1
|
Augustine R, Kalva SN, Ahmad R, Zahid AA, Hasan S, Nayeem A, McClements L, Hasan A. 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Transl Oncol 2021; 14:101015. [PMID: 33493799 PMCID: PMC7823217 DOI: 10.1016/j.tranon.2021.101015] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
After cardiovascular disease, cancer is the leading cause of death worldwide with devastating health and economic consequences, particularly in developing countries. Inter-patient variations in anti-cancer drug responses further limit the success of therapeutic interventions. Therefore, personalized medicines approach is key for this patient group involving molecular and genetic screening and appropriate stratification of patients to treatment regimen that they will respond to. However, the knowledge related to adequate risk stratification methods identifying patients who will respond to specific anti-cancer agents is still lacking in many cancer types. Recent advancements in three-dimensional (3D) bioprinting technology, have been extensively used to generate representative bioengineered tumor in vitro models, which recapitulate the human tumor tissues and microenvironment for high-throughput drug screening. Bioprinting process involves the precise deposition of multiple layers of different cell types in combination with biomaterials capable of generating 3D bioengineered tissues based on a computer-aided design. Bioprinted cancer models containing patient-derived cancer and stromal cells together with genetic material, extracellular matrix proteins and growth factors, represent a promising approach for personalized cancer therapy screening. Both natural and synthetic biopolymers have been utilized to support the proliferation of cells and biological material within the personalized tumor models/implants. These models can provide a physiologically pertinent cell-cell and cell-matrix interactions by mimicking the 3D heterogeneity of real tumors. Here, we reviewed the potential applications of 3D bioprinted tumor constructs as personalized in vitro models in anticancer drug screening and in the establishment of precision treatment regimens.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar.
| | - Sumama Nuthana Kalva
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Rashid Ahmad
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Shajia Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Ajisha Nayeem
- Department of Biotechnology, St. Mary's College, Thrissur, 680020, Kerala, India
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, NSW, Australia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar.
| |
Collapse
|
2
|
Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D Bioprinting of Tumor Models for Cancer Research. ACS APPLIED BIO MATERIALS 2020; 3:5552-5573. [DOI: 10.1021/acsabm.0c00791] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Youngnam Kang
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal 711103, India
| | - Santhanam Shanmughapriya
- Department of Medicine, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Heart and Vascular Institute, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Neurosurgery, Penn State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
3
|
Cevenini L, Calabretta MM, Lopreside A, Branchini BR, Southworth TL, Michelini E, Roda A. Bioluminescence Imaging of Spheroids for High‐throughput Longitudinal Studies on 3D Cell Culture Models. Photochem Photobiol 2017; 93:531-535. [DOI: 10.1111/php.12718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Cevenini
- Department of Chemistry “G. Ciamician” University of Bologna Bologna Italy
| | | | - Antonia Lopreside
- Department of Chemistry “G. Ciamician” University of Bologna Bologna Italy
| | | | | | - Elisa Michelini
- Department of Chemistry “G. Ciamician” University of Bologna Bologna Italy
- Health Sciences and Technologies‐Interdepartmental Center for Industrial Research (HST‐ICIR) University of Bologna Bologna Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi Roma Italy
| | - Aldo Roda
- Department of Chemistry “G. Ciamician” University of Bologna Bologna Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi Roma Italy
| |
Collapse
|
4
|
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:928507. [PMID: 25110709 PMCID: PMC4119729 DOI: 10.1155/2014/928507] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/03/2023]
Abstract
How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning
machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.
Collapse
|
5
|
Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, Ulbrich C, Magnusson NE, Infanger M, Bauer J. Growing tissues in real and simulated microgravity: new methods for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:555-66. [PMID: 24597549 DOI: 10.1089/ten.teb.2013.0704] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.
Collapse
Affiliation(s)
- Daniela Grimm
- 1 Institute of Biomedicine, Pharmacology, Aarhus University , Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Luo H, Wang C, Feng M, Zhao Y. Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int J Med Sci 2014; 11:87-96. [PMID: 24396290 PMCID: PMC3880995 DOI: 10.7150/ijms.7651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decline immune function is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. Though T cell immune response was inhibited by microgravity, it is not clearly whether activation would be inhibited after a pre-exposure of microgravity on T lymphocytes at the resting state. METHODS We herein investigated the response ability of resting CD4⁺ and CD8⁺ T cells experiencing pre-exposure of modeled microgravity (MMg) for 0, 8, 16 and 24 hrs to concanavalin A (ConA) stimulation. The phenotypes and subsets of immune cells were determined by flow cytometry. RESULTS Both CD4⁺ and CD8⁺ T cells with an MMg pre-exposure exhibited decreased expressions of activation-markers including CD25, CD69 and CD71, inflammatory cytokine secretion and cell proliferation in response to ConA compared with T cells with 1g controls in an MMg exposure time- dependent manner. Moreover, short term MMg treatment caused more severe decreased proliferation in CD4⁺ T cells than in CD8⁺ T cells. CONCLUSIONS MMg can directly impact on resting T cell subsets. CD4⁺ T cells were more sensitive to the microgravity inhibition than CD8⁺ T cells in respect of cell proliferation. These results offered new insights for the MMg-caused T cell functional defects.
Collapse
Affiliation(s)
- Haiying Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chongzhen Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meifu Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Grosse J, Wehland M, Pietsch J, Schulz H, Saar K, Hübner N, Eilles C, Bauer J, Abou-El-Ardat K, Baatout S, Ma X, Infanger M, Hemmersbach R, Grimm D. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J 2012; 26:5124-40. [PMID: 22964303 DOI: 10.1096/fj.12-215749] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study focused on the effects induced by a random positioning machine (RPM) on FTC-133 thyroid cancer cells and evaluated signaling elements involved in 3-dimensional multicellular tumor spheroid (MCTS) formation. The cells were cultured on the RPM, a device developed to simulate microgravity, and under static 1-g conditions. After 24 h on the RPM, MCTSs swimming in culture supernatants were found, in addition to growth of adherent (AD) cells. Cells grown on the RPM showed higher levels of NF-κB p65 protein and apoptosis than 1-g controls, a result also found earlier in endothelial cells. Employing microarray analysis, we found 487 significantly regulated transcripts belonging not only to the apoptosis pathway but also to other biological processes. Selected transcripts were analyzed with quantitative real-time PCR using the same samples. Compared with 1-g IL-6, IL-8, CD44, and OPN were significantly up-regulated in AD cells but not in MCTSs, while ERK1/2, CAV2, TLN1, and CTGF were significantly down-regulated in AD cells. Simultaneously, the expression of ERK2, IL-6, CAV2, TLN1, and CTGF was reduced in MCTSs. IL-6 protein expression and secretion mirrored its gene expression. Thus, we concluded that the signaling elements IL-6, IL-8, OPN, TLN1, and CTGF are involved with NF-κB p65 in RPM-dependent thyroid carcinoma cell spheroid formation.
Collapse
Affiliation(s)
- Jirka Grosse
- Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 2011; 52:167-82. [PMID: 22162252 DOI: 10.1002/mc.21844] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
Tissues are three-dimensional (3D) entities as is the tumor that arises within them. Though disaggregated cancerous tissues have produced numerous cell lines for basic and applied research, it is generally agreed that these lines are poor models of in vivo phenomena. In this review we focus on in vitro 3D models used in cancer research, particularly their contribution to molecular studies of the early stages of metastasis, angiogenesis, the tumor microenvironment, and cancer stem cells. We present a summary of the various formats used in the field of tissue bioengineering as they apply to mechanistic modeling of cancer stages or processes. In addition we list studies that model specific types of malignancies, highlight drastic differences in results between 3D in vitro models and classical monolayer culturing techniques, and establish the need for standardization of 3D models for meaningful preclinical and therapeutic testing.
Collapse
Affiliation(s)
- Lauren C Kimlin
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
9
|
Kyriakidou K, Lucarini G, Zizzi A, Salvolini E, Mattioli Belmonte M, Mollica F, Gloria A, Ambrosio L. Dynamic Co-Seeding of Osteoblast and Endothelial Cells on 3D Polycaprolactone Scaffolds for Enhanced Bone Tissue Engineering. J BIOACT COMPAT POL 2008. [DOI: 10.1177/0883911508091905] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tissue engineered scaffolds must have an organized and repeatable microstructure which enables cells to assemble in an ordered matrix that allows adequate nutriental perfusion. In this work, to evaluate the reciprocal cell interactions of endothelial and osteoblast-like cells, human osteoblast-like cells (MG63) and Human Umbilical Vein Endothelial Cells (HUVEC) were co-seeded onto 3D geometrically controlled porous poly(ε-caprolactone) (PCL) and cultured by means of a rotary cell culture system (RCCS-4DQ). In our dynamic co-culture system, the lack of significant enhancement of osteoblast ALP activity and ECM production indicated that the microgravity conditions of the rotary system affected the cells by favoring their proliferation and cellular cross-talk. These results emphasize how osteoblasts increase endothelial cell proliferate and endothelial cells amplify the growth of osteoblasts but decrease their differentiation. This dynamic seeding of osteoblasts and endothelial cells onto a 3D polymeric scaffold may represent a unique approach for studying the mechanisms of interaction of endothelial and osteoblast cells as well as achieve a functional hybrid in which angiogenesis, furnished by neo-vascular organization of endothelial cells may further support osteoblasts growth. Furthermore, this in vitro model may be useful in examining the applicability of novel material structures for tissue engineering.
Collapse
Affiliation(s)
- K. Kyriakidou
- Department of Molecular Pathology and Innovative Therapies Marche Polytechnic University, Via Tronto 10/A 60020 Ancona, Italy
| | - G. Lucarini
- Department of Molecular Pathology and Innovative Therapies Marche Polytechnic University, Via Tronto 10/A 60020 Ancona, Italy
| | - A. Zizzi
- Department of Molecular Pathology and Innovative Therapies Marche Polytechnic University, Via Tronto 10/A 60020 Ancona, Italy
| | - E. Salvolini
- Department of Molecular Pathology and Innovative Therapies Marche Polytechnic University, Via Tronto 10/A 60020 Ancona, Italy
| | - M. Mattioli Belmonte
- Department of Molecular Pathology and Innovative Therapies Marche Polytechnic University, Via Tronto 10/A 60020 Ancona, Italy,
| | - F. Mollica
- Engineering Department, Ferrara University Via Saragat 1, 44100 Ferrara, Italy
| | - A. Gloria
- Institute of Composite and Biomedical Materials (IMCB-CNR) Piazzale Tecchio 80, 80125 Naples, Italy
| | - L. Ambrosio
- Institute of Composite and Biomedical Materials (IMCB-CNR) Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
10
|
Mihailova M, Trenev V, Genova P, Konstantinov S. Process simulation in a mechatronic bioreactor device with speed-regulated motors for growing of three-dimensional cell cultures. Ann N Y Acad Sci 2007; 1091:470-89. [PMID: 17341637 DOI: 10.1196/annals.1378.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering is a new scientific research field that allows the establishment of tissue equivalents rising from isolated cells in combination with biocompatible materials and cultivation in more or less sophisticated bioreactor systems. Such systems gave the unique opportunity to perform in vitro investigations of transcription and translation, cell growth, biochemistry and mechanics of healthy normal organs as well as those affected by malignant tumors, infections, and immune deficiency under controlled conditions. In rotating vessel bioreactors under microgravity and defined medium content, cells proliferate, stay abundant to each other, and form three-dimensional structures, assigned as spheroids. Such spheroids might be grown on microcarriers. A wide spectrum of different cell culture experiments involving normal and transformed human cells indicates that: in the rotating bioreactor system miniPERM no complete lack of gravity could be reached; a great part of the seeded cell material does not proliferate at the beginning; and the appearance of bigger spheroids is rather random. We describe the acquisition of spheroids from HD-MY-Z and Neuro-2A tumor cells. Spheroids of 100 and more cells were obtained from HD-MY-Z and Neuro-2A cells. Interestingly, chronic myeloid leukemia LAMA-84 cells did not form any cell clumps and they kept a completely undifferentiated phenotype despite their semiadherent manner of growth under conventional conditions. A detailed theoretical and virtual simulation study of the influence of every component of gravitation, inertia, and hydrodynamic force fields was performed. Therefore, a new concept for mechatronic bioreactor device with active electronic control was developed and virtually tested.
Collapse
Affiliation(s)
- Mina Mihailova
- CLMI, Bulgarian Academy of Sciences, 1 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|
11
|
Madlambayan GJ, Rogers I, Purpura KA, Ito C, Yu M, Kirouac D, Casper RF, Zandstra PW. Clinically relevant expansion of hematopoietic stem cells with conserved function in a single-use, closed-system bioprocess. Biol Blood Marrow Transplant 2007; 12:1020-30. [PMID: 17084368 DOI: 10.1016/j.bbmt.2006.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 07/07/2006] [Indexed: 01/27/2023]
Abstract
The clinical potential of umbilical cord blood-derived stem and progenitor cells has been demonstrated in various animal and human transplantation studies. However, the need for increased numbers of appropriate umbilical cord blood-derived cells continues to limit the development and success of these therapies. Ex vivo expansion has been widely studied as a method to overcome this limitation. We describe the use of a clinically relevant single-use, closed-system bioprocess capable of generating greater numbers of hematopoietic stem and progenitor cells that maintain in vivo and in vitro developmental potential. In addition to expanded numbers of CD34+ cells, CD34(+)CD38(-) cells, colony-forming cells, and long-term culture-initiating cells, the bioprocess generated > or =3.3-fold more long-term nonobese diabetic/severe combined immunodeficient repopulating cells (quantitatively determined using limiting dilution analysis) than present at input. Interestingly, these cells were also capable of multilineage engraftment and were shown to maintain their engraftment potency on a per long-term nonobese diabetic/severe combined immunodeficient repopulating cell basis compared with input noncultured cells. The developmental capacity of bioprocess-generated cells was further demonstrated by their ability to repopulate secondary nonobese diabetic/severe combined immunodeficient recipients. In vitro lineage analysis confirmed that bioprocess-generated cells could differentiate into myeloid and natural killer, B, and T cell lymphoid lineages. This in-depth analysis describes a bioprocess that generates human hematopoietic stem and progenitor cells with conserved hematopoietic activity, establishes analysis criteria for in vitro hematopoietic stem cell expansion studies, and serves as a foundation to test the therapeutic utility of cultured hematopoietic stem cells in large animals and humans.
Collapse
Affiliation(s)
- Gerard J Madlambayan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|