1
|
Berger MB, Bosh K, Deng J, Jacobs TW, Cohen DJ, Boyan BD, Schwartz Z. Wnt16 Increases Bone-to-Implant Contact in an Osteopenic Rat Model by Increasing Proliferation and Regulating the Differentiation of Bone Marrow Stromal Cells. Ann Biomed Eng 2024; 52:1744-1762. [PMID: 38517621 PMCID: PMC11082046 DOI: 10.1007/s10439-024-03488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Osseointegration is a complex biological cascade that regulates bone regeneration after implant placement. Implants possessing complex multiscale surface topographies augment this regenerative process through the regulation of bone marrow stromal cells (MSCs) that are in contact with the implant surface. One pathway regulating osteoblastic differentiation is Wnt signaling, and upregulation of non-canonical Wnts increases differentiation of MSCs on these titanium substrates. Wnt16 is a non-canonical Wnt shown to regulate bone morphology in mouse models. This study evaluated the role of Wnt16 during surface-mediated osteoblastic differentiation of MSCs in vitro and osseointegration in vivo. MSCs were cultured on Ti substrates with different surface properties and non-canonical Wnt expression was determined. Subsequently, MSCs were cultured on Ti substrates +/-Wnt16 (100 ng/mL) and anti-Wnt16 antibodies (2 μg/mL). Wnt16 expression was increased in cells grown on microrough surfaces that were processed to be hydrophilic and have nanoscale roughness. However, treatment MSCs on these surfaces with exogenous rhWnt16b increased total DNA content and osteoprotegerin production, but reduced osteoblastic differentiation and production of local factors necessary for osteogenesis. Addition of anti-Wnt16 antibodies blocked the inhibitor effects of Wnt16. The response to Wnt16 was likely independent of other osteogenic pathways like Wnt11-Wnt5a signaling and semaphorin 3a signaling. We used an established rat model of cortical and trabecular femoral bone impairment following botox injections (2 injections of 8 units/leg each, starting and maintenance doses) to assess Wnt16 effects on whole bone morphology and implant osseointegration. Wnt16 injections did not alter whole bone morphology significantly (BV/TV, cortical thickness, restoration of trabecular bone) but were effective at increasing cortical bone-to-implant contact during impaired osseointegration in the botox model. The mechanical quality of the increased bone was not sufficient to rescue the deleterious effects of botox. Clinically, these results are important to understand the interaction of cortical and trabecular bone during implant integration. They suggest a role for Wnt16 in modulating bone remodeling by reducing osteoclastic activity. Targeted strategies to temporally regulate Wnt16 after implant placement could be used to improve osseointegration by increasing the net pool of osteoprogenitor cells.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Kyla Bosh
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Thomas W Jacobs
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA.
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
- Department of Periodontology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| |
Collapse
|
2
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
3
|
Berger MB, Bosh KB, Jacobs TW, Cohen DJ, Schwartz Z, Boyan BD. Growth factors produced by bone marrow stromal cells on nanoroughened titanium-aluminum-vanadium surfaces program distal MSCs into osteoblasts via BMP2 signaling. J Orthop Res 2021; 39:1908-1920. [PMID: 33002223 PMCID: PMC8012402 DOI: 10.1002/jor.24869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
Statement of Clinical Significance: There remains the need to develop materials and surfaces that can increase the rate of implant osseointegration. Though osteoanabolic agents, like bone morphogenetic protein (BMP), can provide signaling for osteogenesis, the appropriate design of implants can also produce an innate cellular response that may reduce or eliminate the need to use additional agents to stimulate bone formation. Studies show that titanium implant surfaces that mimic the physical properties of osteoclast resorption pits regulate cellular responses of bone marrow stromal cells (MSCs) by altering cell morphology, transcriptomes, and local factor production to increase their differentiation into osteoblasts without osteogenic media supplements required for differentiation of MSCs on tissue culture polystyrene (TCPS). The goal of this study was to determine how cells in contact with biomimetic implant surfaces regulate the microenvironment around these surfaces in vitro. Two different approaches were used. First, unidirectional signaling was assessed by treating human MSCs grown on TCPS with conditioned media from MSC cultures grown on Ti6Al4V biomimetic surfaces. In the second set of studies, bidirectional signaling was assessed by coculturing MSCs grown on mesh inserts that were placed into culture wells in which MSCs were grown on the biomimetic Ti6Al4V substrates. The results show that biomimetic Ti6Al4V surface properties induce MSCs to produce factors within 7 days of culture that stimulate MSCs not in contact with the surface to exhibit an osteoblast phenotype via endogenous BMP2 acting in a paracrine signaling manner.
Collapse
Affiliation(s)
- Michael B. Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Kyla B. Bosh
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas W. Jacobs
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - D. Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA;,Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA;,Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
5
|
Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Rep 2019; 10:100207. [PMID: 31193008 PMCID: PMC6513777 DOI: 10.1016/j.bonr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The ability to create recombinant bone morphogenetic proteins (BMPs) in recent years has led to their rise as a common clinical adjuvant. Their application varies, from spinal fixation to repairing palatal clefts, to coating implants for osseointegration. In recent years questions have been raised as to the efficacy of BMPs in several of these procedures. These questions are due to the unwanted side effect of BMPs on other cell types, such as osteoclasts which can resorb bone at the graft/implant site. However, most BMP research focuses on the anabolic osteoinductive effects of BMPs on osteoblasts rather than its counterpart- stimulation of the osteoclasts, which are cells responsible for resorbing bone. In this review, we discuss the data available from multiple in-vitro and in-vivo BMP-related knockout models to elucidate the different functions BMPs have on osteoclast differentiation and activity. BMPs can act directly on osteoclasts to regulate differentiation and activity. Osteoclasts express multiple BMP signaling components. BMPs signal through both SMAD independent and dependent mechanisms in osteoclasts. SMAD dependent BMP signaling regulates osteoclast-osteoblast coupling factors.
Collapse
|
6
|
Ruan S, Deng J, Yan L, Huang W. Evaluation of the effects of the combination of BMP-2-modified BMSCs and PRP on cartilage defects. Exp Ther Med 2018; 16:4569-4577. [PMID: 30542406 PMCID: PMC6257496 DOI: 10.3892/etm.2018.6776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/20/2018] [Indexed: 01/28/2023] Open
Abstract
Articular cartilage is avascular and aneural, and has limited capacity for self-regeneration when injured. Tissue engineering has emerged as a promising approach in repairing cartilage defects. To improve the therapy of cartilage healing, the present study investigated the efficacy of the combination of lentivirus-mediated bone morphogenetic protein-2 (BMP2) in bone marrow-derived stromal cells (BMSCs) and platelet-rich plasma (PRP) on cartilage and bone healing in a cartilage defect model using the rabbit knee. The BMSCs were harvested from New Zealand rabbits and transduced with lentivirus carrying BMP-2. Standard bone defects were introduced in the femoral groove of patellofemoral joints of 48 New Zealand rabbits. The cartilage defects were subjected to synthetic scaffold mosaicplasty with chitosan/silk fibroin/nanohydroxyapatite particles tri-component scaffolds soaked in BMSCs and PRP. After 16 weeks, the tissue specimens were assessed by micro-computed tomography (micro-CT) and macroscopic examination. The results showed that lentivirus-mediated BMP-2 and PRP increased the cell viability of the BMSCs, induced the expression of associated genes and enhanced osteogenic differentiation in vitro. In vivo, the expression of BMP-2 was observed for 16 weeks. The combination of BMP-2 and PRP treatment led to optimal results, compared with the other groups on micro-CT and gross observations. The results of the present study present a novel therapy using the lentivirus-mediated BMP-2 gene together with PRP for cartilage healing.
Collapse
Affiliation(s)
- Shiqiang Ruan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Jiang Deng
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Ling Yan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Wenliang Huang
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
7
|
Arias CF, Herrero MA, Echeverri LF, Oleaga GE, López JM. Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms. PLoS One 2018; 13:e0204171. [PMID: 30231062 PMCID: PMC6145577 DOI: 10.1371/journal.pone.0204171] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023] Open
Abstract
The human skeleton undergoes constant remodeling throughout the lifetime. Processes occurring on microscopic and molecular scales degrade bone and replace it with new, fully functional tissue. Multiple bone remodeling events occur simultaneously, continuously and independently throughout the body, so that the entire skeleton is completely renewed about every ten years.Bone remodeling is performed by groups of cells called Bone Multicellular Units (BMU). BMUs consist of different cell types, some specialized in the resorption of old bone, others encharged with producing new bone to replace the former. These processes are tightly regulated so that the amount of new bone produced is in perfect equilibrium with that of old bone removed, thus maintaining bone microscopic structure.To date, many regulatory molecules involved in bone remodeling have been identified, but the precise mechanism of BMU operation remains to be fully elucidated. Given the complexity of the signaling pathways already known, one may question whether such complexity is an inherent requirement of the process or whether some subset of the multiple constituents could fulfill the essential role, leaving functional redundancy to serve an alternative safety role. We propose in this work a minimal model of BMU function that involves a limited number of signals able to account for fully functional BMU operation. Our main assumptions were i) at any given time, any cell within a BMU can select only one among a limited choice of decisions, i.e. divide, die, migrate or differentiate, ii) this decision is irreversibly determined by depletion of an appropriate internal inhibitor and iii) the dynamics of any such inhibitor are coupled to that of specific external mediators, such as hormones, cytokines, growth factors. It was thus shown that efficient BMU operation manifests as an emergent process, which results from the individual and collective decisions taken by cells within the BMU unit in the absence of any external planning.
Collapse
Affiliation(s)
- Clemente F. Arias
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complutense, 28040 Madrid, Spain
| | - Miguel A. Herrero
- Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
| | - Luis F. Echeverri
- Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, 53108 Medellín, Colombia
| | - Gerardo E. Oleaga
- Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Matemática Interdisciplinar, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
| | - José M. López
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
8
|
Ren LF, Shi GS, Tong YQ, Jiang SY, Zhang F. Effects of rhBMP-2/7 Heterodimer and RADA16 Hydrogel Scaffold on Bone Formation During Rabbit Mandibular Distraction. J Oral Maxillofac Surg 2018; 76:1092.e1-1092.e10. [DOI: 10.1016/j.joms.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|
9
|
Boyan BD, Lotz EM, Schwartz Z. * Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties. Tissue Eng Part A 2017; 23:1479-1489. [PMID: 28793839 DOI: 10.1089/ten.tea.2017.0048] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Successful dental and orthopedic implant outcomes are determined by the degree of osseointegration. Over the last 60 years, endosseous implants have evolved to stimulate osteogenesis without the need for exogenous biologics such as bone morphogenetic proteins. An understanding of the interaction between cells and the physical characteristics of their environments has led to development of bioactive implants. Implant surfaces that mimic the inherent chemistry, topography, and wettability of native bone have shown to provide cells in the osteoblast lineage with the structural cues to promote tissue regeneration and net new bone formation. Studies show that attachment, proliferation, differentiation, and local factor production are sensitive to these implant surface characteristics. This review focuses on how surface properties, including chemistry, topography, and hydrophilicity, modulate protein adsorption, cell behavior, biological reactions, and signaling pathways in peri-implant bone tissue, allowing the development of true biomimetics that promote osseointegration by providing an environment suitable for osteogenesis.
Collapse
Affiliation(s)
- Barbara D Boyan
- 1 Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, Virginia.,2 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Ethan M Lotz
- 1 Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Zvi Schwartz
- 1 Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, Virginia.,3 Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
10
|
Yeoh JC, Taylor BA. Osseous Healing in Foot and Ankle Surgery with Autograft, Allograft, and Other Orthobiologics. Orthop Clin North Am 2017; 48:359-369. [PMID: 28577785 DOI: 10.1016/j.ocl.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the surgical treatment of foot and ankle abnormality, many problems require bone grafting for successful osseous union. Nonunion, reconstruction, and arthrodesis procedures pose specific challenges due to bony defects secondary to trauma, malunions, or previous surgery. Nonunion in foot and ankle arthrodesis is a significant risk and is well documented in recent literature. This article is a review of the recent literature regarding the use of bone graft and orthobiologics in foot and ankle surgery.
Collapse
Affiliation(s)
- Jane C Yeoh
- Campbell Clinic Foot & Ankle Department, 1400 South Germantown Road, Germantown, TN 38138, USA
| | - Brandon A Taylor
- Campbell Clinic Foot & Ankle Department, 1400 South Germantown Road, Germantown, TN 38138, USA.
| |
Collapse
|
11
|
Hreha J, Krell ES, Bibbo C. Role of Recombinant Human Bone Morphogenetic Protein-2 on Hindfoot Arthrodesis. Foot Ankle Clin 2016; 21:793-802. [PMID: 27871412 DOI: 10.1016/j.fcl.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite advances in understanding bone healing physiology and surgical techniques, delayed union and nonunion still occur after the treatment of hindfoot arthrodesis. There is increasing appeal of bone morphogenetic proteins (BMPs) owing to the innate osteoinductive abilities of BMPs. Effective treatment with BMPs has been shown in animal studies. Human clinical studies have also shown success. The only study investigating the use of recombinant human BMP (rhBMP)-2 in hindfoot arthrodesis found a significant increase in fusion rate. Treatment cost effective. Complications from their use remain low. rhBMP-2 is a safe and effective bone-healing adjunct in hindfoot arthrodesis surgery.
Collapse
Affiliation(s)
- Jeremy Hreha
- Department of Orthopaedics, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Ethan S Krell
- Department of Orthopaedics, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Christopher Bibbo
- Department of Orthopaedics, The Rubin Institute for Advanced Orthopaedics at Sinai Hospital, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA.
| |
Collapse
|
12
|
Hydrogel Delivery of Mesenchymal Stem Cell-Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e838. [PMID: 27622106 PMCID: PMC5010329 DOI: 10.1097/gox.0000000000000817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/17/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. METHODS In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow-derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. RESULTS The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. CONCLUSIONS Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration.
Collapse
|
13
|
Chen C, Qin Y, Fang JP, Ni XY, Yao J, Wang HY, Ding K. WSS25, a sulfated polysaccharide, inhibits RANKL-induced mouse osteoclast formation by blocking SMAD/ID1 signaling. Acta Pharmacol Sin 2015; 36:1053-64. [PMID: 26299951 DOI: 10.1038/aps.2015.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/28/2015] [Indexed: 12/26/2022] Open
Abstract
AIM WSS25 is a sulfated polysaccharide extracted from the rhizome of Gastrodia elata BI, which has been found to bind to bone morphogenetic protein 2 (BMP-2) in hepatocellular cancer cells. Since BMP-2 may regulate both osteoclasts and osteoblasts, here we investigated the effects of WSS25 on osteoclastogenesis in vitro and bone loss in ovariectomized mice. METHODS RAW264.7 cells or mouse bone marrow macrophages (BMMs) were treated with RANKL to induce osteoclastogenesis, which was assessed using TRAP staining, actin ring formation and pit formation assays, as well as bone resorption assay. Cell viability was detected with MTT assay. The mRNA levels of osteoclastogenesis-related genetic markers (TRAP, NFATc1, MMP-9 and cathepsin K) were detected using RT-PCR, while the protein levels of p-Smad1/5/8 and Id1 were measure with Western blotting. WSS25 was administered to ovariectomized mice (100 mg·kg(-1)·d(-1), po) for 3 months. After the mice were euthanized, total bone mineral density and cortical bone density were measured. RESULTS In RAW264.7 cells and BMMs, WSS25 (2.5, 5, 10 μg/mL) did not affect the cell viability, but dose-dependently inhibited RANKL-induced osteoclastogenesis. Furthermore, WSS25 potently suppressed RANKL-induced expression of TRAP, NFATc1, MMP-9 and cathepsin K in RAW264.7 cells. Treatment of RAW264.7 cells with RANKL increased BMP-2 expression, Smad1/5/8 phosphorylation and Id1 expression, which triggered osteoclast differentiation, whereas co-treatment with WSS25 or the endogenous BMP-2 antagonist noggin suppressed the BMP-2/Smad/Id1 signaling pathway. In RAW264.7 cells, knockdown of Id1 attenuated RANKL-induced osteoclast differentiation, which was partially rescued by Id1 overexpression. In conformity to the in vitro experiments, chronic administration of WSS25 significantly reduced the bone loss in ovariectomized mice. CONCLUSION WSS25 inhibits RANKL-induced osteoclast formation in RAW264.7 cells and BMMs by blocking the BMP-2/Smad/Id1 signaling pathway. WSS25 administration reduces bone loss in ovariectomized mice, suggesting that it may be a promising therapeutic agent for osteoporosis.
Collapse
|
14
|
Huang W, Hasegawa T, Imai Y, Takeda D, Akashi M, Komori T. Low-intensity pulsed ultrasound enhances bone morphogenetic protein expression of human mandibular fracture haematoma-derived cells. Int J Oral Maxillofac Surg 2015; 44:929-35. [DOI: 10.1016/j.ijom.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 01/28/2023]
|
15
|
Olivares-Navarrete R, Hyzy SL, Haithcock DA, Cundiff CA, Schwartz Z, Boyan BD. Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins. Bone 2015; 73:208-16. [PMID: 25554602 PMCID: PMC4336815 DOI: 10.1016/j.bone.2014.12.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 01/03/2023]
Abstract
Human mesenchymal stem cells (MSCs) differentiate into osteoblasts on microstructured titanium (Ti) surfaces without addition of medium supplements, suggesting that surface-dependent endogenous mechanisms are involved. They produce bone morphogenetic proteins (BMPs), which regulate MSC differentiation and bone formation via autocrine/paracrine mechanisms that are modulated by changes in BMP mRNA and protein, receptors, and inhibitors (Noggin, Cerberus, Gremlin 1, and Chordin). We examined expression of BMPs, their receptors and their inhibitors over time and used BMP2-silenced cells to determine how modulating endogenous BMP signaling can affect the process. MSCs were cultured on tissue culture polystyrene or Ti [PT (Ra<0.4 μm); sandblasted/acid-etched Ti (SLA, Ra=3.2 μm); or hydrophilic-SLA (modSLA)]. BMP mRNAs and proteins increased by day 4 of culture. Exogenous BMP2 increased differentiation whereas differentiation was decreased in BMP2-silenced cells. Noggin was regulated by day 2 whereas Gremlin 1 and Cerberus were regulated after 6days. Osteoblastic differentiation increased in cells cultured with blocking antibodies against Noggin, Gremlin 1, and Cerberus. Endogenous BMPs enhance an osteogenic microenvironment whereas exogenous BMPs are inhibitory. Antibody blocking of the BMP2 inhibitor Cerberus resulted in IL-6 and IL-8 levels that were similar to those observed when treating cells with exogenous BMP2, while antibodies targeting the inhibitors Gremlin or Noggin did not. These results suggest that microstructured titanium implants supporting therapeutic stem cells may be treated with appropriately selected agents antagonistic to extracellular BMP inhibitors in order to enhance BMP2 mediated bone repair while avoiding undesirable inflammatory side effects observed with exogenous BMP2 treatment.
Collapse
Affiliation(s)
- Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA
| | - David A Haithcock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Caitlin A Cundiff
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
| |
Collapse
|
16
|
O'Leary C, Gilbert JL, O'Dea S, O'Brien FJ, Cryan SA. Respiratory Tissue Engineering: Current Status and Opportunities for the Future. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:323-44. [PMID: 25587703 DOI: 10.1089/ten.teb.2014.0525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, lung disease and major airway trauma constitute a major global healthcare burden with limited treatment options. Airway diseases such as chronic obstructive pulmonary disease and cystic fibrosis have been identified as the fifth highest cause of mortality worldwide and are estimated to rise to fourth place by 2030. Alternate approaches and therapeutic modalities are urgently needed to improve clinical outcomes for chronic lung disease. This can be achieved through tissue engineering of the respiratory tract. Interest is growing in the use of airway tissue-engineered constructs as both a research tool, to further our understanding of airway pathology, validate new drugs, and pave the way for novel drug therapies, and also as regenerative medical devices or as an alternative to transplant tissue. This review provides a concise summary of the field of respiratory tissue engineering to date. An initial overview of airway anatomy and physiology is given, followed by a description of the stem cell populations and signaling processes involved in parenchymal healing and tissue repair. We then focus on the different biomaterials and tissue-engineered systems employed in upper and lower respiratory tract engineering and give a final perspective of the opportunities and challenges facing the field of respiratory tissue engineering.
Collapse
Affiliation(s)
- Cian O'Leary
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 School of Pharmacy, Royal College of Surgeons in Ireland , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland
| | - Jennifer L Gilbert
- 4 Department of Biology, Institute of Immunology, University of Ireland , Maynooth, Ireland
| | - Shirley O'Dea
- 4 Department of Biology, Institute of Immunology, University of Ireland , Maynooth, Ireland
| | - Fergal J O'Brien
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,5 Trinity Centre of Bioengineering, Trinity College Dublin , Dublin, Ireland
| | - Sally-Ann Cryan
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 School of Pharmacy, Royal College of Surgeons in Ireland , Dublin, Ireland .,5 Trinity Centre of Bioengineering, Trinity College Dublin , Dublin, Ireland
| |
Collapse
|
17
|
Olivares-Navarrete R, Hyzy SL, Pan Q, Dunn G, Williams JK, Schwartz Z, Boyan BD. Osteoblast maturation on microtextured titanium involves paracrine regulation of bone morphogenetic protein signaling. J Biomed Mater Res A 2014; 103:1721-31. [PMID: 25111281 DOI: 10.1002/jbm.a.35308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022]
Abstract
Osteoblasts are sensitive to surface microtopography and chemistry. Osteoblast differentiation and maturation are higher in vitro and bone formation and osseointegration enhanced in vivo on microstructured titanium (Ti) compared to smooth surfaces. Cells increased BMP2 expression on microtextured Ti alloy, suggesting a paracrine role in regulating osteoblast maturation. However, recent studies show that exogenous BMP2 inhibits osteoblast production of anti-inflammatory cytokines and osteocalcin, indicating that control of BMP-signaling may be involved. This study examined whether cells modulate BMP ligands, receptors, and inhibitors during osteoblast maturation on Ti, specifically focusing on the roles of BMP2 and Noggin (NOG). mRNA and protein for BMP2, BMP4, and BMP7 and receptors BMPR1A, BMPR1B, and BMPR2, and BMP inhibitors were upregulated on microtextured surfaces in comparison to smooth surfaces. Maturation on microstructured Ti was slightly enhanced with exogenous BMP2 while NOG addition inhibited osteoblast maturation. Cells with NOG knocked down significantly increased osteoblast maturation. These results demonstrate that BMP-related molecules are controlled during osteoblast maturation on microstructured Ti surfaces and that endogenous NOG is an important regulator of the process. Modifying paracrine BMP signaling may yield more robust bone formation than application of exogenous BMPs.
Collapse
Affiliation(s)
- Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284
| | | | | | | | | | | | | |
Collapse
|
18
|
Klineberg E, Haudenschild DR, Snow KD, Garitty S, Christiansen BA, Acharya C, Maitra S, Gupta MC. The effect of noggin interference in a rabbit posterolateral spinal fusion model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:2385-92. [PMID: 24740279 DOI: 10.1007/s00586-014-3252-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/29/2023]
Abstract
STUDY DESIGN Noggin protein levels and spinal fusion rates were compared in a rabbit model after application of siRNA against BMP antagonist noggin in paraspinal muscle. OBJECTIVE To test whether endogenous BMPs are sufficient to form bone in the absence of their antagonists, using noggin siRNA to interrupt the negative feedback loop on endogenous BMP within the paraspinal muscles in rabbits. Unused Posterolateral lumbar fusion is a standard surgical treatment for many spinal disorders, yet even under ideal conditions the rate of non-fusion approaches 25 %. BMPs are effective in promoting bone formation, and are inhibited by antagonists such as noggin. We have previously shown that in this model, endogenous BMPs are present and endogenous BMP antagonist noggin is strongly increased during spinal fusion. Previous studies have found that noggin siRNA enhanced spinal fusion in combination with supra-physiological amounts of exogenous BMP; however, the effect of the siRNA alone remains unknown. METHODS A posterolateral intertransverse rabbit lumbar fusion was utilized, as established by Boden et al. SiRNA against noggin was electroporated into paraspinal muscle to determine its effect on fusion. Outcome measures included noggin protein expression, and assessment of spinal fusion at 6 weeks. RESULTS SiRNAs were effective in reducing overexpressed noggin in vitro. Noggin protein was successfully knocked down in vivo for the initial 7 days in our rabbit model and returned to detectable levels by 4 weeks and to normal levels by 6 weeks. The overall fusion rate was not significantly enhanced compared to established controls from our earlier work (Tang et al.). CONCLUSIONS Early noggin suppression does not appear to enhance the BMP activity sufficiently to significantly affect final fusion rates in our model.
Collapse
Affiliation(s)
- E Klineberg
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4860 Y St, Suite 3800, Sacramento, CA, 95817, USA,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maciel J, Oliveira MI, Colton E, McNally AK, Oliveira C, Anderson JM, Barbosa MA. Adsorbed fibrinogen enhances production of bone- and angiogenic-related factors by monocytes/macrophages. Tissue Eng Part A 2013; 20:250-63. [PMID: 23937279 DOI: 10.1089/ten.tea.2012.0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Macrophages are phagocytic cells with great importance in guiding multiple stages of inflammation and tissue repair. By producing a large number of biologically active molecules, they can affect the behavior of other cells and events, such as the foreign body response and angiogenesis. Since protein adsorption to biomaterials is crucial for the inflammatory process, we addressed the ability of the pro-inflammatory molecule fibrinogen (Fg) to modulate macrophage behavior toward tissue repair/regeneration. For this purpose, we used chitosan (Ch) as a substrate for Fg adsorption. Freshly isolated human monocytes were seeded on Ch substrates alone or previously adsorbed with Fg, and allowed to differentiate into macrophages for 10 days. Cell adhesion and morphology, formation of foreign body giant cells (FBGC), and secretion of a total of 80 cytokines and growth factors were evaluated. Both substrates showed similar numbers of adherent macrophages along differentiation as compared with RGD-coated surfaces, which were used as positive controls. Fg did not potentiate FBGC formation. In addition, actin cytoskeleton staining revealed the presence of punctuate F-actin with more elongated and interconnecting cells on Ch substrates. Antibody array screening and quantification of inflammation- and wound-healing-related factors indicated an overall reduction in Ch-based substrates versus RGD-coated surfaces. At late times, most inflammatory agents were down-regulated in the presence of Fg, in contrast to growth factor production, which was stimulated by Fg. Importantly, on Ch+Fg substrates, fully differentiated macrophages produced significant amounts of macrophage inflammatory protein-1delta (MIP-1δ), platelet-derived growth factor-BB, bone morphogenetic protein (BMP)-5, and BMP-7 compared with Ch alone. In addition, other important factors involved in bone homeostasis and wound healing, such as growth hormone, transforming growth factor-β3, and insulin-like growth factor-binding proteins, as well as several angiogenic mediators, including endocrine gland-derived vascular endothelial factor, fibroblast growth factor-7, and placental growth factor, were significantly promoted by Fg. This work provides a new perspective on the inflammatory response in the context of bone repair/regeneration mediated by a pro-inflammatory protein (Fg) adsorbed onto a biomaterial (Ch) that does not otherwise exhibit osteogenic properties.
Collapse
Affiliation(s)
- Joana Maciel
- 1 INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
20
|
Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev 2012; 64:1277-91. [PMID: 22512928 DOI: 10.1016/j.addr.2012.03.014] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 12/11/2022]
Abstract
Over the past several decades, recombinant human bone morphogenetic proteins (rhBMPs) have been the most extensively studied and widely used osteoinductive agents for clinical bone repair. Since rhBMP-2 and rhBMP-7 were cleared by the U.S. Food and Drug Administration for certain clinical uses, millions of patients worldwide have been treated with rhBMPs for various musculoskeletal disorders. Current clinical applications include treatment of long bone fracture non-unions, spinal surgeries, and oral maxillofacial surgeries. Considering the growing number of recent publications related to clincal research of rhBMPs, there exists enormous promise for these proteins to be used in bone regenerative medicine. The authors take this opportunity to review the rhBMP literature paying specific attention to the current applications of rhBMPs in bone repair and spine surgery. The prospective future of rhBMPs delivered in combination with tissue engineered scaffolds is also reviewed.
Collapse
|
21
|
Kramer JM, Fantasia JE. Bisphosphonates and Osteonecrosis of the Jaws: A Review of Clinical Features and the Drug Effect on Oral Soft Tissues. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9083-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Temporal and Spatial Expression of BMPs and BMP Antagonists During Posterolateral Lumbar Fusion. Spine (Phila Pa 1976) 2011; 36:E237-44. [PMID: 21099737 DOI: 10.1097/brs.0b013e3181d73541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Quantitative gene expression analysis and immunohistochemistry were used to investigate the temporal and spatial expression of bone morphogenic proteins (BMPs) and BMP antagonists in a posterolateral spine fusion model in rabbits. OBJECTIVE To identify the expression pattern of BMPs and BMP antagonists and to determine the molecular and histologic changes of the graft and surrounding tissue during fusion. SUMMARY OF BACKGROUND DATA There are no studies on BMP antagonists during spinal fusion. Furthermore, the reciprocal interaction between bone grafts and surrounding tissue is still unknown in fusion. METHODS Eighteen New Zealand White rabbits underwent bilateral posterolateral spine fusion with autogenous bone graft. Rabbits were killed at 1, 2, 4, or 6 weeks after arthrodesis. The spinal fusions were analyzed by radiography. On the right side, specimens were collected from the outer zone over the transverse processes, the inner zone between the transverse processes, muscle surrounding bone grafts, and the transverse process. Gene expression of BMP-2, BMP-4, and BMP-7, noggin, chordin, Sox9, and Runx2 were measured by real-time polymerase chain reaction at each time point of each sample. On the left side, molecules of interest were evaluated by immunohistochemistry on tissue sections. RESULTS BMP-2, BMP-4, and BMP-7, noggin, and chordin were colocalized in rimming osteoblasts, osteoclasts, and chondrocytes. The outer zone demonstrated earlier bone maturation and faster increase in BMP gene expression than the inner zone. Muscle surrounding bone grafts showed significantly higher BMP expression and Runx2 activity at the early phase. BMP-positive cells were also noted around blood vessels. CONCLUSION The colocalization and temporal relationship of BMPs and BMP antagonists suggests that BMP activity is tightly regulated by the antagonists during fusion. In addition, not only the decorticated transverse process, but also muscle surrounding bone grafts, is actively involved in osteogenesis during fusion.
Collapse
|
23
|
Abstract
Wnt-induced secreted protein 1 (WISP-1/CCN4) is a member of the CCN family that is highly expressed in skeletal tissue and in osteoprogenitor cells induced to differentiate in vitro. To determine the function of WISP-1 during osteogeneis, osteogenic bone marrow stromal cells (BMSCs) were transduced with WISP-1 adenovirus (adWISP-1) in the presence or absence of bone morphogenetic protein 2 (BMP-2) adenovirus (adBMP-2). WISP-1 overexpression enhanced the ability of BMP-2 to direct BMSCs toward osteogenic differentiation and appeared to work by stimulating Smad-1/5/8 phosphorylation and activation. The ability of WISP-1 to enhance BMP-2 activity also was shown in vivo using an ectopic osteogenesis assay with BMSCs transduced with WISP-1, BMP-2, or both. When BMSCs were infected with lentivirus containing human WISP1 shRNA, they formed less bone in vivo and were less responsive to BMP-2, confirming that WISP-1 and BMP-2 have a functional interaction. Immunoprecipitation (IP) and Western blot analysis showed that WISP-1 bound directly to BMP-2 and showed that WISP-1 increased BMP-2 binding to hBMSCs in a dose-dependent fashion. To understand how WISP-1 enhanced BMP-2 signaling, the influence of WISP-1 on integrin expression was analyzed. WISP-1 induced the mRNA and protein levels of α(5)-integrin and, further, was found to bind to it. Antibody-blocking experiments showed that the BMP-2 binding to BMSCs that was enhanced by WISP-1 was completely neutralized by treatment with anti-integrin α(5)β(1) antibody. Pilot studies and the use of transgenic mice that overexpressed human WISP-1 in preosteoblasts had increased bone mineral density (BMD), trabecular thickness, and bone volume (BV/TV) over wild-type controls, supporting observations using human osteoprogenitors that WISP-1 has a positive influence on osteogenesis in vivo. In conclusion, these studies show, for the first time, that WISP-1 has a positive influence on bone cell differentiation and function and may work by enhancing the effects of BMP-2 to increase osteogenesis through a mechanism potentially involving binding to integrin α(5)β(1).
Collapse
Affiliation(s)
- Mitsuaki Ono
- Craniofacial and Skeletal Diseases Branch, National Institutes of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
24
|
El-Amin SF, Hogan MV, Allen AA, Hinds J, Laurencin CT. The indications and use of bone morphogenetic proteins in foot, ankle, and tibia surgery. Foot Ankle Clin 2010; 15:543-51. [PMID: 21056855 DOI: 10.1016/j.fcl.2010.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tissue engineering is an area of rapid growth. Tissue engineering in orthopedic surgery involves the use of growth factors, mesenchymal stem cells, and scaffolds, individually or in combination, toward the growth and restoration of various musculoskeletal tissues, such as ligaments, tendons, muscles, nerves, and bone. These advances are constantly evolving in foot and ankle surgery as well. Bone morphogenetic proteins (BMPs) have played an integral role in the advancement of tissue engineering strategies across multiple orthopedic subspecialities and have proved to play a role in the development of bone and musculoskeletal tissues. BMPs have recently been applied in several areas of foot and ankle surgery, including acute fracture augmentation, nonunions, and arthrodesis, with promising results. This article reviews the key aspects of clinical translation of strategies in tissue engineering as well as current applications and results of BMP use in tibia, foot, and ankle surgery. Future applications of BMP and novel materials in foot and ankle surgery are also reviewed.
Collapse
Affiliation(s)
- Saadiq F El-Amin
- Division of Orthopaedic Surgery, Southern Illinois University School of Medicine, PO Box 19679, Springfield, IL 62794-9620, USA
| | | | | | | | | |
Collapse
|
25
|
Dean DB, Watson JT, Jin W, Peters C, Enders JT, Chen A, Moed BR, Zhang Z. Distinct functionalities of bone morphogenetic protein antagonists during fracture healing in mice. J Anat 2010; 216:625-30. [PMID: 20298438 PMCID: PMC2871998 DOI: 10.1111/j.1469-7580.2010.01214.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2010] [Indexed: 11/29/2022] Open
Abstract
The bone morphogenetic protein (BMP) family of growth factors plays critical roles in bone formation. BMPs are regulated at multiple levels by various BMP antagonists. This study investigated how BMP antagonists are integrated into the cascade of events of bone formation during fracture healing. Forty mice underwent a controlled femur fracture; tissue samples at the fracture site were harvested at days 1, 3, 7, 14 and 21 after fracture, for quantification of the expression of BMPs and BMP antagonists. During fracture healing, BMP-2, -4 and -7 were up-regulated, but BMPR-1A and BMPR-2 showed reduced expression after day 14. Among BMP antagonists, the expressions of PRDC, SOST, Smad7, GREM1 and CERBERUS were generally down-regulated during fracture healing. In contrast, Noggin was significantly up-regulated in the first week after fracture; 7 days after fracture, other BMP antagonists, including DAN, CHRD, Smad6 and BAMBI, also showed significantly increased expression. In conclusion, this study indicates that BMP antagonists can be divided into two functional groups in relation to fracture healing: (1) those whose suppression may be essential for the initiation of osteogenesis; (2) those that are upregulated and may function in the remodeling of newly formed bone.
Collapse
Affiliation(s)
- Daniel B Dean
- Department of Orthopaedic Surgery, Saint Louis UniversitySt. Louis, MO, USA
| | - John T Watson
- Department of Orthopaedic Surgery, Saint Louis UniversitySt. Louis, MO, USA
| | - Wu Jin
- Department of Orthopaedic Surgery, Saint Louis UniversitySt. Louis, MO, USA
| | - Charlie Peters
- Anatomical Science Program, Saint Louis UniversitySt. Louis, MO, USA
| | - J T Enders
- Anatomical Science Program, Saint Louis UniversitySt. Louis, MO, USA
| | - Andrew Chen
- School of Medicine, Saint Louis UniversitySt. Louis, MO, USA
| | - Berton R Moed
- Department of Orthopaedic Surgery, Saint Louis UniversitySt. Louis, MO, USA
| | - Zijun Zhang
- Department of Orthopaedic Surgery, Saint Louis UniversitySt. Louis, MO, USA
- Anatomical Science Program, Saint Louis UniversitySt. Louis, MO, USA
| |
Collapse
|
26
|
Effect of Use of Slow Release of Bone Morphogenetic Protein-2 and Transforming Growth Factor-Beta-2 in a Chitosan Gel Matrix on Cranial Bone Graft Survival in Experimental Cranial Critical Size Defect Model. Ann Plast Surg 2010; 64:342-50. [DOI: 10.1097/sap.0b013e3181a73045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion: a pilot study. Clin Orthop Relat Res 2009; 467:3071-8. [PMID: 19597895 PMCID: PMC2772945 DOI: 10.1007/s11999-009-0981-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 06/29/2009] [Indexed: 01/31/2023]
Abstract
Delays in bone healing or even the development of a nonunion could be related to the concentrations and/or functions of the bone morphogenetic proteins (BMPs). The RNA expression profile of the BMPs within fracture nonunion tissue is unknown. This preliminary descriptive study was performed to define the RNA profiles of the BMPs, their receptors, and their inhibitors within human fracture nonunion tissue and correlate them to matched healing bone. All patients had hypertrophic nonunions. Tissue samples taken from the nonunion site of 15 patients undergoing surgical treatment for an established nonunion were analyzed. The RNA expression patterns of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-8; BMP receptor Types IA, IB, and II; and the BMP inhibitors chordin, Noggin, Drm (Gremlin), and follistatin were determined in the nonunion (fibrous tissue) and healing bone (callus tissue) using quantitative real-time PCR. Comparison between the nonunion and healing bone samples revealed substantially elevated concentrations of BMP-4, Drm/Gremlin, follistatin, and Noggin in nonunion tissue when compared to healing bone. In contrast, BMP-7 concentration was higher in the healing bone. Our data suggest inhibition of BMP-7, by Drm (Gremlin), follistatin, and Noggin and upregulation of BMP-4 may play an integral role in the development of nonunions.
Collapse
|
28
|
Enhanced osteoclastogenesis causes osteopenia in twisted gastrulation-deficient mice through increased BMP signaling. J Bone Miner Res 2009; 24:1917-26. [PMID: 19419314 PMCID: PMC2765934 DOI: 10.1359/jbmr.090507] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The uncoupling of osteoblastic and osteoclastic activity is central to disorders such as osteoporosis, osteolytic malignancies, and periodontitis. Numerous studies have shown explicit functions for bone morphogenetic proteins (BMPs) in skeletogenesis. Their signaling activity has been shown in various contexts to be regulated by extracellular proteins, including Twisted gastrulation (TWSG1). However, experimental paradigms determining the effects of BMP regulators on bone remodeling are limited. In this study, we assessed the role of TWSG1 in postnatal bone homeostasis. Twsg1-deficient (Twsg1(-/-)) mice developed osteopenia that could not be explained by defective osteoblast function, because mineral apposition rate and differentiation markers were not significantly different compared with wildtype (WT) mice. Instead, we discovered a striking enhancement of osteoclastogenesis in Twsg1(-/-) mice, leading to increased bone resorption with resultant osteopenia. Enhanced osteoclastogenesis in Twsg1(-/-) mice was caused by increased cell fusion, differentiation, and function of osteoclasts. Furthermore, RANKL-mediated osteoclastogenesis and phosphorylated Smad1/5/8 levels were enhanced when WT osteoclasts were treated with recombinant BMP2, suggesting direct regulation of osteoclast differentiation by BMPs. Increase in detectable levels of phosphorylated Smad 1/5/8 was noted in osteoclasts from Twsg1(-/-) mice compared with WT mice. Furthermore, the enhanced osteoclastogenesis in Twsg1(-/-) mice was reversed in vitro in a dose-dependent manner with exposure to Noggin, a BMP antagonist, strongly suggesting that the enhanced osteoclastogenesis in Twsg1 mutants is attributable to increased BMP signaling. Thus, we present a novel and previously uncharacterized role for TWSG1 in inhibiting osteoclastogenesis through regulation of BMP activity.
Collapse
|
29
|
Chen JR, Lazarenko OP, Blackburn ML, Badeaux JV, Badger TM, Ronis MJJ. Infant formula promotes bone growth in neonatal piglets by enhancing osteoblastogenesis through bone morphogenic protein signaling. J Nutr 2009; 139:1839-47. [PMID: 19710159 DOI: 10.3945/jn.109.109041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Relatively few studies have examined the effects of formula feeding relative to breast-feeding on bone in the neonate. Using peripheral quantitative CT scan and histomorphometric analysis, we demonstrated that neonatal piglets fed with soy-based formula (SF) and cow milk-based formula (MF) for 21 or 35 d had greater bone mineral density and content than breast-fed piglets (BF) (P < 0.05). Osteoblast numbers and bone formation rate at postnatal d 35 were greater in SF compared with other groups (P < 0.05), whereas osteoclast numbers were lower in both MF and SF groups than in the BF group (P < 0.05). Osteoblastogenesis was greater in ex vivo bone marrow cell cultures from SF than in MF or BF piglets (P < 0.05). Bone formation markers in serum were greater, whereas bone resorption markers were lower in the MF- and SF-fed groups than in the BF group (P < 0.05). Bone morphogenic protein (BMP) 2 and alkaline phosphatase mRNAs were upregulated in the MF and SF groups compared with the BF group (P < 0.05), whereas receptor activator of NF-kappaB ligand was downregulated (P < 0.05). Extracellular signal-regulated kinase, p38, Smad1/5/8 phosphorylation, and runt-related transcription factor 2 expression were greater in bone from the MF and SF groups compared with the BF group (P < 0.05). In vitro studies showed that 2.5% serum from SF- or MF-fed piglets was able to stimulate osteoblast differentiation but not in the presence of the BMP blocker noggin. Therefore, formula feeding promoted bone growth compared with BF. SF piglets had the highest bone volume over tissue volume. This suggests that SF-fed piglets may have the best quality bone. The anabolic effects of SF on bone appear to be mediated through enhanced BMP signaling.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Sathi GA, Inoue M, Harada H, Rodriguez AP, Tamamura R, Tsujigiwa H, Borkosky SS, Gunduz M, Nagatsuka H. Secreted frizzled related protein (sFRP)-2 inhibits bone formation and promotes cell proliferation in ameloblastoma. Oral Oncol 2009; 45:856-60. [PMID: 19362047 DOI: 10.1016/j.oraloncology.2009.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 01/26/2009] [Accepted: 02/02/2009] [Indexed: 01/18/2023]
Abstract
Secreted frizzled related protein (sFRP)-2, a Wnt antagonist, was strongly expressed by both stromal and tumor cells of ameloblastoma. The aim of this study is to evaluate whether sFRP-2 secreted from tumor cells have any direct role in suppressed bone formation or not. A pre-osteoblastic cell line, KUSA/A1 cells, cultured in conditioned medium of an ameloblastoma-derived cell line (AM-1CM) was used in the study. Alkaline phosphatase (ALP) activity, alizarin red staining, mineral quantification and MTS assay was performed. Wnt-canonical pathway is a major pathway for osteoblasts. Antagonists of this pathway, sFRP-1, 2 and 3, were detected by immunohistochemistry and western blot analysis. KUSA/A1 cells cultured in AM-1CM showed high cell proliferation, low ALP activity without mineralized matrix deposition. sFRP-2 was strongly expressed in ameloblastoma tissue and AM-1 cells. After sFRP-2 depletion, the cells showed diffuse mineralization. In this study, it was confirmed that ameloblastoma cells have a major role in decreased bone formation by secreting sFRP-2 in cell culture model. Though, sFRP-2 has great effect on tumor progression, inhibition of sFRP-2's anti-bone formation activity and cell proliferative activity may reduce the invasive property of ameloblastoma and possibility of recurrence rate.
Collapse
Affiliation(s)
- Gulsan Ara Sathi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hee CK, Nicoll SB. Endogenous bone morphogenetic proteins mediate 1alpha, 25-dihydroxyvitamin D(3)-induced expression of osteoblast differentiation markers in human dermal fibroblasts. J Orthop Res 2009; 27:162-8. [PMID: 18683889 PMCID: PMC2626644 DOI: 10.1002/jor.20728] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human dermal fibroblasts are generally considered to be restricted to a fibroblastic lineage. Although dermal fibroblasts do not typically express markers of osteoblastic differentiation, they have previously been shown to undergo osteoinduction when stimulated with bone morphogenetic proteins (BMPs) or vitamin D(3). However, involvement of BMP signaling in vitamin D(3)-mediated osteoinduction has not been reported. In this study, human dermal fibroblasts were cultured in chemically defined medium containing vitamin D(3), in the presence of the BMP antagonist noggin or neutralizing antibodies specific for BMP-4 or BMP-6, and characterized for markers of osteoblastic differentiation. Treatment of dermal fibroblasts with vitamin D(3) induced expression of BMP-4 (1.2 +/- 0.2, 1.7 +/- 0.2, and 1.8 +/- 0.2 relative fold increase) and BMP-6 (9.1 +/- 0.3, 23.3 +/- 2.1, and 30.4 +/- 3.0 relative fold increase) at 3, 14, and 21 days, respectively. Vitamin D(3) was also shown to induce the expression of the osteoblast-specific markers, alkaline phosphatase and osteocalcin, in a dose-dependent manner in human dermal fibroblasts. Addition of noggin, BMP-4 antibodies, and BMP-6 antibodies resulted in a downregulation of alkaline phosphatase activity (by 42%, 22%, and 20%, respectively) and secreted osteocalcin (by 20%, 31%, and 49%, respectively) after 21 days in culture. However, blocking BMP signaling did not result in complete recovery of a fibroblastic phenotype. Taken together, these results suggest that BMP signaling plays a role in the induction of an osteoblastic phenotype in human dermal fibroblasts in response to vitamin D(3) stimulation.
Collapse
Affiliation(s)
- Christopher K. Hee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven B. Nicoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania,Corresponding Author: Steven B. Nicoll, Ph.D., 210 S. 33 St., 240 Skirkanich Hall, Philadelphia, PA 19104-6392, (215) 573-2626 (phone), (215) 573-2071 (fax),
| |
Collapse
|
32
|
Sathi GSA, Nagatsuka H, Tamamura R, Fujii M, Gunduz M, Inoue M, Rivera RS, Nagai N. Stromal cells promote bone invasion by suppressing bone formation in ameloblastoma. Histopathology 2008; 53:458-67. [DOI: 10.1111/j.1365-2559.2008.03127.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Williams LA, Bhargav D, Diwan AD. Unveiling the bmp13 enigma: redundant morphogen or crucial regulator? Int J Biol Sci 2008; 4:318-29. [PMID: 18797508 PMCID: PMC2536705 DOI: 10.7150/ijbs.4.318] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/08/2008] [Indexed: 11/29/2022] Open
Abstract
Bone morphogenetic proteins are a diverse group of morphogens with influences not only on bone tissue, as the nomenclature suggests, but on multiple tissues in the body and often at crucial and influential periods in development. The purpose of this review is to identify and discuss current knowledge of one vertebrate BMP, Bone Morphogenetic Protein 13 (BMP13), from a variety of research fields, in order to clarify BMP13's functional contribution to developing and maintaining healthy tissues, and to identify potential future research directions for this intriguing morphogen. BMP13 is highly evolutionarily conserved (active domain >95%) across diverse species from Zebrafish to humans, suggesting a crucial function. In addition, mutations in BMP13 have recently been associated with Klippel-Feil Syndrome, causative of numerous skeletal and developmental defects including spinal disc fusion. The specific nature of BMP13's crucial function is, however, not yet known. The literature for BMP13 is focused largely on its activity in the healing of tendon-like tissues, or in comparisons with other BMP family molecules for whom a clear function in embryo development or osteogenic differentiation has been identified. There is a paucity of detailed information regarding BMP13 protein activity, structure or protein processing. Whilst some activity in the stimulation of osteogenic or cartilaginous gene expression has been reported, and BMP13 expression is found in post natal cartilage and tendon tissues, there appears to be a redundancy of function in the BMP family, with several members capable of stimulating similar tissue responses. This review aims to summarise the known or potential role(s) for BMP13 in a variety of biological systems.
Collapse
Affiliation(s)
- Lisa A Williams
- Spine Service, St George Clinical School, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
34
|
Kimura H, Kwan KM, Zhang Z, Deng JM, Darnay BG, Behringer RR, Nakamura T, de Crombrugghe B, Akiyama H. Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS One 2008; 3:e3174. [PMID: 18779865 PMCID: PMC2527134 DOI: 10.1371/journal.pone.0003174] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 08/16/2008] [Indexed: 12/20/2022] Open
Abstract
Background Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors. Methodology/Principal Findings We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss. Conclusions/Significance Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hiroaki Kimura
- Department of Orthopaedics, Kyoto University, Kyoto, Japan
| | - Kin Ming Kwan
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhaoping Zhang
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jian Min Deng
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Bryant G. Darnay
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Richard R. Behringer
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | | | - Benoit de Crombrugghe
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Haruhiko Akiyama
- Department of Orthopaedics, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
35
|
Hallman M, Thor A. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontol 2000 2008; 47:172-92. [PMID: 18412581 DOI: 10.1111/j.1600-0757.2008.00251.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Abstract
Due to their ability to mimic the actions of mammalian estrogens, soy phytoestrogens have been proposed as potential therapeutic agents to aid in preventing postmenopausal bone loss. In vitro, phytoestrogens promote osteoblastogenesis and inhibit osteoclastogenesis. Although a relatively large number of intervention studies have been undertaken in animals and humans, the efficacy of phytoestrogens as bone-protective agents in vivo remains unclear. Differences in the bioactivities of individual phytoestrogens, differences in phytoestrogen metabolism and bioavailability within different study populations, and imprecise reporting of the dose of phytoestrogens administered in intervention studies may have contributed to the disparity in study findings.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Institute of Food Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
37
|
Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp Biol Med (Maywood) 2008; 232:1275-88. [PMID: 17959840 DOI: 10.3181/0704-mr-100] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of prostaglandin E2 (PGE2) in the regulation of bone remodeling is well established. There is increasing evidence that various long-chain polyunsaturated fatty acids (LCPUFAs), as well as nonprostanoid LCPUFA metabolites, also have critical roles in regulating bone metabolism and may have therapeutic potential in the management of postmenopausal osteoporosis. Although only the 18-carbon precursors for the n-3 and n-6 LCPUFAs are deemed "dietary essential," the ability of the body to convert these precursor fatty acids into the more highly unsaturated 20- and 22-carbon LCPUFAs decreases with aging, menopause, and various lifestyle factors (e.g., smoking). Increasing dietary LCPUFA intake increases tissue and blood LCPUFA concentrations, as well as the concentrations of their metabolites. Modification of dietary LCPUFA content, particularly increasing the intake of n-3 LCPUFAs, has been shown to minimize the decline in bone mass caused by menopause in women and ovariectomy in animal models. This review summarizes findings from both in vivo and in vitro studies and outlines the effects of LCPUFAs and their metabolites on calcium balance, osteoblastogenesis, osteoclastogenesis, and osteoblast and osteoclast function.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Institute of Food, Nutrition and Human Health, Private Bag 11-222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
38
|
Molloy EL, Adams A, Moore JB, Masterson JC, Madrigal-Estebas L, Mahon BP, O'Dea S. BMP4 induces an epithelial-mesenchymal transition-like response in adult airway epithelial cells. Growth Factors 2008; 26:12-22. [PMID: 18365875 DOI: 10.1080/08977190801987166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are critical morphogens and play key roles in epithelial-mesenchymal transitions (EMTs) during embryogenesis. BMP4 is required for early mesoderm formation and also regulates morphogenesis and epithelial cell differentiation in developing lungs. While, BMP signalling pathways are activated during lung inflammation in adult mice, the role of BMPs in adult lungs remains unclear. We hypothesised that BMPs are involved in remodelling processes in adult lungs and investigated effects of BMP4 on airway epithelial cells. BEAS-2B cell growth decreased in the presence of BMP4. Cells acquired a mesenchymal-like morphology with downregulation of adherens junction proteins and increased cell motility. Changes in extracellular matrix-related gene expression occurred with BMP4 treatment including upregulation of collagens, fibronectin and tenascin C. We conclude that the activity of BMP4 in EMT during development is recapitulated in adult airway epithelial cells and suggest that this activity may contribute to inflammation and fibrosis in vivo.
Collapse
Affiliation(s)
- Emer L Molloy
- Institute of Immunology, Biology Department, National University of Ireland, Maynooth, Ireland
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The role of bone morphogenetic proteins (BMPs) in bone healing has been shown in numerous animal models. To date, at least 20 BMPs have been identified, some of which have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal models. Having realized the osteoinductive properties of BMPs and having identified their genetic sequences, recombinant gene technology has been used to produce BMPs for clinical application - most commonly, as alternatives or adjuncts in the treatment of cases in which fracture healing is compromised. BMP-2 and BMP-7 are approved for clinical use in open fractures of long bones, non-unions and spinal fusion. However, despite significant evidence of their potential benefit to bone repair and regeneration in animal and preclinical studies, there is, to date, a dearth of convincing clinical trials. The purpose of this paper is to give a brief overview of BMPs and to critically review the clinical data currently available on the use of BMP-2 and BMP-7 in fracture healing.
Collapse
Affiliation(s)
- Oliver P Gautschi
- Department of Orthopaedic and Trauma Surgery, Royal Perth Hospital, School of Anatomy and Human Biology, University of Western Australia, Perth, Western Australia, Australia.
| | | | | |
Collapse
|
40
|
Fokas E, Engenhart-Cabillic R, Daniilidis K, Rose F, An HX. Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev 2007; 26:705-15. [PMID: 17786535 DOI: 10.1007/s10555-007-9088-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The metastatic spread of tumor cells to distant sites represents the major cause of cancer-related deaths. Cancer metastasis involves a series of complex interactions between tumor cells and microenvironment that influence its biological effectiveness and facilitate tumor cell arrest to distant organs. More than a century since Paget developed the theory of seed and soil, the enigma of tissue specificity observed in metastatic colonization of tumor cells begins to unfold itself. The advent of new technologies has led to the discovery of novel molecules and pathways that confer metastasis-associated properties to the cancer cells, mediating organ specificity and unique genetic signatures have been developed using microarray studies. Future clinical studies and new antimetastatic compounds aiming to improve survival of patients with metastasis will most probably be based on these signatures. This review summarizes the plethora of old and new molecules that are strongly correlated with organ-specific metastases and which provide now an identity to the theory of seed and soil.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiotherapy and Radiation Oncology, University Hospital Marburg, Medical Faculty of Philipps University Marburg, Marburg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Tomoyasu A, Higashio K, Kanomata K, Goto M, Kodaira K, Serizawa H, Suda T, Nakamura A, Nojima J, Fukuda T, Katagiri T. Platelet-rich plasma stimulates osteoblastic differentiation in the presence of BMPs. Biochem Biophys Res Commun 2007; 361:62-7. [PMID: 17632078 DOI: 10.1016/j.bbrc.2007.06.142] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/08/2023]
Abstract
Platelet-rich plasma (PRP) is clinically used as an autologous blood product to stimulate bone formation in vivo. In the present study, we examined the effects of PRP on proliferation and osteoblast differentiation in vitro in the presence of bone morphogenetic proteins (BMPs). PRP and its soluble fraction stimulated osteoblastic differentiation of myoblasts and osteoblastic cells in the presence of BMP-2, BMP-4, BMP-6 or BMP-7. The soluble PRP fraction stimulated osteoblastic differentiation in 3D cultures using scaffolds made of collagen or hydroxyapatite. Moreover, heparin-binding fractions obtained from serum also stimulated osteoblastic differentiation in the presence of BMP-4. These results suggested that platelets contain not only growth factors for proliferation but also novel potentiator(s) for BMP-dependent osteoblastic differentiation.
Collapse
Affiliation(s)
- Akihiro Tomoyasu
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Functional BMP receptor in endocardial cells is required in atrioventricular cushion mesenchymal cell formation in chick. Dev Biol 2007; 306:179-92. [PMID: 17449024 DOI: 10.1016/j.ydbio.2007.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 11/25/2022]
Abstract
Transformation of atrioventricular (AV) canal endocardium into invasive mesenchyme correlates spatially and temporally with the expression of bone morphogenetic protein (BMP)-2 in the AV myocardium. We revealed the presence of mRNA of Type I BMP receptors, BMPR-1A (ALK3), BMPR-1B (ALK6) and ALK2 in chick AV endocardium at stage-14(-), the onset of epithelial to mesenchymal transformation (EMT), by RT-PCR and localized BMPR-1B mRNA in the endocardium by in situ hybridization. To circumvent the functional redundancies among the Type I BMP receptors, we applied dominant-negative (dn) BMPR-1B-viruses to chick AV explants and whole-chick embryo cultures to specifically block BMP signaling in AV endocardium during EMT. dnBMPR-1B-virus infection of AV endocardial cells abolished BMP-2-supported AV endocardial EMT. Conversely, caBMPR-1B-virus infection promoted AV endocardial EMT in the absence of AV myocardium. Moreover, dnBMPR-1B-virus treatments significantly reduced myocardially supported EMT in AV endocardial-myocardial co-culture. AV cushion mesenchymal cell markers, alpha-smooth muscle actin (SMA), and TGFbeta3 in the endocardial cells were promoted by caBMPR-1B and reduced by dnBMPR-1B infection. Microinjection of the virus into the cardiac jelly in the AV canal at stage-13 in vivo (ovo) revealed that the dnBMPR-1B-virus-infected cells remained in the endocardial epithelium, whereas caBMPR-1B-infected cells invaded deep into the cushions. These results provide evidence that BMP signaling through the AV endocardium is required for the EMT and the activation of the BMP receptor in the endocardium can promote AV EMT in the chick.
Collapse
|