIH, DHHS, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Myslivecek J, Kvetnanský R. The effects of stress on muscarinic receptors. Heterologous receptor regulation: yes or no? ACTA ACUST UNITED AC 2006; 26:235-51. [PMID: 16879489 DOI: 10.1111/j.1474-8673.2006.00359.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1 Stress is usually comprehended as an event affecting mainly the catecholaminergic system, the hypothalamo-pituitary-adrenocortical (HPA) axis and the receptor systems connected to these neurotransmitters/hormones. Other neurotransmitter/hormone systems can be affected too. Here we review the available data on the effects of different stressful stimuli (physical, chemical, psychological/social, cardiovascular, affecting multiple system) on muscarinic receptors (MR). 2 The data suppose the existence of specific mechanisms that regulate the signalization through MR during different type of stress. 3 Physical stressors (cold vs. heat) reveal opposite type of changes on peripheral-tissue MRs. Chemical stressors (oxidative stress) are tightly connected with MR and it is especially interesting that the sensitivity of MR to oxidative stress is subtype-specific. It is also suggested that heterologous regulation can occur with psychological/social stressors on the organism. Cardiovascular system-disturbing stressors cause imbalance between autonomic receptors or down-regulate MR in the peripheral tissue. Immobilization caused opposite effects on MR in the central nervous system and periphery, where the changes are supposed to be due to heterologous regulation between receptor systems. 4 In conclusion, some data indicate that in specific conditions MR are regulated as a consequence of other changes rather than as a primary effect of stress. On the contrary, in some situations, MR are the first targets to respond to the stress. 5 These findings on stress-induced activity of the cholinergic system and changes in muscarinic receptors support the view that stress is a specific response of the organism.
Collapse
Affiliation(s)
- J Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | |
Collapse
|
18
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
19
|
Komar AA, Hatzoglou M. Internal Ribosome Entry Sites in Cellular mRNAs: Mystery of Their Existence. J Biol Chem 2005; 280:23425-8. [PMID: 15749702 DOI: 10.1074/jbc.r400041200] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although studies on viral gene expression were essential for the discovery of internal ribosome entry sites (IRESs), it is becoming increasingly clear that IRES activities are present in a significant number of cellular mRNAs. Remarkably, many of these IRES elements initiate translation of mRNAs encoding proteins that protect cells from stress (when the translation of the vast majority of cellular mRNAs is significantly impaired). The purpose of this review is to summarize the progress on the discovery and function of cellular IRESs. Recent findings on the structures of these IRESs and specifically regulation of their activity during nutritional stress, differentiation, and mitosis will be discussed.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|