1
|
Ciesarová Z, Kukurová K, Jelemenská V, Horváthová J, Kubincová J, Belović M, Torbica A. Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits. Foods 2023; 12:3170. [PMID: 37685103 PMCID: PMC10486749 DOI: 10.3390/foods12173170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Sea buckthorn pomace is a by-product of juice production, which is still rich in bioactive compounds. After drying, the pomace can be effectively used as a valuable addition to bakery products supporting their nutritional value. However, due to the high content of the amino acid asparagine in sea buckthorn, this promising material contributes to the undesirable formation of acrylamide. To reduce the risk from this potentially carcinogenic compound, enzymatic treatment of sea buckthorn with asparaginase was applied, which resulted in a substantial reduction of asparagine content from 1834 mg/kg in untreated dried sea buckthorn pomace to 89 mg/kg in enzymatically treated dried sea buckthorn pomace. 10% substitution of wholegrain cereal flour with enzymatically treated sea buckthorn pomace powder in rye and triticale biscuits resulted in a 35% reduction in acrylamide content, in the case of wholegrain wheat biscuits up to a 64% reduction, compared to biscuits with untreated sea buckthorn pomace powder. This study confirmed that treating fruit with asparaginase is an effective way to reduce health risk caused by acrylamide in biscuits enriched with nutritionally valuable fruit pomace.
Collapse
Affiliation(s)
- Zuzana Ciesarová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Kristína Kukurová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Viera Jelemenská
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Jana Horváthová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Janka Kubincová
- National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, Slovakia; (K.K.); (V.J.); (J.H.); (J.K.)
| | - Miona Belović
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.B.); (A.T.)
| | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.B.); (A.T.)
| |
Collapse
|
2
|
González-Mulero L, Mesías M, Morales F, Delgado-Andrade C. Assessment of the acrylamide bioaccessibility in cereal and potato-based foods after in vitro digestion. Food Res Int 2022; 161:111820. [DOI: 10.1016/j.foodres.2022.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
|
3
|
Molnar R, Szabo L, Tomesz A, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. The Chemopreventive Effects of Polyphenols and Coffee, Based upon a DMBA Mouse Model with microRNA and mTOR Gene Expression Biomarkers. Cells 2022; 11:cells11081300. [PMID: 35455979 PMCID: PMC9029301 DOI: 10.3390/cells11081300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are capable of decreasing cancer risk. We examined the chemopreventive effects of a green tea (Camellia sinensis) extract, polyphenol extract (a mixture of blackberry (Rubus fruticosus), blackcurrants (Ribes nigrum), and added resveratrol phytoalexin), Chinese bayberry (Myrica rubra) extract, and a coffee (Coffea arabica) extract on 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen-increased miR-134, miR-132, miR-124-1, miR-9-3, and mTOR gene expressions in the liver, spleen, and kidneys of CBA/Ca mice. The elevation was quenched significantly in the organs, except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the kidneys of the polyphenol-fed group. In the coffee extract-consuming group, only miR-9-3 and mTOR decreased significantly in the liver; also, miR-134 decreased significantly in the spleen, and, additionally, miR-124-1 decreased significantly in the kidney. Our results are supported by literature data, particularly the DMBA generated ROS-induced inflammatory and proliferative signal transducers, such as TNF, IL1, IL6, and NF-κB; as well as oncogenes, namely RAS and MYC. The examined chemopreventive agents, besides the obvious antioxidant and anti-inflammatory effects, mainly blocked the mentioned DMBA-activated factors and the mitogen-activated protein kinase (MAPK) as well, and, at the same time, induced PTEN as well as SIRT tumor suppressor genes.
Collapse
Affiliation(s)
- Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
4
|
Aktağ IG, Hamzalıoğlu A, Kocadağlı T, Gökmen V. Dietary exposure to acrylamide: A critical appraisal on the conversion of disregarded intermediates into acrylamide and possible reactions during digestion. Curr Res Food Sci 2022; 5:1118-1126. [PMID: 35865802 PMCID: PMC9294190 DOI: 10.1016/j.crfs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
The amount of acrylamide in asparagine rich thermally processed foods has been broadly monitored over the past two decades. Acrylamide exposure can be estimated by using the concentration of acrylamide found in foods and alternatively, biomarkers of exposure are correlated. A better estimation of dietary acrylamide exposure is crucial for a proper food safety assessment, regulations, and public health research. This review addresses the importance of the presence of neglected Maillard reaction intermediates found in foods, that may convert into acrylamide during digestion and the fate of acrylamide in the gastrointestinal tract as a reactive compound. Therefore, it is questioned in this review whether acrylamide concentration in ingested foods is directly correlated with the dietary exposure to acrylamide. Neglected Maillard reaction intermediates play role in acrylamide formation in gut. Exposure may increase when intermediates are converted into acrylamide in the gut. Nucleophiles cause elimination of acrylamide in the intestinal phase. The fate of acrylamide during digestion could be important for exposure estimation.
Collapse
Affiliation(s)
- Işıl Gürsul Aktağ
- Department of Culinary Arts and Gastronomy, Munzur University, 62000, Aktuluk Campus, Tunceli, Turkey
| | - Aytül Hamzalıoğlu
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
- Corresponding author.
| |
Collapse
|
5
|
Arihara K, Yokoyama I, Ohata M. Bioactivities generated from meat proteins by enzymatic hydrolysis and the Maillard reaction. Meat Sci 2021; 180:108561. [PMID: 34034035 DOI: 10.1016/j.meatsci.2021.108561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Bioactive peptides are released from meat proteins by enzymatic hydrolysis (i.e., gastrointestinal digestion, aging/storage, fermentation, and protease treatment). Such peptides attribute physiological functions to meat and meat products and are promising food ingredients for developing functional foods. Meat by-products (e.g., blood and collagen) are also good sources for generating bioactive peptides, since they are produced in large quantities and are rich in proteins. Although protein-derived bioactive peptides are attractive ingredients, their changes by the Maillard reaction during processing, cooking, and storage should be investigated. This article briefly reviews the production of bioactive peptides from meat and meat by-products. Such diverse peptides affects circulatory, nervous, alimentary, and immune systems. Then, the bioactivities of Maillard reaction products (MRPs) generated from protein hydrolysates are discussed. Special attention is paid to bioactivities of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) inhalation. As such activities, we have evaluated the impact of DMHF on blood pressure, moods, brainwaves, and dietary intake. Our efforts for understanding various aspects and implication of peptides and MRPs from meat proteins would open new avenues in the meat and food industry.
Collapse
Affiliation(s)
- K Arihara
- School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan.
| | - I Yokoyama
- School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - M Ohata
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| |
Collapse
|
6
|
Hu GL, Wang X, Zhang L, Qiu MH. The sources and mechanisms of bioactive ingredients in coffee. Food Funct 2019; 10:3113-3126. [PMID: 31166336 DOI: 10.1039/c9fo00288j] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coffee bioactive components include caffeine, chlorogenic acids (CGAs), trigonelline, tryptophan alkaloids, diterpenes and other secondary metabolites. During roasting, coffee metabolites undergo complex Maillard reactions, producing melanoidins and other degradation products, the most controversial among which is acrylamide, an ingredient widely found in baked food and listed as a second class carcinogen. Green and roasted coffee ingredients have good biological activities for the prevention of cardiovascular disease, and antibacterial, anti-diabetic, neuroprotection, and anti-cancer activities. To better understand the relationship between coffee ingredients and human health, and to effectively use the active ingredients, it is essential to understand the sources of coffee active ingredients and their mechanisms of action in the organism. This paper systematizes the available information and provides a critical overview of the sources of coffee active ingredients and the mechanisms of action in vivo or in vitro, and their combined effects on common human diseases.
Collapse
Affiliation(s)
- G L Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | | | | | | |
Collapse
|
7
|
Martinez E, Rodriguez JA, Mondragon AC, Lorenzo JM, Santos EM. Influence of Potato Crisps Processing Parameters on Acrylamide Formation and Bioaccesibility. Molecules 2019; 24:E3827. [PMID: 31652876 PMCID: PMC6864724 DOI: 10.3390/molecules24213827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
A fractional factorial design was used to evaluate the effects of temperature, frying time, blanching treatment and the thickness of potato slices on acrylamide content in crisps. The design was used on freshly harvested and four-month stored potatoes. The critical factors found were temperature and frying time, and the interaction between blanching treatment and slice thickness. Once frying conditions were selected, an acrylamide content of 725 and 1030 mg kg-1 was found for non-stored and 4-month stored tubers, with adequate textural parameters in both cases. The difference in concentration is related to storage conditions, which must be controlled in order to control acrylamide levels. Bioaccesibility studies demonstrated that acrylamide concentration remained at 70%, and reductions took place mainly at the intestinal phase, as a result of reaction with nucleophilic compounds.
Collapse
Affiliation(s)
- Emmanuel Martinez
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo 42184, Mexico.
| | - Jose A Rodriguez
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo 42184, Mexico.
| | - Alicia C Mondragon
- Laboratorio de Higiene, Inspeccion y Control de Alimentos, Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002-Lugo, Spain.
| | - Jose Manuel Lorenzo
- Meat Technology Centre of Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Eva M Santos
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo 42184, Mexico.
| |
Collapse
|
8
|
Sansano M, Heredia A, Peinado I, Andrés A. Dietary acrylamide: What happens during digestion. Food Chem 2017; 237:58-64. [PMID: 28764038 DOI: 10.1016/j.foodchem.2017.05.104] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 11/26/2022]
Abstract
Acrylamide is a well-known potentially carcinogen compound formed during thermal processing as an intermediate of Maillard reactions. Three objectives were addressed: the impact of gastric digestion on acrylamide content of French Fries, chips, chicken nuggets, onions rings, breakfast cereals, biscuits, crackers, instant coffee and coffee substitute; the acrylamide content evolution during gastrointestinal digestion of French fries and chips; and the effectiveness of blanching and air-frying on acrylamide mitigation after gastrointestinal digestion. A significant increase (p-value <0.05) in acrylamide content was observed for most of the products after gastric digestion (maximum registered for sweet biscuits, from 30±8 to 150±48µg/kg). However, at the end of the intestinal stage, acrylamide values were statistically similar (p-value=0.132) for French fries and lower than the initial values (before digestion) in potato chips (p-value=0.027). Finally, the low acrylamide content found in blanched and air-fried samples, remained still lower than for deep fried samples even after gastrointestinal digestion.
Collapse
Affiliation(s)
- M Sansano
- Institute of Food Engineering for Development, Universitat Politècnica de València, P.O. Box 46022, Valencia, Spain
| | - A Heredia
- Institute of Food Engineering for Development, Universitat Politècnica de València, P.O. Box 46022, Valencia, Spain.
| | - I Peinado
- Institute of Food Engineering for Development, Universitat Politècnica de València, P.O. Box 46022, Valencia, Spain
| | - A Andrés
- Institute of Food Engineering for Development, Universitat Politècnica de València, P.O. Box 46022, Valencia, Spain
| |
Collapse
|
9
|
Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:161-185. [DOI: 10.1016/bs.afnr.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Sansano M, Castelló M, Heredia A, Andrés A. Protective effect of chitosan on acrylamide formation in model and batter systems. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Li J, Li D, Yang Y, Xu T, Li P, He D. Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. J Appl Toxicol 2015; 36:60-7. [PMID: 25876170 DOI: 10.1002/jat.3144] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 01/30/2023]
Abstract
Acrylamide can form in foods during the cooking process and cause multiple adverse effects. However, the neurotoxicity and mechanisms of acrylamide have not been fully elucidated. In Caenorhabditis elegans, we showed that 48 h exposure to 10-625 mg l(-1) acrylamide resulted in a significant decline in locomotor frequency of body bending, head thrashing and pharynx pumping. In addition, acrylamide exposure reduced crawling speeds and changed angles of body bending. It indicates that acrylamide induces locomotor defects, along with parkinsonian-like movement impairment, including bradykinesia and hypokinesia. Acrylamide also affected chemotaxis plasticity and reduced learning ability. Using transgenic nematodes, we found that acrylamide induced downexpression of P(dat-1) and led to the degeneration of dopaminergic neurons. Moreover, the enhanced expression of unc-54, encoding a subunit of α-synuclein was found. It illustrates that acrylamide is efficient in inducing crucial parkinsonian pathology, including dopaminergic damage and α-synuclein aggregation. These findings suggest the acrylamide-induced locomotor defects and neurotoxicity are associated with Parkinson's disease.
Collapse
Affiliation(s)
- Jia Li
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Dan Li
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Yongsheng Yang
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Tiantian Xu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Ping Li
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Defu He
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Sansano M, Juan-Borrás M, Escriche I, Andrés A, Heredia A. Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes. J Food Sci 2015; 80:T1120-8. [DOI: 10.1111/1750-3841.12843] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. Sansano
- Inst. of Food Engineering for Development; Univ. Politècnica de València; P.O. Box 46022 Valencia Spain
| | - M. Juan-Borrás
- Inst. of Food Engineering for Development; Univ. Politècnica de València; P.O. Box 46022 Valencia Spain
| | - I. Escriche
- Inst. of Food Engineering for Development; Univ. Politècnica de València; P.O. Box 46022 Valencia Spain
| | - A. Andrés
- Inst. of Food Engineering for Development; Univ. Politècnica de València; P.O. Box 46022 Valencia Spain
| | - A. Heredia
- Inst. of Food Engineering for Development; Univ. Politècnica de València; P.O. Box 46022 Valencia Spain
| |
Collapse
|
13
|
Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, Shi J. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 2014; 69:1-12. [PMID: 24713263 DOI: 10.1016/j.fct.2014.03.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Acrylamide (AA) was firstly detected in food in 2002, and since then, studies on AA analysis, occurrence, formation, toxicity, risk assessment and mitigation have been extensively carried out, which have greatly advanced understanding of this particular biohazard at both academic and industrial levels. There is considerable variation in the levels of AA in different foods and different brands of the same food; therefore, so far, a general upper limit for AA in food is not available. In addition, the link of dietary AA to human cancer is still under debate, although AA has been known as a potential cause of various toxic effects including carcinogenic effects in experimental animals. Furthermore, the oxidized metabolite of AA, glycidamide (GA), is more toxic than AA. Both AA and GA can form adducts with protein, DNA, and hemoglobin, and some of those adducts can serve as biomarkers for AA exposure; their potential roles in the linking of AA to human cancer, reproductive defects or other diseases, however, are unclear. This review addresses the state-of-the-art understanding of AA, focusing on risk assessment, mechanism of formation and strategies of mitigation in foods. The potential application of omics to AA risk assessment is also discussed.
Collapse
Affiliation(s)
- Yi Xu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China
| | - Bo Cui
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China
| | - Ran Ran
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ying Liu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Huaping Chen
- College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China
| | - Guoyin Kai
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China.
| | - Jianxin Shi
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
14
|
|
15
|
Modification of major plasma proteins by acrylamide and glycidamide: Preliminary screening by nano liquid chromatography with tandem mass spectrometry. Anal Chim Acta 2010; 684:80-6. [PMID: 21167989 DOI: 10.1016/j.aca.2010.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/14/2010] [Accepted: 10/31/2010] [Indexed: 02/02/2023]
Abstract
Environmental and food-borne acrylamide is a suspected carcinogen in humans and is associated with several cancer types. Its biological metabolite, glycidamide, is also harmful to human health. The presence of acrylamide in the living environment makes this toxic chemical an important public health issue. Acrylamide and glycidamide bind with proteins to form protein adducts in metabolic processes. These metabolic adducts can be considered environmental modifications of proteins. This study used a simple proteomic strategy to identify acrylamide and glycidamide adducts bound in major plasma proteins. After simple sample preparation, new protein modifications by acrylamide and glycidamide were identified using nano LC combined with quadruple time-of-flight (Q-TOF) mass spectrometry. This method required only 10 μL of human plasma sample for protein modification survey. Hopefully, this strategy can help to discover protein-acrylamide (or glycidamide) adducts that are biomarkers of human exposure to high-dose acrylamide. These biomarkers may also elucidate the metabolic pathways of acrylamide and glycidamide.
Collapse
|
16
|
Sheng Q, Zou HC, Lü ZR, Zou F, Park YD, Yan YB, Yao SJ. Effects of acrylamide on the activity and structure of human brain creatine kinase. Int J Mol Sci 2009; 10:4210-4222. [PMID: 20057941 PMCID: PMC2790104 DOI: 10.3390/ijms10104210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/16/2009] [Accepted: 09/24/2009] [Indexed: 12/02/2022] Open
Abstract
Acrylamide is widely used worldwide in industry and it can also be produced by the cooking and processing of foods. It is harmful to human beings, and human brain CK (HBCK) has been proposed to be one of the important targets of acrylamide. In this research, we studied the effects of acrylamide on HBCK activity, structure and the potential binding sites. Compared to CKs from rabbit, HBCK was fully inactivated at several-fold lower concentrations of acrylamide, and exhibited distinct properties upon acrylamide-induced inactivation and structural changes. The binding sites of acrylamide were located at the cleft between the N- and C-terminal domains of CK, and Glu232 was one of the key binding residues. The effects of acrylamide on CK were proposed to be isoenzyme- and species-specific, and the underlying molecular mechanisms were discussed.
Collapse
Affiliation(s)
- Qing Sheng
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - He-Chang Zou
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Zhi-Rong Lü
- Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yong-Doo Park
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, China
- Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- Authors to whom correspondence should be addressed; E-Mails:
(Y.-B.Y.);
(S.J.Y.); Tel.: +86-10-62783477 (Y.-B.Y.); +86-571-87951982 (S.J.Y.); Fax: +86-10-62771597 (Y.-B.Y.); +86-571-87951015 (S.J.Y.)
| | - Shan-Jing Yao
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
- Authors to whom correspondence should be addressed; E-Mails:
(Y.-B.Y.);
(S.J.Y.); Tel.: +86-10-62783477 (Y.-B.Y.); +86-571-87951982 (S.J.Y.); Fax: +86-10-62771597 (Y.-B.Y.); +86-571-87951015 (S.J.Y.)
| |
Collapse
|
17
|
Zhang Y, Ren Y, Zhang Y. New Research Developments on Acrylamide: Analytical Chemistry, Formation Mechanism, and Mitigation Recipes. Chem Rev 2009; 109:4375-97. [DOI: 10.1021/cr800318s] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China, and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yiping Ren
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China, and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China, and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
18
|
De Vleeschouwer K, Van der Plancken I, Van Loey A, Hendrickx ME. Modelling acrylamide changes in foods: from single-response empirical to multiresponse mechanistic approaches. Trends Food Sci Technol 2009. [DOI: 10.1016/j.tifs.2009.01.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Lü ZR, Zou HC, Park SJ, Park D, Shi L, Oh SH, Park YD, Bhak J, Zou F. The effects of acrylamide on brain creatine kinase: Inhibition kinetics and computational docking simulation. Int J Biol Macromol 2009; 44:128-32. [DOI: 10.1016/j.ijbiomac.2008.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/05/2008] [Indexed: 11/26/2022]
|
20
|
Smaniotto A, Bertazzo A, Comai S, Traldi P. The role of peptides and proteins in melanoidin formation. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:410-418. [PMID: 19165819 DOI: 10.1002/jms.1519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-molecular-weight (HMW) coloured compounds called melanoidins are widely distributed, particularly in foods. It has been proposed that they originate through the Maillard reaction, a non-enzymatic browning reaction, due to the interaction between protein or peptide amino groups and carbohydrates. The melanoidin structure is not definitively known, and they have been generally defined as HMW nitrogen-containing brown polymers.In order to gain information on the nature of melanoidins, a simple in vitro model was chosen to investigate the products of the reactions between sugars and peptide/proteins. This approach would elucidate whether melanoidin formation is due to the binding of different sugar units to a peptide/protein or vice versa. With this aim, the reactivity of two different peptides, EPK177 and physalaemin, and a low-molecular-weight (LMW) protein, lysozyme, was tested towards different saccharides (glucose, maltotriose (MT), maltopentaose and dextran 1000) in aqueous solutions at different temperatures. The incubation mixtures were analysed at different reaction times by MALDI/MS. Furthermore, in order to verify the possible role of sugar pyrolysis products in melanoidin formation, the products arising from the thermal treatment at 200 degrees C of MT were incubated with lysozyme, and the reaction products were analysed by the same MS approach.The obtained results allowed the establishment of some general views: melanoidins cannot simply originate by reactions of sugar moieties with proteins. In fact, the reaction easily occurs, but it does not lead to any coloured product, as melanoidins have been described to be; melanoidins cannot originate from the thermal degradation products of glycated proteins. In fact, the thermal treatment of glycated lysozyme leads to a severe degradation of the protein with the formation of LMW species, far from the view of melanoidins as HMW compounds; experimental evidence has been gained on the melanoidin formation through reaction of intact protein with the pyrolysis products of MT. This hypothesis has been supported either from MALDI measurements or from spectroscopic data that show an absorption band in the range 300-600 nm, typical of melanoidins.
Collapse
Affiliation(s)
- Anna Smaniotto
- Consiglio Nazionale delle Ricerche, ISTM, Corso Stati Uniti, 4, 35127 Padova, Italy
| | | | | | | |
Collapse
|
21
|
|
22
|
Zhang Y, Zhang Y. Formation and Reduction of Acrylamide in Maillard Reaction: A Review Based on the Current State of Knowledge. Crit Rev Food Sci Nutr 2007; 47:521-42. [PMID: 17558658 DOI: 10.1080/10408390600920070] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The recent report of elevated acrylamide levels in heat processing foods evoked an international health alarm. Acrylamide, an acknowledged potential genetic and reproductive toxin with mutagenic and carcinogenic properties in experimental mammalians, has been found in various heat processing foods. Many original contributions reported their findings on the formation mechanism and possible reduction methods of acrylamide. The aim of this review article is to summarize the state-of-the-art about the formation and reduction of acrylamide in the Maillard reaction. This research progress includes mechanistic studies on the correlation between the Maillard reaction and acrylamide, the formation mechanism of acrylamide, the main pathways of formation and impact factors on formation including cultivars, storage temperature, storage time, heat temperature, heat time, environmental pH, concentration of precursors, effects of food matrixes, type of oil, etc. Meanwhile, primary mechanisms on the reduction of acrylamide as well as reduction pathways including material and processing related ways and use of exogenous chemical additives are systematically reviewed. The mitigation studies on acrylamide are also summarized by the Confederation of the Food and Drink Industries of the EU (CIAA) "Toolbox" approach.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, PR China.
| | | |
Collapse
|
23
|
Gerrard JA. The Maillard reaction in food: Progress made, challenges ahead—Conference Report from the Eighth International Symposium on the Maillard Reaction. Trends Food Sci Technol 2006. [DOI: 10.1016/j.tifs.2005.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|