1
|
Baek EJ, Kim H, Basova LA, Rosander A, Kesby JP, Semenova S, Marcondes MCG. Sex differences and Tat expression affect dopaminergic receptor expression and response to antioxidant treatment in methamphetamine-sensitized HIV Tat transgenic mice. Neuropharmacology 2020; 178:108245. [PMID: 32783894 DOI: 10.1016/j.neuropharm.2020.108245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Methamphetamine (Meth) abuse is a common HIV comorbidity. Males and females differ in their patterns of Meth use, associated behaviors, and responses, but the underlying mechanisms and impact of HIV infection are unclear. Transgenic mice with inducible HIV-1 Tat protein in the brain (iTat) replicate many neurological aspects of HIV infection in humans. We previously showed that Tat induction enhances the Meth sensitization response associated with perturbation of the dopaminergic system, in male iTat mice. Here, we used the iTat mouse model to investigate sex differences in individual and interactive effects of Tat and Meth challenge on locomotor sensitization, brain expression of dopamine receptors (DRDs) and regulatory adenosine receptors (ADORAs). Because Meth administration increases the production of reactive oxygen species (ROS), we also determined whether the effects of Meth could be rescued by concomitant treatment with the ROS scavenger N-acetyl cysteine (NAC). After Meth sensitization and a 7-day abstinence period, groups of Tat+ and Tat-male and female mice were challenged with Meth in combination with NAC. We confirmed that Tat expression and Meth challenge suppressed DRD mRNA and protein in males and females' brains, and showed that females were particularly susceptible to the effects of Meth on D1-like and D2-like DRD subtypes and ADORAs. The expression of these markers differed strikingly between males and females, and between females in different phases of the estrous cycle, in a Tat -dependent manner. NAC attenuated Meth-induced locomotor sensitization and preserved DRD expression in all groups except for Tat + females. These data identify complex interactions between sex, Meth use, and HIV infection on addiction responses, with potential implications for the treatment of male and female Meth users in the context of HIV, especially those with cognitive disorders.
Collapse
Affiliation(s)
- Eun Ji Baek
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hahoon Kim
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liana A Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA
| | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - James P Kesby
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Alaee A, Zarghami M, Farnia S, Khademloo M, Khoddad T. Comparison of brain white matter hyperintensities in methamphetamine and methadone dependent patients and healthy controls. IRANIAN JOURNAL OF RADIOLOGY 2014; 11:e14275. [PMID: 25035700 PMCID: PMC4090641 DOI: 10.5812/iranjradiol.14275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/08/2013] [Accepted: 01/05/2014] [Indexed: 01/29/2023]
Abstract
Background: Previous studies have proven the development of white matter hyperintensities (WMH) in methamphetamine and opioid users. Opiates and methamphetamines (MA) are the most common addictive agents in Iran. The adverse effects of drugs on the CNS is of concern to specialists and researchers, and given that the neurotoxicity associated with methamphetamine is greater than opioids, it is hypothesized that the severity of WMH in patients with methamphetamine dependence is more than opioid drug-dependent individuals. Objectives: To our knowledge, this is the first research comparing the effect of methamphetamine and methadone (M) on the brain. Patients and Methods: In a historical cohort study, we compared WMH in the brain MRI of 50 methamphetamine-dependent patients, 50 methadone-dependent patients and 50 healthy volunteers who were matched for age, sex and dominant hand. Results: WMH was detected in 18 methamphetamine users, in 12 methadone users and in seven controls (P = 0.038). The site of brain lesions in MA users was mostly in the frontal lobe in 17 cases, in M users in the frontal lobe in 12 cases and in the control group, it was in the parietal lobe in four cases (P=0.001). The frontal lobes were the predominant locations of WMH in MA and M groups (P = 0.001). The frequency of brain lesions was mostly in the deep WM in 18 cases in MA users, in 12 cases in M users and in two cases in the control group (P=0.007). Hyper-signal foci of deep WM in the MA group were grade I (punctuate) in 12 cases, grade II (beginning confluence) in five cases and grade III (large confluent) in four cases. In the M group, there were six cases in grade I, three cases in grade II and one case in grade III. In the control group, there were three grade I cases, two grade II cases, and no grade III cases. Except for periventricular WMH (P = 0.13), there were statistical significant differences in the deep WMH (P = 0.007) and subcortex WMH (P = 0.01) between the three groups. The history of using other drugs and the duration of MA and M consumption were similar. The prevalence of brain lesions was generally higher in both drug user groups compared with the healthy controls. Increased WMH in the MA group was higher than the M group. Conclusions: A greater number of blood flow defects and ischemic lesions in the brain of MA users compared to opiate users may explain the prevalence of psychiatric disorders in these patients.
Collapse
Affiliation(s)
- Abdulrasool Alaee
- Department of Radiology, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding author: Abdulrasool Alaee, Department of Radiology, Mazandaran University of Medical Sciences, Sari, Iran. Tel: +98-9111515116, Fax: +98 151 2202699, E-mail:
| | - Mehran Zarghami
- Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Farnia
- Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Khademloo
- Department of Community Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Talayeh Khoddad
- Department of Traditional Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Effect of prenatal methamphetamine exposure and challenge dose of the same drug in adulthood on epileptiform activity induced by electrical stimulation in female rats. Neuroscience 2014; 257:130-8. [DOI: 10.1016/j.neuroscience.2013.10.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
|
4
|
Wu Y, Hill R, Gogos A, van den Buuse M. Sex differences and the role of estrogen in animal models of schizophrenia: Interaction with BDNF. Neuroscience 2013; 239:67-83. [DOI: 10.1016/j.neuroscience.2012.10.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023]
|
5
|
Wang C, Jiang C, Yuan H, Xiao C, Gao D. Role of calbindin-D28K in estrogen treatment for Parkinson's disease. Neural Regen Res 2013; 8:702-7. [PMID: 25206716 PMCID: PMC4146078 DOI: 10.3969/j.issn.1673-5374.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/15/2012] [Indexed: 02/04/2023] Open
Abstract
Studies have shown that estrogen has neuroprotective effects on the nigrostriatal system. The present study established a Parkinson's disease model in C57BL/6 mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrapyridine. The mice were subjected to 17β estradiol injection into the lateral ventricle. Immunofluorescence double staining showed that estrogen increased tyrosine hydroxylase and calbindin-D28K expression and co-expression in dopaminergic neurons of midbrain substantia nigra pars compacta of model mice. Behavior experiments showed that estrogen improved swimming and hanging behaviors in this mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China ; Department of Neurology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China ; Department of Neurology, Funing County People's Hospital, Yancheng 224400, Jiangsu Province, China
| | - Chao Jiang
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Honghua Yuan
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Chenghua Xiao
- Department of Neurology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Dianshuai Gao
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China ; Department of Neurology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| |
Collapse
|
6
|
Czech DP, Lee J, Sim H, Parish CL, Vilain E, Harley VR. The human testis-determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism. J Neurochem 2012; 122:260-71. [PMID: 22568433 DOI: 10.1111/j.1471-4159.2012.07782.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The male gender is determined by the sex-determining region on the Y chromosome (SRY) transcription factor. The unexpected action of SRY in the control of voluntary movement in male rodents suggests a role in the regulation of dopamine transmission and dopamine-related disorders with gender bias, such as Parkinson's disease. We investigated SRY expression in the human brain and function in vitro. SRY immunoreactivity was detected in the human male, but not female substantia nigra pars compacta, within a sub-population of tyrosine hydroxylase (TH) positive neurons. SRY protein also co-localized with TH positive neurons in the ventral tegmental area, and with GAD-positive neurons in the substantia nigra pars reticulata. Retinoic acid-induced differentiation of human precursor NT2 cells into dopaminergic cells increased expression of TH, NURR1, D2 R and SRY. In the human neuroblastoma cell line, M17, SRY knockdown resulted in a reduction in TH, DDC, DBH and MAO-A expression; enzymes which control dopamine synthesis and metabolism. Conversely, SRY over-expression increased TH, DDC, DBH, D2 R and MAO-A levels, accompanied by increased extracellular dopamine levels. A luciferase assay demonstrated that SRY activated a 4.6 kb 5' upstream regulatory region of the human TH promoter/nigral enhancer. Combined, these results suggest that SRY plays a role as a positive regulator of catecholamine synthesis and metabolism in the human male midbrain. This ancillary genetic mechanism might contribute to gender bias in fight-flight behaviours in men or their increased susceptibility to dopamine disorders, such as Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Daniel P Czech
- Molecular Genetics & Development Division, Prince Henry's Institute of Medical Research, Monash Medical Centre, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Heinzerling KG, Shoptaw S. Gender, brain-derived neurotrophic factor Val66Met, and frequency of methamphetamine use. ACTA ACUST UNITED AC 2012; 9:112-20. [PMID: 22445683 DOI: 10.1016/j.genm.2012.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 02/03/2012] [Accepted: 02/27/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND Frequency of pretreatment methamphetamine (MA) use is an important predictor of outcomes of treatment for MA dependence. Preclinical studies suggest females self-administer more MA than males, but few clinical studies have examined potential sex differences in the frequency of MA use. Estrogen increases expression of brain-derived neurotrophic factor (BDNF), which has effects on MA-induced striatal dopamine release and protects against MA-induced neurotoxicity. OBJECTIVE We examined potential effects of sex, the Val66Met polymorphism in BDNF, and their interaction on frequency of MA use among 60 Caucasian MA-dependent volunteers screening for a clinical trial. METHODS Data was taken from 60 Caucasian MA-dependent volunteers screening for a clinical trial. RESULTS Females reported significantly more pretreatment days with MA use in the past 30 days than males. There was a significant interaction between sex and BDNF Val66Met, with the highest frequency of MA use among females with Val/Val genotype. CONCLUSIONS These results, although preliminary, add to the literature documenting sexual dimorphism in response to stimulants, including MA, and suggest a potential biological mechanism involving BDNF that might contribute to these differences. Additional research characterizing the biological basis of altered response to MA among females is warranted.
Collapse
Affiliation(s)
- Keith G Heinzerling
- Department of Family Medicine and Substance Abuse Pharmacotherapy Unit, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | |
Collapse
|
8
|
17β-estradiol protects dopaminergic neurons in organotypic slice of mesencephalon by MAPK-mediated activation of anti-apoptosis gene BCL2. J Mol Neurosci 2011; 45:236-45. [PMID: 21327582 DOI: 10.1007/s12031-011-9500-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Both clinical and experimental studies provide growing evidences that marked sex differences in certain neurological disorders or disease models are largely attributed to the neuroprotective effects of estrogen. The purposes of this study were to assess the neuroprotective effect of 17β-estradiol (E2) on dopaminergic neurons against 6-hydroxydopamine (6-OHDA) in organotypic mesencephalic slice culture and to elucidate the possible mechanism underlying neuroprotection. It was found that long-term exposure to E2 exerted marked effects on restoring the number of dopaminergic neurons, maintaining normal morphology of dopaminergic neurons, and preserving their ability to release dopamine at the presence of 6-OHDA. The neuroprotective effect of E2 could be dramatically blocked by an estrogen receptor antagonist ICI 182, 780 (ICI). The expression of GFAP, TLR4, and anti-apoptosis gene BCL2 were elevated at the presence of E2, whereas only BCL2 activation was blocked by ICI, dominantly responsible for E2-induced neuroprotection. Furthermore, activation of BCL2 was speculated to be mainly mediated through mitogen-activated protein kinase (MAPK) pathways, yet phosphatidylinositol-3-kinase signaling contributed largely to GFAP and TLR4 upregulation. Taken together, MAPK pathway-mediated BCL2 expression accounted for one of the key mechanisms involved in E2 neuroprotective effect on dopaminergic neurons against 6-OHDA insult. This finding provides new insight into controversial estrogen replacement therapy.
Collapse
|
9
|
Darke S, Kaye S, McKetin R, Duflou J. Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev 2008; 27:253-62. [PMID: 18368606 DOI: 10.1080/09595230801923702] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ISSUES The major physical and psychological health effects of methamphetamine use, and the factors associated with such harms. APPROACH Comprehensive review. KEY FINDINGS Physical harms reviewed included toxicity and mortality, cardiovascular/cerebrovascular pathology, dependence and blood-borne virus transmission. Psychological harms include methamphetamine psychosis, depression, suicide, anxiety and violent behaviours. IMPLICATIONS While high-profile health consequences, such as psychosis, are given prominence in the public debate, the negative sequelae extend far beyond this. This is a drug class that causes serious heart disease, has serious dependence liability and high rates of suicidal behaviours. CONCLUSION The current public image of methamphetamine does not portray adequately the extensive, and in many cases insidious, harms caused.
Collapse
Affiliation(s)
- Shane Darke
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
10
|
Morale MC, L'Episcopo F, Tirolo C, Giaquinta G, Caniglia S, Testa N, Arcieri P, Serra PA, Lupo G, Alberghina M, Harada N, Honda S, Panzica GC, Marchetti B. Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease? ACTA ACUST UNITED AC 2007; 57:431-43. [PMID: 18063054 DOI: 10.1016/j.brainresrev.2007.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 12/21/2022]
Abstract
The final step in the physiological synthesis of 17beta estradiol (E(2)) is aromatization of precursor testosterone by a CYP19 gene product, cytochrome P450 estrogen aromatase in the C19 steroid metabolic pathway. Within the central nervous system (CNS) the presence, distribution, and activity of aromatase have been well characterized. Developmental stage and injury are known modulators of brain enzyme activity, where both neurons and glial cells reportedly have the capability to synthesize this key estrogenic enzyme. The gonadal steroid E(2) is a critical survival, neurotrophic and neuroprotective factor for dopaminergic neurons of the substantia nigra pars compacta (SNpc), the cells that degenerate in Parkinson's disease (PD). In previous studies we underlined a crucial role for the estrogenic status at the time of injury in dictating vulnerability to the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our ongoing studies address the contribution of brain aromatase and extragonadal E(2) as vulnerability factors for PD pathology in female brain, by exposing aromatase knockout (ArKO, -/-) female mice which are unable to synthesize estrogens to MPTP. Our initial results indicate that aromatase deficiency from early embryonic life significantly impairs the functional integrity of SNpc tyrosine hydroxylase-positive neurons and dopamine transporter innervation of the caudate-putamen in adulthood. In addition, ArKO females exhibited a far greater vulnerability to MPTP-induced nigrostriatal damage as compared to their Wt type gonadally intact and gonadectomized counterparts. Characterization of this novel implication of P450 aromatase as determining factor for PD vulnerability may unravel new avenues for the understanding and development of novel therapeutic approaches for Parkinson's disease.
Collapse
Affiliation(s)
- M C Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), Neuropharmacology Section, 94018 Troina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bogush A, Pedrini S, Pelta-Heller J, Chan T, Yang Q, Mao Z, Sluzas E, Gieringer T, Ehrlich ME. AKT and CDK5/p35 Mediate Brain-derived Neurotrophic Factor Induction of DARPP-32 in Medium Size Spiny Neurons in Vitro. J Biol Chem 2007; 282:7352-9. [PMID: 17209049 DOI: 10.1074/jbc.m606508200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mature striatal medium size spiny neurons express the dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include brain-derived neurotrophic factor (BDNF), retinoic acid, and estrogen. DARPP-32 induction by BDNF in vitro requires phosphatidylinositide 3-kinase (PI3K), but inhibition of phosphorylation of protein kinase B/Akt does not entirely abolish expression of DARPP-32. Moreover, the requirement for Akt has not been established. Using pharmacologic inhibitors of PI3K, Akt, and cyclin-dependent kinase 5 (cdk5) and constitutively active and dominant negative PI3K, Akt, cdk5, and p35 viruses in cultured striatal neurons, we measured BDNF-induced levels of DARPP-32 protein and/or mRNA. We demonstrated that both the PI3K/Akt/mammalian target of rapamycin and the cdk5/p35 signal transduction pathways contribute to the induction of DARPP-32 protein levels by BDNF and that the effects are on both the transcriptional and translational levels. It also appears that PI3K is upstream of cdk5/p35, and its activation can lead to an increase in p35 protein levels. These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro, including a novel, important pathway via by which PI3K regulates the contribution of cdk5/p35.
Collapse
Affiliation(s)
- Alexey Bogush
- Farber Institute for Neurosciences and Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bocklandt S, Vilain E. Sex Differences in Brain and Behavior: Hormones Versus Genes. GENETICS OF SEXUAL DIFFERENTIATION AND SEXUALLY DIMORPHIC BEHAVIORS 2007; 59:245-66. [PMID: 17888801 DOI: 10.1016/s0065-2660(07)59009-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex determination is the commitment of an organism toward male or female development. Traditionally, in mammals, sex determination is considered equivalent to gonadal determination. Since the presence or the absence of the testes ultimately determines the phenotype of the external genitalia, sex determination is typically seen as equivalent to testis determination. But what exactly does sex determine? The endpoint of sex determination is almost invariably seen as the reproductive structures, which represent the most obvious phenotypic difference between the sexes. One could argue that the most striking differences between males and females are not the anatomy of the genitals, but the size of the gametes-considerably larger in females than males. In fact, there could be many different endpoints to sex determination, leading to differences between the sexes: brain sexual differences, behavioral differences, and susceptibility to disease. The central dogma of sexual differentiation, stemming initially from the gonad-transfer experiments of Alfred Jost, is that sexual dimorphisms of all somatic tissues are dependent on the testicular secretion of the developing fetus. In this chapter, we will take the example of sex differences in brain and behavior as an endpoint of sex determination. We will argue that genetic factors play a role in sexually dimorphic traits such as the number of dopaminergic cells in the mesencephalon, aggression, and sexual orientation, independently from gonadal hormones.
Collapse
Affiliation(s)
- Sven Bocklandt
- Laboratory of Sexual Medicine, Department of Urology, David Geffen School of Medicine at UCLA, Gonda Center, Los Angeles, California 90095, USA
| | | |
Collapse
|
13
|
Sohrabji F, Lewis DK. Estrogen-BDNF interactions: implications for neurodegenerative diseases. Front Neuroendocrinol 2006; 27:404-14. [PMID: 17069877 PMCID: PMC1828910 DOI: 10.1016/j.yfrne.2006.09.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 07/24/2006] [Accepted: 09/01/2006] [Indexed: 01/08/2023]
Abstract
Since its' discovery over 20 years ago, BDNF has been shown to play a key role in neuronal survival, in promoting neuronal regeneration following injury, regulating transmitter systems and attenuating neural-immune responses. Estrogen's actions in the young and mature brain, and its role in neurodegenerative diseases in many cases overlaps with those observed for BDNF. Reduced estrogen and BDNF are observed in patients with Parkinson's disease and Alzheimer's disease, while high estrogen levels are a risk factor for development of multiple sclerosis. Estrogen receptors, which transduce the actions of estrogen, colocalize to cells that express BDNF and its receptor trkB, and estrogen further regulates the expression of this neurotrophin system. This review describes the distribution of BDNF and trkB expressing cells in the forebrain, and the roles of estrogen and the BDNF-trkB neurotrophin system in Parkinson's disease, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, TAMU Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
14
|
Abstract
Parkinson's disease is a chronic neurodegenerative disorder of unknown etiology. There are sparse data on gender differences in this disorder, but it is clear that there are gender discrepancies in incidence, symptoms, medication effects and treatments. There also appear to be lifecycle fluctuations in the disease course of female Parkinson's disease patients. The effect of estrogen in this disorder is multifold and its role in the development and treatment of PD will be discussed.
Collapse
Affiliation(s)
- Lisa M Shulman
- Maryland Parkinson's Disease & Movement Disorders Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
15
|
Ersche KD, Clark L, London M, Robbins TW, Sahakian BJ. Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology 2006; 31:1036-47. [PMID: 16160707 PMCID: PMC1867318 DOI: 10.1038/sj.npp.1300889] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cognitive function was assessed in chronic drug users on neurocognitive measures of executive and memory function. Current amphetamine users were contrasted with current opiate users, and these two groups were compared with former users of these substances (abstinent for at least one year). Four groups of participants were recruited: amphetamine-dependent individuals, opiate-dependent individuals, former users of amphetamines, and/or opiates and healthy non-drug taking controls. Participants were administered the Tower of London (TOL) planning task and the 3D-IDED attentional set-shifting task to assess executive function, and Paired Associates Learning and Delayed Pattern Recognition Memory tasks to assess visual memory function. The three groups of substance users showed significant impairments on TOL planning, Pattern Recognition Memory and Paired Associates Learning. Current amphetamine users displayed a greater degree of impairment than current opiate users. Consistent with previous research showing that healthy men are performing better on visuo-spatial tests than women, our male controls remembered significantly more paired associates than their female counterparts. This relationship was reversed in drug users. While performance of female drug users was normal, male drug users showed significant impairment compared to both their female counterparts and male controls. There was no difference in performance between current and former drug users. Neither years of drug abuse nor years of drug abstinence were associated with performance. Chronic drug users display pronounced neuropsychological impairment in the domains of executive and memory function. Impairment persists after several years of drug abstinence and may reflect neuropathology in frontal and temporal cortices.
Collapse
Affiliation(s)
- Karen D Ersche
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Luke Clark
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Mervyn London
- Brookfields Hospital, Cambridge Drug & Alcohol Service, Cambridge, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Barbara J Sahakian
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Correspondence: Professor BJ Sahakian, Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Box 189, Addenbrooke's Hospital, Cambridge, Cambridgeshire CB2 2QQ, UK, Tel: + 44 1223 331209, Fax: + 44 1223 336968, E-mail:
| |
Collapse
|
16
|
Bae SC, Lyoo IK, Sung YH, Yoo J, Chung A, Yoon SJ, Kim DJ, Hwang J, Kim SJ, Renshaw PF. Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend 2006; 81:83-8. [PMID: 16005161 DOI: 10.1016/j.drugalcdep.2005.05.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/02/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND The current study was conducted to compare the prevalence, severity, and location of white matter signal hyperintensities (WMH) on brain magnetic resonance (MR) imaging in methamphetamine (MA) abusers. METHODS Thirty-three MA abusers and 32 age- and gender-matched healthy comparison subjects were studied. Axial T-2 weighted images and fluid attenuated inversion recovery axial images were obtained using 3.0 T MR scanner. The severity of WMH was assessed separately for deep and periventricular WMH. Ordinal logistic regression models were used to assess the odds ratio for WMH. RESULTS MA abusers had greater severity of WMH than the healthy comparison subjects (odds ratio: 7.06, 8.46, and 4.56 for all, deep, and periventricular WMH, respectively). Severity of deep WMH correlated with total cumulative dose of MA (p = 0.027). Male MA abusers had greater severity of WMH than female MA abusers (odds ratio = 10.00). While male MA abusers had greater severity of WMH than male comparison subjects (odds ratio = 18.86), there was no significant difference in WMH severity between female MA abusers and female comparison subjects. CONCLUSIONS The current study reports increased WMH in MA abusers, which may be related to MA-induced cerebral perfusion deficits. In addition, female MA abusers had less severe WMH than male MA abusers, possibly due to estrogen's protective effect against ischemic or neurotoxic effects of MA.
Collapse
Affiliation(s)
- Soojeong C Bae
- Department of Psychiatry, Seoul National University College of Medicine and Hospital, 28 Yongon-dong, Chongno-gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Morale MC, Serra PA, L'episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Marchetti B. Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 2005; 138:869-78. [PMID: 16337092 DOI: 10.1016/j.neuroscience.2005.07.060] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/11/2005] [Accepted: 07/25/2005] [Indexed: 11/21/2022]
Abstract
Post-menopausal estrogen deficiency is recognized to play a pivotal role in the pathogenesis of a number of age-related diseases in women, such as osteoporosis, coronary heart disease and Alzheimer's disease. There are also sexual differences in the progression of diseases associated with the nigrostriatal dopaminergic system, such as Parkinson's disease, a chronic progressive degenerative disorder characterized by the selective degeneration of mesencephalic dopaminergic neurons in the substancia nigra pars compacta. The mechanism(s) responsible for dopaminergic neuron degeneration in Parkinson's disease are still unknown, but oxidative stress and neuroinflammation are believed to play a key role in nigrostriatal dopaminergic neuron demise. Estrogen neuroprotective effects have been widely reported in a number of neuronal cell systems including the nigrostriatal dopaminergic neurons, via both genomic and non-genomic effects, however, little is known on estrogen modulation of astrocyte and microglia function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. We here highlight estrogen modulation of glial neuroinflammatory reaction in the protection of mesencephalic dopaminergic neurons and emphasize the cardinal role of glia-neuron crosstalk in directing neuroprotection vs neurodegeneration. In particular, the specific role of astroglia and its pro-/anti-inflammatory mechanisms in estrogen neuroprotection are presented. This study shows that astrocyte and microglia response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injury vary according to the estrogenic status with direct consequences for dopaminergic neuron survival, recovery and repair. These findings provide a new insight into the protective action of estrogen that may possibly contribute to the development of novel therapeutic treatment strategies for Parkinson's disease.
Collapse
Affiliation(s)
- M C Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), Neuropharmacology Section, Troina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Slamberová R, Rokyta R. Seizure susceptibility in prenatally methamphetamine-exposed adult female rats. Brain Res 2005; 1060:193-7. [PMID: 16202984 DOI: 10.1016/j.brainres.2005.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 02/02/2023]
Abstract
The purpose of the present study was to examine the effect of prenatal methamphetamine (MA) exposure on seizures induced by bicuculline and N-methyl-d-aspartate in adult female rats. The present results show that prenatal MA exposure alters seizures in a model-specific manner and that the seizure susceptibility of adult female rats may be affected by the stage of their estrous cycle.
Collapse
Affiliation(s)
- R Slamberová
- Department of Normal, Pathological and Clinical Physiology, 3rd Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Praha 2, Czech Republic
| | | |
Collapse
|