1
|
Linkens AMA, Houben AJ, Niessen PM, Wijckmans N, de Goei E, Van den Eynde MD, Scheijen JLJM, Waarenburg M, Mari A, Berendschot TT, Streese L, Hanssen H, van Dongen MC, van Gool C, Stehouwer CDA, Eussen SJ, Schalkwijk C. A 4-week high-AGE diet does not impair glucose metabolism and vascular function in obese individuals. JCI Insight 2022; 7:156950. [PMID: 35133989 PMCID: PMC8986074 DOI: 10.1172/jci.insight.156950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulation of advanced glycation endproducts (AGEs) may contribute to the pathophysiology of type 2 diabetes and its vascular complications. AGEs are widely present in food, but whether restricting AGE intake improves risk factors for type 2 diabetes and vascular dysfunction is controversial. METHODS Abdominally obese but otherwise healthy individuals were randomly assigned to a specifically designed 4-week diet low or high in AGEs in a double-blind, parallel design. Insulin sensitivity, secretion, and clearance were assessed by a combined hyperinsulinemic-euglycemic and hyperglycemic clamp. Micro- and macrovascular function, inflammation, and lipid profiles were assessed by state-of-the-art in vivo measurements and biomarkers. Specific urinary and plasma AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were assessed by mass spectrometry. RESULTS In 73 individuals (22 males, mean ± SD age and BMI 52 ± 14 years, 30.6 ± 4.0 kg/m2), intake of CML, CEL, and MG-H1 differed 2.7-, 5.3-, and 3.7-fold between the low- and high-AGE diets, leading to corresponding changes of these AGEs in urine and plasma. Despite this, there was no difference in insulin sensitivity, secretion, or clearance; micro- and macrovascular function; overall inflammation; or lipid profile between the low and high dietary AGE groups (for all treatment effects, P > 0.05). CONCLUSION This comprehensive RCT demonstrates very limited biological consequences of a 4-week diet low or high in AGEs in abdominally obese individuals. TRIAL REGISTRATION Clinicaltrials.gov, NCT03866343; trialregister.nl, NTR7594. FUNDING Diabetesfonds and ZonMw.
Collapse
Affiliation(s)
- Armand M A Linkens
- Cardiovascular Research Center, Maastricht (CARIM), Maastricht, Netherlands
| | - Alfons J Houben
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Petra M Niessen
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nicole Wijckmans
- Department of Epidemiology, Maastricht University, Maastricht, the Netherla, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands, Maastricht, Netherlands
| | - Erica de Goei
- CARIM School for Cardiovascular Diseases, Maastricht University, the Nether, Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Mathias Dg Van den Eynde
- Department of Internal Medicine, Maastricht University Medical Center, the , CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands, Maastricht, Netherlands
| | - Jean L J M Scheijen
- Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marjo Waarenburg
- Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Andrea Mari
- Institute of Biomedical Engineering, National Research Council, Padova, Italy
| | - Tos Tjm Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, the Netherlands., Maastricht, Netherlands
| | - Lukas Streese
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Martien Cjm van Dongen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Christel van Gool
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Coen DA Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| | - Simone Jpm Eussen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Casper Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
2
|
Kobashigawa Y, Ohara T, Morita K, Toyota Y, Nakamura T, Kotani S, Arimori T, Yamauchi S, Liu C, Kitazaki M, Wakeyama-Miyazaki Y, Suwa Y, Uchida-Kamekura M, Fukuda N, Sato T, Nakajima M, Takagi J, Yamagata Y, Morioka H. Molecular recognition of a single-chain Fv antibody specific for GA-pyridine, an advanced glycation end-product (AGE), elucidated using biophysical techniques and synthetic antigen analogues. J Biochem 2021; 170:379-387. [PMID: 34185078 DOI: 10.1093/jb/mvab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by non-enzymatic reaction between reducing-sugar and Arg/Lys in proteins, and are involved in various diabetic complications. GA-pyridine is derived from glycolaldehyde and is one of the most cytotoxic AGEs. Here, we established a single-chain Fv (scFv) antibody against GA-pyridine, 73MuL9-scFv, and examined the details of its specificity and antigen recognition by using various techniques involving biophysics, chemical biology and structural biology. We also synthesized several compounds that differ slightly in regard to the position and number of GA-pyridine substituent groups, and revealed that GA-pyridine was specifically bound to 73MuL9-scFv. Thermodynamic analysis revealed that the association of GA-pyridine to 73MuL9-scFv was an exothermic and enthalpy driven reaction, and thus that the antigen recognition involved multiple specific interactions. Crystallographic analysis of the Fv fragment of 73MuL9-scFv revealed that several CH-π and hydrogen bond interactions took place between the Fv-fragment and GA-pyridine, which was consistent with the results of thermodynamic analysis. Further studies using 73MuL9-scFv as a tool to clarify the relevance of GA-pyridine to diabetic complications are warranted.
Collapse
Affiliation(s)
- Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Toshiya Ohara
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kosuke Morita
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuya Toyota
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Teruya Nakamura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soichiro Yamauchi
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Chenjiang Liu
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masaya Kitazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yukari Wakeyama-Miyazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yoshiaki Suwa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Makiyo Uchida-Kamekura
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuriko Yamagata
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| |
Collapse
|
3
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
4
|
Abstract
In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.
Collapse
|
5
|
Arena S, Salzano AM, Renzone G, D'Ambrosio C, Scaloni A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. MASS SPECTROMETRY REVIEWS 2014; 33:49-77. [PMID: 24114996 DOI: 10.1002/mas.21378] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/09/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The Maillard reaction includes a complex network of processes affecting food and biopharmaceutical products; it also occurs in living organisms and has been strictly related to cell aging, to the pathogenesis of several (chronic) diseases, such as diabetes, uremia, cataract, liver cirrhosis and various neurodegenerative pathologies, as well as to peritoneal dialysis treatment. Dozens of compounds are involved in this process, among which a number of protein-adducted derivatives that have been simplistically defined as early, intermediate and advanced glycation end-products. In the last decade, various bottom-up proteomic approaches have been successfully used for the identification of glycation/glycoxidation protein targets as well as for the characterization of the corresponding adducts, including assignment of the modified amino acids. This article provides an updated overview of the mass spectrometry-based procedures developed to this purpose, emphasizing their partial limits with respect to current proteomic approaches for the analysis of other post-translational modifications. These limitations are mainly related to the concomitant sheer diversity, chemical complexity, and variable abundance of the various derivatives to be characterized. Some challenges to scientists are finally proposed for future proteomic investigations to solve main drawbacks in this research field.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | | | | | | | | |
Collapse
|
6
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
7
|
Sole SS, Srinivasan BP. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus. Nutr Res 2012; 32:626-36. [PMID: 22935346 DOI: 10.1016/j.nutres.2012.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 12/23/2022]
Abstract
Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy.
Collapse
Affiliation(s)
- Sushant Shivdas Sole
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, University of Delhi, PushpVihar, New Delhi 110017, India.
| | | |
Collapse
|
8
|
Leuner B, Max M, Thamm K, Kausler C, Yakobus Y, Bierhaus A, Sel S, Hofmann B, Silber RE, Simm A, Nass N. RAGE influences obesity in mice. Effects of the presence of RAGE on weight gain, AGE accumulation, and insulin levels in mice on a high fat diet. Z Gerontol Geriatr 2012; 45:102-8. [PMID: 22350391 DOI: 10.1007/s00391-011-0279-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The metabolic syndrome is defined by the presence of obesity, insulin resistance, dyslipidemia, and hypertension. Advanced glycation end products (AGEs) are stable end products of the Maillard reaction, whereby AGE accumulation is considered not only a biomarker of aging but is also associated with several degenerative diseases. AGEs are recognized by several receptor molecules of which the receptor of AGEs (RAGE) is currently the most intensively studied receptor. Activation of RAGE causes an unfavorable proinflammatory state and deletion of RAGE in diabetic animals has been reported to protect against atherosclerosis. AGEs and a high fat diet are associated with cardiovascular diseases, whereas is still not clear whether a direct link between high fat nutrition and AGEs exists in vivo. MATERIALS AND METHODS C57BL/6 and C57BL/6 RAGE -/- mice were fed a high fat diet to induce obesity. Weight, insulin, lipid levels, AGE modifications, and cardiac gene expression were analyzed. RESULTS The absence of RAGE resulted in accelerated weight gain, increased plasma cholesterol, and higher insulin levels in obese mice. The hearts of normal and obese RAGE -/- mice contained lower levels of the AGE arginine-pyrimidine and 3DG-imidazolone than RAGE + / + animals. RAGE -/- mice also exhibited lower expression of the genes encoding the antioxidative enzymes MnSOD, Cu/ZnSOD, and ceruloplasmin in cardiac tissue, whereas the AGE receptors AGER-1, -2, and -3 were equally expressed in both genotypes. Obese mice of both strains expressed increased amounts of AGER-2. Only obese RAGE + / + mice exhibited a reduced mRNA accumulation of Cu/Zn SOD. CONCLUSION These data suggest that RAGE is involved in the development of obesity and insulin resistance.
Collapse
Affiliation(s)
- B Leuner
- Department of Cardiovascular Surgery, Martin Luther University Halle-Wittenberg, Ernst Grube Str. 40, 06120, Halle/Saale, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shao CH, Tian C, Ouyang S, Moore CJ, Alomar F, Nemet I, D'Souza A, Nagai R, Kutty S, Rozanski GJ, Ramanadham S, Singh J, Bidasee KR. Carbonylation induces heterogeneity in cardiac ryanodine receptor function in diabetes mellitus. Mol Pharmacol 2012; 82:383-99. [PMID: 22648972 DOI: 10.1124/mol.112.078352] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heart failure and arrhythmias occur at 3 to 5 times higher rates among individuals with diabetes mellitus, compared with age-matched, healthy individuals. Studies attribute these defects in part to alterations in the function of cardiac type 2 ryanodine receptors (RyR2s), the principal Ca(2+)-release channels on the internal sarcoplasmic reticulum (SR). To date, mechanisms underlying RyR2 dysregulation in diabetes remain poorly defined. A rat model of type 1 diabetes, in combination with echocardiography, in vivo and ex vivo hemodynamic studies, confocal microscopy, Western blotting, mass spectrometry, site-directed mutagenesis, and [(3)H]ryanodine binding, lipid bilayer, and transfection assays, was used to determine whether post-translational modification by reactive carbonyl species (RCS) represented a contributing cause. After 8 weeks of diabetes, spontaneous Ca(2+) release in ventricular myocytes increased ~5-fold. Evoked Ca(2+) release from the SR was nonuniform (dyssynchronous). Total RyR2 protein levels remained unchanged, but the ability to bind the Ca(2+)-dependent ligand [(3)H]ryanodine was significantly reduced. Western blotting and mass spectrometry revealed RCS adducts on select basic residues. Mutation of residues to delineate the physiochemical impact of carbonylation yielded channels with enhanced or reduced cytoplasmic Ca(2+) responsiveness. The prototype RCS methylglyoxal increased and then decreased the RyR2 open probability. Methylglyoxal also increased spontaneous Ca(2+) release and induced Ca(2+) waves in healthy myocytes. Treatment of diabetic rats with RCS scavengers normalized spontaneous and evoked Ca(2+) release from the SR, reduced carbonylation of RyR2s, and increased binding of [(3)H]ryanodine to RyR2s. From these data, we conclude that post-translational modification by RCS contributes to the heterogeneity in RyR2 activity that is seen in experimental diabetes.
Collapse
Affiliation(s)
- Chun Hong Shao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5800, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bélanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I. Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 2011; 31:18338-52. [PMID: 22171037 PMCID: PMC6623908 DOI: 10.1523/jneurosci.1249-11.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 09/28/2011] [Accepted: 10/23/2011] [Indexed: 12/24/2022] Open
Abstract
The glyoxalase system is the most important pathway for the detoxification of methylglyoxal (MG), a highly reactive dicarbonyl compound mainly formed as a by-product of glycolysis. MG is a major precursor of advanced glycation end products (AGEs), which are associated with several neurodegenerative disorders. Although the neurotoxic effects of MG and AGEs are well characterized, little is known about the glyoxalase system in the brain, in particular with regards to its activity in different neural cell types. Results of the present study reveal that both enzymes composing the glyoxalase system [glyoxalase-1 (Glo-1) and Glo-2] were highly expressed in primary mouse astrocytes compared with neurons, which translated into higher enzymatic activity rates in astrocytes (9.9- and 2.5-fold, respectively). The presence of a highly efficient glyoxalase system in astrocytes was associated with lower accumulation of AGEs compared with neurons (as assessed by Western blotting), a sixfold greater resistance to MG toxicity, and the capacity to protect neurons against MG in a coculture system. In addition, Glo-1 downregulation using RNA interference strategies resulted in a loss of viability in neurons, but not in astrocytes. Finally, stimulation of neuronal glycolysis via lentiviral-mediated overexpression of 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase-3 resulted in increased MG levels and MG-modified proteins. Since MG is largely produced through glycolysis, this suggests that the poor capacity of neurons to upregulate their glycolytic flux as compared with astrocytes may be related to weaker defense mechanisms against MG toxicity. Accordingly, the neuroenergetic specialization taking place between these two cell types may serve as a protective mechanism against MG-induced neurotoxicity.
Collapse
Affiliation(s)
- Mireille Bélanger
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, and
| | - Jiangyan Yang
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, and
| | - Jean-Marie Petit
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, and
- Centre de Neurosciences Psychiatriques, Département de Psychiatrie, Centre Hospitalier Universitaire Vaudois, Site de Cery, CH-1008 Prilly/Lausanne, Switzerland
| | - Thierry Laroche
- Bioimaging & Optics platform, Life Sciences Faculty, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and
| | - Pierre J. Magistretti
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, and
- Centre de Neurosciences Psychiatriques, Département de Psychiatrie, Centre Hospitalier Universitaire Vaudois, Site de Cery, CH-1008 Prilly/Lausanne, Switzerland
| | - Igor Allaman
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, and
| |
Collapse
|
11
|
Sookwong P, Nakagawa K, Fujita I, Shoji N, Miyazawa T. Amadori-glycated phosphatidylethanolamine, a potential marker for hyperglycemia, in streptozotocin-induced diabetic rats. Lipids 2011; 46:943-52. [PMID: 21732214 DOI: 10.1007/s11745-011-3588-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
It has been demonstrated in vivo that lipid glycation products such as Amadori-glycated phosphatidylethanolamine (Amadori-PE) accumulate in the plasma of diabetic humans and animals, but how lipid glycation products are formed under hyperglycemic conditions are not clear. We sought to clarify the occurrence of lipid glycation and its relationships with lipid peroxidation and protein glycation during the development of hyperglycemia using the streptozotocin (STZ)-induced diabetic rat model. A significant increase in Amadori-PE was observed in STZ rats 7 days after STZ treatment, and Amadori-PE (especially 18:0-20:4 Amadori-PE) was found at high levels in the blood and in organs that are strongly affected by diabetes, such as the kidney. Significant changes in Amadori-PE appeared to occur prior to changes in levels of oxidized lipids, which increased after 21-28 days. In addition, accumulation of Nε-(carboxymethyl)lysine (CML), a protein glycation product, proceeded somewhat more slowly and moderately than that of Amadori-PE, suggesting that Amadori-PE and CML are early and advanced glycation products, respectively. Our results suggest that Amadori-PE may be a useful predictive marker for hyperglycemia, particularly in the early stages of diabetes. Similar speculations have been made from previous human studies, but this study provides a direct evidence to support the speculations in rat study.
Collapse
Affiliation(s)
- Phumon Sookwong
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | | | | | | | | |
Collapse
|
12
|
Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JCF. Glycolaldehyde induces oxidative stress in the heart: a clue to diabetic cardiomyopathy? Cardiovasc Toxicol 2011; 10:244-9. [PMID: 20632216 DOI: 10.1007/s12012-010-9083-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cardiovascular complications account for 80% of the mortality related to diabetes mellitus. Hyperglycemia is believed to be the major culprit of angiopathy and cardiomyopathy. High glucose levels and oxidative stress cause elevation of Advanced Glycation End-products that are known to contribute to diabetic complications and correlate with many diseases. However, there are few reports describing the effects of glycating agents other than glucose. Here, we aimed to evaluate the effects of glycolaldehyde (GA) on oxidative stress parameters in the heart of Wistar rats. Male Wistar rats received a single injection of GA (10, 50 or 100 mg/Kg) and were sacrificed 6, 12 or 24 h after injection. As indexes of oxidative stress, we quantified protein carbonylation, lipid peroxidation and total reduced thiols. The activities of superoxide dismutase, catalase and glyoxalase I were assayed. Also, the content of N (ɛ)-(carboxymethyl)lysine (CML) was quantified. Glycolaldehyde induced an imbalance in the redox status, with increased protein carbonylation and lipoperoxidation. Catalase and glyoxalase I had a decrease in their activities. Despite the oxidative stress, we observed no increase in CML content. These results suggest that short-chain aldehydes such as GA might have a significant role in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rodrigo Lorenzi
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
13
|
Mera K, Takeo K, Izumi M, Maruyama T, Nagai R, Otagiri M. Effect of Reactive‐Aldehydes on the Modification and Dysfunction of Human Serum Albumin**Katsumi Mera and Kazuhiro Takeo contributed equally to this work. J Pharm Sci 2010; 99:1614-25. [DOI: 10.1002/jps.21927] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Anti-Glycation Effect of Mixed Herbal Extract in Individuals with Pre-Diabetes Mellitus. ACTA ACUST UNITED AC 2010. [DOI: 10.3793/jaam.7.26] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
|
16
|
Choi YG, Lim S. Characterization of Anti-Advanced Glycation End Product Antibodies to Nonenzymatically Lysine-Derived and Arginine-Derived Glycated Products. J Immunoassay Immunochem 2009; 30:386-99. [DOI: 10.1080/15321810903188136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|