1
|
Zhang H, Wang Y, Peng H, He B, Li Y, Wang H, Hu Z, Yu H, Wang Y, Zhou M, Peng L, Wang M. Distinct lignocelluloses of plant evolution are optimally selective for complete biomass saccharification and upgrading Cd 2+/Pb 2+ and dye adsorption via desired biosorbent assembly. BIORESOURCE TECHNOLOGY 2025; 417:131856. [PMID: 39581481 DOI: 10.1016/j.biortech.2024.131856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
In this study, 15 plant species representing plant evolution were selected, and distinct lignocellulose compositions for largely varied biomass enzymatic saccharification were detected. By comparison, the acid-pretreated lignocellulose of rice mutant was of the highest Congo-red adsorption (298 mg/g) accounting for cellulose accessibility, leading to complete cellulose hydrolysis and high bioethanol production. By conducting oxidative-catalysis with the acid-pretreated lignocellulose of moss plant, the optimal biosorbent was generated with maximum Cd/Pb adsorption (54/118 mg/g), mainly due to half-reduced cellulose polymerization degree and raised functional groups accountable for multiple physical and chemical interactions. Furthermore, the acid-pretreated lignocellulose of eucalyptus was of large and small pores for much higher adsorption capacities with direct-yellow and direct-blue than those of the previously-reported. Therefore, this study raises a mechanism model about how distinct lignocelluloses of plant evolution are selective for complete biomass saccharification and optimal biosorbents assembly, providing insights into lignocellulose biosynthesis and biomass conversion.
Collapse
Affiliation(s)
- Huiyi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongtai Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Boyang He
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunong Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailang Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Houji Laboratory of Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
2
|
Srikant T, Gonzalo A, Bomblies K. Chromatin Accessibility and Gene Expression Vary Between a New and Evolved Autopolyploid of Arabidopsis arenosa. Mol Biol Evol 2024; 41:msae213. [PMID: 39404085 PMCID: PMC11518924 DOI: 10.1093/molbev/msae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Polyploids arise from whole-genome duplication (WGD) events, which have played important roles in genome evolution across eukaryotes. WGD can increase genome complexity, yield phenotypic novelty, and influence adaptation. Neo-polyploids have been reported to often show seemingly stochastic epigenetic and transcriptional changes, but this leaves open the question whether these changes persist in evolved polyploids. A powerful approach to address this is to compare diploids, neo-polyploids, and evolved polyploids of the same species. Arabidopsis arenosa is a species that allows us to do this-natural diploid and autotetraploid populations exist, while neo-tetraploids can be artificially generated. Here, we use ATAC-seq to assay local chromatin accessibility, and RNA-seq to study gene expression on matched leaf and petal samples from diploid, neo-tetraploid and evolved tetraploid A. arenosa. We found over 8,000 differentially accessible chromatin regions across all samples. These are largely tissue specific and show distinct trends across cytotypes, with roughly 70% arising upon WGD. Interestingly, only a small proportion is associated with expression changes in nearby genes. However, accessibility variation across cytotypes associates strongly with the number of nearby transposable elements. Relatively few genes were differentially expressed upon genome duplication, and ∼60% of these reverted to near-diploid levels in the evolved tetraploid, suggesting that most initial perturbations do not last. Our results provide new insights into how epigenomic and transcriptional mechanisms jointly respond to genome duplication and subsequent evolution of autopolyploids, and importantly, show that one cannot be directly predicted from the other.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Adrián Gonzalo
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Fu Q, Sun J, Zheng S, Wang X. Unique Jurassic Ovaries Shed a New Light on the Nature of Carpels. PLANTS (BASEL, SWITZERLAND) 2024; 13:2239. [PMID: 39204675 PMCID: PMC11360278 DOI: 10.3390/plants13162239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Enclosed ovules are a reproductive feature restricted to angiosperms. Although this feature can be used as a criterion for identifying fossil angiosperms, how ovules are enclosed and the nature of the placenta are still foci of debates. A reason underlying these controversies is the lack of reproductive organ fossils shedding light on these issues. These controversies hinder a clear understanding of angiosperm evolution and systematics. Here, we report a new fossil ovary, Xenofructus dabuensis gen. et sp. nov, from the Middle Jurassic of Liaoning, China. Our fossil clearly demonstrates the existence of ovules in Xenofructus that has a free central placentation. This new feature implies that a placenta in angiosperm gynoecia is homologous to an ovule/seed-bearing axis, and free central placentation is one of the early developed placentations. This discovery is apparently at odds with the current understanding of placentation and its evolution. Apparently, the understanding of angiosperms and their gynoecia should be updated with newly available palaeobotanical data.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China;
- University of Chinese Academy of Sciences (UCAS), Nanjing 211135, China
| | - Jie Sun
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China;
| | - Shaolin Zheng
- The Shenyang Center of Geological Survey and Institute of Geology and Mineral Resources, Ministry of National Land and Resources, Shenyang 110034, China
| | - Xin Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China;
| |
Collapse
|
4
|
Matos IS, McDonough S, Johnson BC, Kalantar D, Rohde J, Sahu R, Wang J, Fontao A, To J, Carlos S, Garcia L, Boakye M, Forbes H, Blonder BW. Negative allometry of leaf xylem conduit diameter and double-wall thickness: implications for implosion safety. THE NEW PHYTOLOGIST 2024; 242:2464-2478. [PMID: 38641796 DOI: 10.1111/nph.19771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Xylem conduits have lignified walls to resist crushing pressures. The thicker the double-wall (T) relative to its diameter (D), the greater the implosion safety. Having safer conduits may incur higher costs and reduced flow, while having less resistant xylem may lead to catastrophic collapse under drought. Although recent studies have shown that conduit implosion commonly occurs in leaves, little is known about how leaf xylem scales T vs D to trade off safety, flow efficiency, mechanical support, and cost. We measured T and D in > 7000 conduits of 122 species to investigate how T vs D scaling varies across clades, habitats, growth forms, leaf, and vein sizes. As conduits become wider, their double-cell walls become proportionally thinner, resulting in a negative allometry between T and D. That is, narrower conduits, which are usually subjected to more negative pressures, are proportionally safer than wider ones. Higher implosion safety (i.e. higher T/D ratios) was found in asterids, arid habitats, shrubs, small leaves, and minor veins. Despite the strong allometry, implosion safety does not clearly trade off with other measured leaf functions, suggesting that implosion safety at whole-leaf level cannot be easily predicted solely by individual conduits' anatomy.
Collapse
Affiliation(s)
- Ilaine Silveira Matos
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Samantha McDonough
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Breanna Carrillo Johnson
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Diana Kalantar
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - James Rohde
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Roshni Sahu
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joyce Wang
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adrian Fontao
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jason To
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sonoma Carlos
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lisa Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mickey Boakye
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Holly Forbes
- University of California Botanical Garden, Berkeley, CA, 94720, USA
| | - Benjamin Wong Blonder
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
5
|
Turchetto C, Silvério ADC, Waschburger EL, Lacerda MEG, Quintana IV, Turchetto-Zolet AC. Genome-wide identification and evolutionary view of ALOG gene family in Solanaceae. Genet Mol Biol 2023; 46:e20230142. [PMID: 38048778 PMCID: PMC10695626 DOI: 10.1590/1415-4757-gmb-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
The ALOG gene family, which was named after its earliest identified members ( Arabidopsis LSH1 and Oryza G1), encodes a class of transcription factors (TF) characterized by the presence of a highly conserved ALOG domain. These proteins are found in various plant species playing regulatory roles in plant growth, development, and morphological diversification of inflorescence. The functional characterization of these genes in some plant species has demonstrated their involvement in floral architecture. In this study, we used a genome-wide and phylogenetic approach to gain insights into plants' origin, diversification, and functional aspects of the ALOG gene family. In total, 648 ALOG homologous genes were identified in 77 Viridiplantae species, and their evolutionary relationships were inferred using maximum likelihood phylogenetic analyses. Our results suggested that the ALOG gene family underwent several rounds of gene duplication and diversification during angiosperm evolution. Furthermore, we found three functional orthologous groups in Solanaceae species. The study provides insights into the evolutionary history and functional diversification of the ALOG gene family, which could aid in understanding the mechanisms underlying floral architecture in angiosperms.
Collapse
Affiliation(s)
- Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Ariadne de Castro Silvério
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Edgar Luis Waschburger
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Maria Eduarda Gonçalves Lacerda
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Isadora Vieira Quintana
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Man J, Harrington TA, Lally K, Bartlett ME. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Mol Biol Evol 2023; 40:msad220. [PMID: 37787619 PMCID: PMC10588794 DOI: 10.1093/molbev/msad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.
Collapse
Affiliation(s)
- Jarrett Man
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - T A Harrington
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Kyra Lally
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Madelaine E Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| |
Collapse
|
7
|
Koenemann DM, Kistler L, Burke JM. A plastome phylogeny of Rumex (Polygonaceae) illuminates the divergent evolutionary histories of docks and sorrels. Mol Phylogenet Evol 2023; 182:107755. [PMID: 36906194 DOI: 10.1016/j.ympev.2023.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The genus Rumex L. (Polygonaceae) provides a unique system for investigating the evolutionary development of sex determination and molecular rate evolution. Historically, Rumex has been divided, both taxonomically and colloquially into two groups: 'docks' and 'sorrels'. A well-resolved phylogeny can help evaluate a genetic basis for this division. Here we present a plastome phylogeny for 34 species of Rumex, inferred using maximum likelihood criteria. The historical 'docks' (Rumex subgenus Rumex) were resolved as monophyletic. The historical 'sorrels' (Rumex subgenera Acetosa and Acetosella) were resolved together, though not monophyletic due to the inclusion of R. bucephalophorus (Rumex subgenus Platypodium). Emex is supported as its own subgenus within Rumex, instead of resolved as sister taxa. We found remarkably low nucleotide diversity among the docks, consistent with recent diversification in that group, especially as compared to the sorrels. Fossil calibration of the phylogeny suggested that the common ancestor for Rumex (including Emex) has origins in the lower Miocene (22.13 MYA). The sorrels appear to have subsequently diversified at a relatively constant rate. The origin of the docks, however, was placed in the upper Miocene, but with most speciation occurring in the Plio-Pleistocene.
Collapse
Affiliation(s)
- Daniel M Koenemann
- Claflin University, Department of Biology, 400 Magnolia Street, Orangeburg, SC 29115, USA.
| | - Logan Kistler
- National Museum of Natural History, Anthropology Department, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA.
| | - Janelle M Burke
- Howard University, Department of Biology, EE Just Hall, 415 College Street NW, Washington, DC 20059, USA.
| |
Collapse
|
8
|
Moein F, Jamzad Z, Rahiminejad M, Landis JB, Mirtadzadini M, Soltis DE, Soltis PS. Towards a global perspective for Salvia L.: Phylogeny, diversification and floral evolution. J Evol Biol 2023; 36:589-604. [PMID: 36759951 DOI: 10.1111/jeb.14149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 02/11/2023]
Abstract
Salvia is the most species-rich genus in Lamiaceae, encompassing approximately 1000 species distributed all over the world. We sought a new evolutionary perspective for Salvia by employing macroevolutionary analyses to address the tempo and mode of diversification. To study the association of floral traits with speciation and extinction, we modelled and explored the evolution of corolla length and the lever-mechanism pollination system across our Salvia phylogeny. We reconstructed a multigene phylogeny for 366 species of Salvia in the broad sense including all major recognized lineages and 50 species from Iran, a region previously overlooked in studies of the genus. Our comprehensive sampling of Iranian species of Salvia provides higher phylogenetic resolution for southwestern Asian species than obtained in previous studies. Our phylogenetic data in combination with divergence time estimates were used to examine the evolution of corolla length, woody versus herbaceous habit, and presence versus absence of a lever mechanism. We investigated the timing and dependence of Salvia diversification related to corolla length evolution through a disparity test and BAMM analysis. A HiSSE model was used to evaluate the dependency of diversification on the lever-mechanism pollination system in Salvia. A medium corolla length (15-18 mm) was reconstructed as the ancestral state for Salvia with multiple shifts to shorter and longer corollas. Macroevolutionary model analyses indicate that corolla length disparity is high throughout Salvia evolution, significantly different from expectations under a Brownian motion model during the last 28 million years of evolution. Our analyses show evidence of a higher diversification rate of corolla length for some Andean species of Salvia compared to other members of the genus. Based on our tests of diversification models, we reject the hypothesis of a direct effect of the lever mechanism on Salvia diversification. Therefore, we suggest caution in considering the lever-mechanism pollination system as one of the main drivers of speciation in Salvia.
Collapse
Affiliation(s)
- Fatemeh Moein
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ziba Jamzad
- Department of Botany, Research Institute of Forest and Rangelands, Tehran, Iran
| | - Mohammadreza Rahiminejad
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA.,BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, New York, USA
| | | | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, USA.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,The Genetics Institute, University of Florida, Gainesville, Florida, USA.,The Biodiversity Institute, University of Florida, Gainesville, Florida, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,The Genetics Institute, University of Florida, Gainesville, Florida, USA.,The Biodiversity Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Salse J. Translational research from models to crops: comparative genomics for plant breeding. C R Biol 2023; 345:111-128. [PMID: 36847121 DOI: 10.5802/crbiol.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 02/18/2023]
Abstract
The concept of translational research, which originated in the medical field in the 1980s, consists in improving the efficient transfer of research results obtained in a species (which can be considered as a model or pivot) to all the species for which these results are of interest for its improvement in Agriculture. In this context, comparative genomics is an important tool for translational research, effectively identifying genes controlling common functions between species. Editing and phenotyping tools must thus allow the functional validation of the gene conserved within the species for which the knowledge has been extrapolated, that is to say transferred, and the identification of the best alleles and associated genotypes for exploitation in current breeding programs.
Collapse
|
10
|
Fu Q, Hou Y, Yin P, Diez JB, Pole M, García-Ávila M, Wang X. Micro-CT results exhibit ovules enclosed in the ovaries of Nanjinganthus. Sci Rep 2023; 13:426. [PMID: 36624144 PMCID: PMC9829905 DOI: 10.1038/s41598-022-27334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The Early Jurassic angiosperm Nanjinganthus has triggered a heated debate among botanists, partially due to the fact that the enclosed ovules were visible to naked eyes only when the ovary is broken but not visible when the closed ovary is intact. Although traditional technologies cannot confirm the existence of ovules in a closed ovary, newly available Micro-CT can non-destructively reveal internal features of fossil plants. Here, we performed Micro-CT observations on three dimensionally preserved coalified compressions of Nanjinganthus. Our outcomes corroborate the conclusion given by Fu et al., namely, that Nanjinganthus is an Early Jurassic angiosperm.
Collapse
Affiliation(s)
- Qiang Fu
- grid.9227.e0000000119573309State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Yemao Hou
- grid.9227.e0000000119573309Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044 China
| | - Pengfei Yin
- grid.9227.e0000000119573309Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044 China
| | - José Bienvenido Diez
- grid.6312.60000 0001 2097 6738Departamento de Xeociencias Mariñas e Ordenación do Territorio, Universidade de Vigo, 36200 Vigo, Spain ,grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), 36200 Vigo, Spain
| | - Mike Pole
- Queensland Herbarium, Mount Coot-Tha Road, Toowong, QLD 4066 Australia
| | - Manuel García-Ávila
- grid.6312.60000 0001 2097 6738Departamento de Xeociencias Mariñas e Ordenación do Territorio, Universidade de Vigo, 36200 Vigo, Spain ,grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), 36200 Vigo, Spain
| | - Xin Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
11
|
Wu D, Wei Y, Zhao X, Li B, Zhang H, Xu G, Lv J, Zhang D, Zhang X, Ni M. Ancestral function but divergent epigenetic regulation of HAIKU2 reveals routes of seed developmental evolution. MOLECULAR PLANT 2022; 15:1575-1589. [PMID: 36071671 DOI: 10.1016/j.molp.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Evolution is driven by various mechanisms. A directional increase in the embryo to endosperm ratio is an evolutionary trend within the angiosperms. The endosperm constitutes a major portion of the seed volume in Poales and some dicots. However, in other dicots such as Arabidopsis and soybean, the endosperm proliferates early, followed by embryo growth to replace the endosperm. The Arabidopsis leucine-rich repeat receptor protein kinase AtHAIKU2 (AtIKU2) is a key regulator of early endosperm proliferation. In this study, we found that IKU2s from Brachypodium, rice, and soybean can complement the abnormal seed developmental phenotype of Atiku2, while AtIKU2 also rescues the defective endosperm proliferation in the Brachypodium BdIKU2 knockout mutant seeds. AtIKU2 and soybean GmIKU2 are actively expressed a few days after fertilization. Thereafter, expression of AtIKU2 is suppressed by the FIS-PRC2 complex-mediated H3K27me3. The soybean GmIKU2 locus is also enriched with H3K27me3 marks. The histone methyltransferase AtMEA is unique to Brassicaceae, but one GmSWN in soybean plays a similar role in seed development as AtMEA. By contrast, the BdIKU2 and rice OsIKU2 loci are continuously expressed and are devoid of H3K27me3 marks. Taken together, these results suggest that IKU2 genes retain an ancestral function, but the duration of their expression that is controlled by PRC2-mediated epigenetic silencing contributes to silenced or persistent endosperm proliferation in different species. Our study reveals an epigenetic mechanism that drives the development of vastly different seed ontogenies.
Collapse
Affiliation(s)
- Di Wu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yiming Wei
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xiangyu Zhao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Boka Li
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huankai Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Gang Xu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Juntong Lv
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Dajian Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xiansheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| | - Min Ni
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
12
|
Li J, Fan R, Xu J, Hu L, Su F, Hao C. Comparative analysis of the chloroplast genomes of eight Piper species and insights into the utilization of structural variation in phylogenetic analysis. Front Genet 2022; 13:925252. [PMID: 36246585 PMCID: PMC9556897 DOI: 10.3389/fgene.2022.925252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
With more than 2000 species, Piper is regarded as having high medicinal, cosmetic, and edible value. There also remain some taxonomic and evolutionary uncertainties about the genus. This study performed chloroplast genome sequencing of eight poorly studied Piper species and a comparative analysis with black pepper (Piper nigrum). All examined species were highly similar in gene content, with 79 protein-coding genes, 24 tRNAs, and four rRNAs. They also harbored significant structural differences: The number of SSRs ranged from 63 to 87, over 10,000 SNPs were detected, and over 1,000 indels were found. The spatial distribution of structural differences was uneven, with the IR and LSC being relatively more conserved and the SSC region highly variable. Such structural variations of the chloroplast genome can help in evaluating the phylogenetic relationships between species, deciding some hard-to-distinguish evolutionary relationships, or eliminating improper markers. The SSC region may be evolving at high speed, and some species showed a high degree of sequence variation in the SSC region, which seriously affected marker sequence detection. Conversely, CDS sequences tended to lack variation, and some CDSs can serve as ideal markers for phylogenetic reconstruction. All told, this study provides an effective strategy for selecting chloroplast markers, analyzing difficult-to-distinguish phylogenetic relationships and avoiding the taxonomic errors caused by high degree of sequence variations.
Collapse
Affiliation(s)
- Jing Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Jintao Xu
- Yangtze Normal University, Chongqing, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Fan Su
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
- *Correspondence: Chaoyun Hao,
| |
Collapse
|
13
|
Haworth M, Marino G, Loreto F, Centritto M. The evolution of diffusive and biochemical capacities for photosynthesis was predominantly shaped by [CO 2] with a smaller contribution from [O 2]. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156606. [PMID: 35691351 DOI: 10.1016/j.scitotenv.2022.156606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The atmospheric concentration of carbon dioxide ([CO2]) and oxygen ([O2]) directly influence rates of photosynthesis (PN) and photorespiration (RPR) through the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Levels of [CO2] and [O2] have varied over Earth history affecting rates of both CO2 uptake and loss, alongside associated transpirative water-loss. The availability of CO2 has likely acted as a stronger selective pressure than [O2] due to the greater specificity of RubisCO for CO2. The role of [O2], and the interaction of [O2] and [CO2], in plant evolutionary history is less understood. We exposed twelve phylogenetically diverse species to combinations of sub-ambient, ambient and super-ambient [O2] and [CO2] to examine the biochemical and diffusive components of PN and the possible role of [O2] as a selective pressure. Photosynthesis, photosynthetic capacity and stomatal, mesophyll and total conductance to CO2 were higher in the derived eudicot and monocot angiosperms than the more basal ferns, gymnosperms and basal angiosperms which originated in atmospheres characterised by higher CO2:O2 ratios. The ratio of RPR:PN was lower in the monocots, consistent with greater carboxylation capacity and higher stomatal and mesophyll conductance making easier CO2 delivery to chloroplasts. The effect of [O2] and [CO2] on PN/RPR was less evident in more derived species with a higher conductance to CO2. The effect of [O2] was less apparent at high [CO2], suggesting that atmospheric [O2] may only have exerted a strong selective pressure on plant photosynthetic processes during periods characterised by low atmospheric CO2:O2 ratios. Current rising [CO2] will predominantly enhance PN rates in species with low diffusive conductance to CO2.
Collapse
Affiliation(s)
- Matthew Haworth
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy.
| | - Giovanni Marino
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Mauro Centritto
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; ENI-CNR Water Research Centre "Hypatia of Alexandria", Research Centre Metapontum Agrobios, Metaponto, Italy
| |
Collapse
|
14
|
Marais GAB, Lemaître JF. Sex chromosomes, sex ratios and sex gaps in longevity in plants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210219. [PMID: 35306888 PMCID: PMC8935291 DOI: 10.1098/rstb.2021.0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Abstract
In animals, males and females can display markedly different longevity (also called sex gaps in longevity, SGL). Sex chromosomes contribute to establishing these SGLs. X-hemizygosity and toxicity of the Y chromosomes are two mechanisms that have been suggested to reduce male longevity (Z-hemizygosity and W toxicity in females in ZW systems). In plants, SGLs are known to exist, but the role of sex chromosomes remains to be established. Here, by using adult sex ratio as a proxy for measuring SGLs, we explored the relationship between sex chromosomes and SGLs across 43 plant species. Based on the knowledge accumulated in animals, we specifically asked whether: (i) species with XY systems tend to have female-biased sex ratios (reduced male longevity) and species with ZW ones tend to have male-biased sex ratios (reduced female longevity); and (ii) this pattern was stronger in heteromorphic systems compared to homomorphic ones. Our results tend to support these predictions although we lack statistical power because of a small number of ZW systems and the absence of any heteromorphic ZW system in the dataset. We discuss the implications of these findings, which we hope will stimulate further research on sex differences in lifespan and ageing across plants. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Gabriel A. B. Marais
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- LBBE, CNRS/Univ. Lyon 1, Campus de la Doua, Villeurbanne, France
| | - J-F. Lemaître
- LBBE, CNRS/Univ. Lyon 1, Campus de la Doua, Villeurbanne, France
| |
Collapse
|
15
|
Donne R, Sangouard F, Celton-Morizur S, Desdouets C. Hepatocyte Polyploidy: Driver or Gatekeeper of Chronic Liver Diseases. Cancers (Basel) 2021; 13:cancers13205151. [PMID: 34680300 PMCID: PMC8534039 DOI: 10.3390/cancers13205151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Polyploidy, also known as whole-genome amplification, is a condition in which the organism has more than two basic sets of chromosomes. Polyploidy frequently arises during tissue development and repair, and in age-associated diseases, such as cancer. Its consequences are diverse and clearly different between systems. The liver is a particularly fascinating organ in that it can adapt its ploidy to the physiological and pathological context. Polyploid hepatocytes are characterized in terms of the number of nuclei per cell (cellular ploidy; mononucleate/binucleate hepatocytes) and the number of chromosome sets in each nucleus (nuclear ploidy; diploid, tetraploid, octoploid). The advantages and disadvantages of polyploidy in mammals are not fully understood. About 30% of the hepatocytes in the human liver are polyploid. In this review, we explore the mechanisms underlying the development of polyploid cells, our current understanding of the regulation of polyploidization during development and pathophysiology and its consequences for liver function. We will also provide data shedding light on the ways in which polyploid hepatocytes cope with centrosome amplification. Finally, we discuss recent discoveries highlighting the possible roles of liver polyploidy in protecting against tumor formation, or, conversely, contributing to liver tumorigenesis.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Flora Sangouard
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Séverine Celton-Morizur
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| |
Collapse
|
16
|
Meng F, Chu T, Tang Q, Chen W. A tetraploidization event shaped the Aquilaria sinensis genome and contributed to the ability of sesquiterpenes synthesis. BMC Genomics 2021; 22:647. [PMID: 34493201 PMCID: PMC8424979 DOI: 10.1186/s12864-021-07965-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Agarwood, generated from the Aquilaria sinensis, has high economic and medicinal value. Although its genome has been sequenced, the ploidy of A. sinensis paleopolyploid remains unclear. Moreover, the expression changes of genes associated with agarwood formation were not analyzed either. RESULTS In the present work, we reanalyzed the genome of A. sinensis and found that it experienced a recent tetraploidization event ~ 63-71 million years ago (Mya). The results also demonstrated that the A. sinensis genome had suffered extensive gene deletion or relocation after the tetraploidization event, and exhibited accelerated evolutionary rates. At the same time, an alignment of homologous genes related to different events of polyploidization and speciation were generated as well, which provides an important comparative genomics resource for Thymelaeaceae and related families. Interestingly, the expression changes of genes related to sesquiterpene synthesis in wounded stems of A. sinensis were also observed. Further analysis demonstrated that polyploidization promotes the functional differentiation of the key genes in the sesquiterpene synthesis pathway. CONCLUSIONS By reanalyzing its genome, we found that the tetraploidization event shaped the A. sinensis genome and contributed to the ability of sesquiterpenes synthesis. We hope that these results will facilitate our understanding of the evolution of A. sinensis and the function of genes involved in agarwood formation.
Collapse
Affiliation(s)
- Fanbo Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Tianzhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qiang Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Wei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
- School of Life Sciences, North China University of Science and Technology, 063210, Tangshan, China.
| |
Collapse
|
17
|
Sprink T, Hartung F. Heterologous Complementation of SPO11-1 and -2 Depends on the Splicing Pattern. Int J Mol Sci 2021; 22:ijms22179346. [PMID: 34502253 PMCID: PMC8430568 DOI: 10.3390/ijms22179346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
In the past, major findings in meiosis have been achieved, but questions towards the global understanding of meiosis remain concealed. In plants, one of these questions covers the need for two diverse meiotic active SPO11 proteins. In Arabidopsis and other plants, both meiotic SPO11 are indispensable in a functional form for double strand break induction during meiotic prophase I. This stands in contrast to mammals and fungi, where a single SPO11 is present and sufficient. We aimed to investigate the specific function and evolution of both meiotic SPO11 paralogs in land plants. By performing immunostaining of both SPO11-1 and -2, an investigation of the spatiotemporal localization of each SPO11 during meiosis was achieved. We further exchanged SPO11-1 and -2 in Arabidopsis and could show a species-specific function of the respective SPO11. By additional changes of regions between SPO11-1 and -2, a sequence-specific function for both the SPO11 proteins was revealed. Furthermore, the previous findings about the aberrant splicing of each SPO11 were refined by narrowing them down to a specific developmental phase. These findings let us suggest that the function of both SPO11 paralogs is highly sequence specific and that the orthologs are species specific.
Collapse
|
18
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Dong S, Liu M, Liu Y, Chen F, Yang T, Chen L, Zhang X, Guo X, Fang D, Li L, Deng T, Yao Z, Lang X, Gong Y, Wu E, Wang Y, Shen Y, Gong X, Liu H, Zhang S. The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids. HORTICULTURE RESEARCH 2021; 8:38. [PMID: 33642574 PMCID: PMC7917104 DOI: 10.1038/s41438-021-00471-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 10/28/2020] [Accepted: 12/12/2020] [Indexed: 05/03/2023]
Abstract
Magnolia biondii Pamp. (Magnoliaceae, magnoliids) is a phylogenetically, economically, and medicinally important ornamental tree species widely grown and cultivated in the north-temperate regions of China. Determining the genome sequence of M. biondii would help resolve the phylogenetic uncertainty of magnoliids and improve the understanding of individual trait evolution within the Magnolia genus. We assembled a chromosome-level reference genome of M. biondii using ~67, ~175, and ~154 Gb of raw DNA sequences generated via Pacific Biosciences single-molecule real-time sequencing, 10X Genomics Chromium, and Hi-C scaffolding strategies, respectively. The final genome assembly was ~2.22 Gb, with a contig N50 value of 269.11 kb and a BUSCO complete gene percentage of 91.90%. Approximately 89.17% of the genome was organized into 19 chromosomes, resulting in a scaffold N50 of 92.86 Mb. The genome contained 47,547 protein-coding genes, accounting for 23.47% of the genome length, whereas 66.48% of the genome length consisted of repetitive elements. We confirmed a WGD event that occurred very close to the time of the split between the Magnoliales and Laurales. Functional enrichment of the Magnolia-specific and expanded gene families highlighted genes involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, and responses to stimuli, which may improve the ecological fitness and biological adaptability of the lineage. Phylogenomic analyses revealed a sister relationship of magnoliids and Chloranthaceae, which are sister to a clade comprising monocots and eudicots. The genome sequence of M. biondii could lead to trait improvement, germplasm conservation, and evolutionary studies on the rapid radiation of early angiosperms.
Collapse
Affiliation(s)
- Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Fei Chen
- Nanjing Forestry University, Nanjing, 210037, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lu Chen
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Xingtan Zhang
- Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Tian Deng
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Zhangxiu Yao
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Xiaoan Lang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yiqing Gong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Ernest Wu
- University of British Columbia, Vancouver BC, Canada
| | - Yaling Wang
- Xi'an Botanical Garden, Xi'an, 710061, China
| | - Yamei Shen
- Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Xun Gong
- Kunming Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | - Shouzhou Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China.
| |
Collapse
|
20
|
Orsucci M, Sicard A. Flower evolution in the presence of heterospecific gene flow and its contribution to lineage divergence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:971-989. [PMID: 33537708 DOI: 10.1093/jxb/eraa549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The success of species depends on their ability to exploit ecological resources in order to optimize their reproduction. However, species are not usually found within single-species ecosystems but in complex communities. Because of their genetic relatedness, closely related lineages tend to cluster within the same ecosystem, rely on the same resources, and be phenotypically similar. In sympatry, they will therefore compete for the same resources and, in the case of flowering plants, exchange their genes through heterospecific pollen transfer. These interactions, nevertheless, pose significant challenges to species co-existence because they can lead to resource limitation and reproductive interference. In such cases, divergent selective pressures on floral traits will favour genotypes that isolate or desynchronize the reproduction of sympatric lineages. The resulting displacement of reproductive characters will, in turn, lead to pre-mating isolation and promote intraspecific divergence, thus initiating or reinforcing the speciation process. In this review, we discuss the current theoretical and empirical knowledge on the influence of heterospecific pollen transfer on flower evolution, highlighting its potential to uncover the ecological and genomic constraints shaping the speciation process.
Collapse
Affiliation(s)
- Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
21
|
Haworth M, Marino G, Loreto F, Centritto M. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops. Oecologia 2021; 197:867-883. [PMID: 33515295 PMCID: PMC8591009 DOI: 10.1007/s00442-021-04857-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Stomata are central players in the hydrological and carbon cycles, regulating the uptake of carbon dioxide (CO2) for photosynthesis and transpirative loss of water (H2O) between plants and the atmosphere. The necessity to balance water-loss and CO2-uptake has played a key role in the evolution of plants, and is increasingly important in a hotter and drier world. The conductance of CO2 and water vapour across the leaf surface is determined by epidermal and stomatal morphology (the number, size, and spacing of stomatal pores) and stomatal physiology (the regulation of stomatal pore aperture in response to environmental conditions). The proportion of the epidermis allocated to stomata and the evolution of amphistomaty are linked to the physiological function of stomata. Moreover, the relationship between stomatal density and [CO2] is mediated by physiological stomatal behaviour; species with less responsive stomata to light and [CO2] are most likely to adjust stomatal initiation. These differences in the sensitivity of the stomatal density—[CO2] relationship between species influence the efficacy of the ‘stomatal method’ that is widely used to infer the palaeo-atmospheric [CO2] in which fossil leaves developed. Many studies have investigated stomatal physiology or morphology in isolation, which may result in the loss of the ‘overall picture’ as these traits operate in a coordinated manner to produce distinct mechanisms for stomatal control. Consideration of the interaction between stomatal morphology and physiology is critical to our understanding of plant evolutionary history, plant responses to on-going climate change and the production of more efficient and climate-resilient food and bio-fuel crops.
Collapse
Affiliation(s)
- Matthew Haworth
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Giovanni Marino
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (CNR-DiSBA), National Research Council of Italy, Rome, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- ENI-CNR Water Research Center "Hypatia of Alexandria", Research Center Metapontum Agrobios, Metaponto, Italy
| |
Collapse
|
22
|
Silva MDS, Funch LS, da Silva LB, Cardoso D. A phylogenetic and functional perspective on the origin and evolutionary shifts of growth ring anatomical markers in seed plants. Biol Rev Camb Philos Soc 2021; 96:842-876. [PMID: 33385187 DOI: 10.1111/brv.12681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
We reconstruct the evolutionary changes in different anatomical markers in order to understand the evolution and functional aspects of growth rings during the diversification of seed plants (spermatophytes), one of the largest and most diverse lineages of the tree of life. We carried out a wide revision of the anatomy of secondary xylem in spermatophytes and reconstructed the evolution of the different anatomical markers in a time-calibrated phylogeny. By embodying a functionally and evolutionarily significant concept in growth rings we reveal a new panorama for their frequency and show how common they are in diverse lineages of tropical plants. In this context, the principal anatomical markers of growth rings are identified in the evolutionary history of plants and their association with climate-related ecological characteristics. We discuss the function of these anatomical markers, especially for thick-walled and/or radially flattened latewood fibres, fibre zone and dilated rays. Despite the high evolutionary lability of the anatomical markers evidenced by our analyses, they appear to represent deep homologies.
Collapse
Affiliation(s)
- Marcelo Dos S Silva
- Laboratório de Anatomia Vegetal e Identificação de Madeiras - LAVIM, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, Campus de Ondina, 147, Salvador, BA, 40.170-290, Brazil.,Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Universitária, s/n, Feira de Santana, BA, 44.031-460, Brazil
| | - Ligia S Funch
- Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Universitária, s/n, Feira de Santana, BA, 44.031-460, Brazil
| | - Lazaro B da Silva
- Laboratório de Anatomia Vegetal e Identificação de Madeiras - LAVIM, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, Campus de Ondina, 147, Salvador, BA, 40.170-290, Brazil.,Programa de Pós-Graduação em Ecologia Aplicada à Gestão Ambiental, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, Campus de Ondina, 147, Salvador, BA, 40.170-290, Brazil
| | - Domingos Cardoso
- Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Universitária, s/n, Feira de Santana, BA, 44.031-460, Brazil.,National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, Campus de Ondina, 147, Salvador, BA, 40.170-290, Brazil
| |
Collapse
|
23
|
Ma D, Dong S, Zhang S, Wei X, Xie Q, Ding Q, Xia R, Zhang X. Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis). Mol Ecol Resour 2020; 21:955-968. [PMID: 33325619 DOI: 10.1111/1755-0998.13310] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022]
Abstract
Passion fruit, native to tropical America, is an agriculturally, economically and ornamentally important fruit plant that is well known for its acid pulp, rich aroma and distinctive flavour. Here, we present a chromosome-level genome assembly of passion fruit by incorporating PacBio long HiFi reads and Hi-C technology. The assembled reference genome is 1.28 Gb size with a scaffold N50 of 126.4 Mb and 99.22% sequences anchored onto nine pseudochromosomes. This genome is highly repetitive, accounting for 86.61% of the assembled genome. A total of 39,309 protein-coding genes were predicted with 93.48% of those being functionally annotated in the public databases. Genome evolution analysis revealed a core eudicot-common γ whole-genome triplication event and a more recent whole-genome duplication event, possibly contributing to the expansion of certain gene families. The 33 rapidly expanded gene families were significantly enriched in the pathways of isoflavone biosynthesis, galactose metabolism, diterpene biosynthesis and fatty acid metabolism, which might be responsible for the formation of featured flavours in the passion fruit. Transcriptome analysis revealed that genes related to ester and ethylene biosynthesis were significantly upregulated in the mature fruit and the expression levels of those genes were consistent with the accumulation of volatile lipid compounds. The passion fruit genome analysis improves our understanding of the genome evolution of this species and sheds new lights into the molecular mechanism of aroma biosynthesis in passion fruit.
Collapse
Affiliation(s)
- Dongna Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangzhou, China
| | - Qiansu Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China.,Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
24
|
Folk RA, Siniscalchi CM, Soltis DE. Angiosperms at the edge: Extremity, diversity, and phylogeny. PLANT, CELL & ENVIRONMENT 2020; 43:2871-2893. [PMID: 32926444 DOI: 10.1111/pce.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
A hallmark of flowering plants is their ability to invade some of the most extreme and dynamic habitats, including cold and dry biomes, to a far greater extent than other land plants. Recent work has provided insight to the phylogenetic distribution and evolutionary mechanisms which have enabled this success, yet needed is a synthesis of evolutionary perspectives with plant physiological traits, morphology, and genomic diversity. Linking these disparate components will not only lead to better understand the evolutionary parallelism and diversification of plants with these two strategies, but also to provide the framework needed for directing future research. We summarize the primary physiological and structural traits involved in response to cold- and drought stress, outline the phylogenetic distribution of these adaptations, and describe the recurring association of these changes with rapid diversification events that occurred in multiple lineages over the past 15 million years. Across these threefold facets of dry-cold correlation (traits, phylogeny, and time) we stress the contrast between (a) the amazing diversity of solutions flowering plants have developed in the face of extreme environments and (b) a broad correlation between cold and dry adaptations that in some cases may hint at deep common origins.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Maccarrone M. Phytocannabinoids and endocannabinoids: different in nature. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00957-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Cannabis is one of the earliest cultivated plants, of which Cannabis sativa and Cannabis indica are the most widespread and best characterized species. Their extracts contain (phyto)cannabinoids (pCBs) of therapeutic interest, such as Δ9-tetrahydrocannabinol and cannabidiol, along with many other compounds, so that there is no “one cannabis” but several mixtures even from the same plant. This complexity is mirrored, or even exceeded, by the complexity of the molecular targets that pCBs find in our body, most of which belong to the so-called “endocannabinoid (eCB) system”. Here, we describe the major pCBs and the main components of the eCB system to appreciate their differences and mutual interactions, as well as the potential of using pCB/eCB-based drugs as novel therapeutics to treat human diseases, both in the central nervous system and at the periphery. Moreover, we address the question of the evolution of pCBs and eCBs, showing that the latter compounds were the first to appear in nature, and that the former substances took a few million years to mimic the three-dimensional structures of the latter, and hence their biological activity in our body.
Graphic abstract
Collapse
|
26
|
Fernie AR, Cavalcanti JHF, Nunes-Nesi A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020; 10:E1013. [PMID: 32650612 PMCID: PMC7408384 DOI: 10.3390/biom10071013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial carriers (MC) are a large family (MCF) of inner membrane transporters displaying diverse, yet often redundant, substrate specificities, as well as differing spatio-temporal patterns of expression; there are even increasing examples of non-mitochondrial subcellular localization. The number of these six trans-membrane domain proteins in sequenced plant genomes ranges from 39 to 141, rendering the size of plant families larger than that found in Saccharomyces cerevisiae and comparable with Homo sapiens. Indeed, comparison of plant MCs with those from these better characterized species has been highly informative. Here, we review the most recent comprehensive studies of plant MCFs, incorporating the torrent of genomic data emanating from next-generation sequencing techniques. As such we present a more current prediction of the substrate specificities of these carriers as well as review the continuing quest to biochemically characterize this feature of the carriers. Taken together, these data provide an important resource to guide direct genetic studies aimed at addressing the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Instiute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - João Henrique F. Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá 69800-000, Amazonas, Brazil;
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
27
|
Abstract
Polyploidy (or whole-genome duplication) is the condition of having more than two basic sets of chromosomes. Polyploidization is well tolerated in many species and can lead to specific biological functions. In mammals, programmed polyploidization takes place during development in certain tissues, such as the heart and placenta, and is considered a feature of differentiation. However, unscheduled polyploidization can cause genomic instability and has been observed in pathological conditions, such as cancer. Polyploidy of the liver parenchyma was first described more than 100 years ago. The liver is one of the few mammalian organs that display changes in polyploidy during homeostasis, regeneration and in response to damage. In the human liver, approximately 30% of hepatocytes are polyploid. The polyploidy of hepatocytes results from both nuclear polyploidy (an increase in the amount of DNA per nucleus) and cellular polyploidy (an increase in the number of nuclei per cell). In this Review, we discuss the regulation of polyploidy in liver development and pathophysiology. We also provide an overview of current knowledge about the mechanisms of hepatocyte polyploidization, its biological importance and the fate of polyploid hepatocytes during liver tumorigenesis.
Collapse
|
28
|
Wang Y, Nie F, Shahid MQ, Baloch FS. Molecular footprints of selection effects and whole genome duplication (WGD) events in three blueberry species: detected by transcriptome dataset. BMC PLANT BIOLOGY 2020; 20:250. [PMID: 32493212 PMCID: PMC7268529 DOI: 10.1186/s12870-020-02461-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Both selection effects and whole genome duplication played very important roles in plant speciation and evolution, and to decipher the corresponding molecular footprint has always been a central task of geneticists. Vaccinium is species rich genus that comprised of about 450 species, and blueberry is one of the most important species of Vaccinium genus, which is gaining popularity because of high healthful value. In this article, we aimed to decipher the molecular footprints of natural selection on the single copy genes and WGD events occur in the evolutionary history of blueberry species. RESULTS We identified 30,143, 29,922 and 28,891 putative protein coding sequences from 45,535, 42,914 and 43,630 unigenes assembled from the leaves' transcriptome assembly of 19 rabbiteye (T1), 13 southern highbush (T2) and 22 northern highbush (T3) blueberry cultivars. A total of 17, 21 and 27 single copy orthologs were found to undergone positive selection in T1 versus T2, T1 versus T3, and T2 versus T3, respectively, and these orthologs were enriched in metabolic pathways including "Terpenoid backbone biosynthesis", "Valine, leucine and isoleucine biosynthesis", "Butanoate metabolism", "C5-Branched dibasic acid metabolism" "Pantothenate and CoA biosynthesis". We also detected significant molecular footprints of a recent (about 9.04 MYA), medium (about 43.44 MYA) and an ancient (about 116.39 MYA) WGD events that occurred in the evolutionary history of three blueberry species. CONCLUSION Some important functional genes revealed positive selection effect in blueberry. At least three rounds of WGD events were detected in the evolutionary history of blueberry species. Our work provides insights about the genetic mechanism of adaptive evolution in blueberry and species radiation of Vaccinium in short geological scale time.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Health and Life Science, Kaili University, Kaili City, 556011 Guizhou Province China
| | - Fei Nie
- Biological institute of Guizhou Province, Guiyang City, 556000 Guizhou Province China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong Province China
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
29
|
Wang J, Yu J, Li Y, Wei C, Guo H, Liu Y, Zhang J, Li X, Wang X. Sequential Paleotetraploidization shaped the carrot genome. BMC PLANT BIOLOGY 2020; 20:52. [PMID: 32005164 PMCID: PMC6995200 DOI: 10.1186/s12870-020-2235-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/31/2019] [Indexed: 06/02/2023]
Abstract
BACKGROUND Carrot (Daucus carota subsp. carota L.) is an important root crop with an available high-quality genome. The carrot genome is thought to have undergone recursive paleo-polyploidization, but the extent, occurrences, and nature of these events are not clearly defined. RESULTS Using a previously published comparative genomics pipeline, we reanalysed the carrot genome and characterized genomic fractionation, as well as gene loss and retention, after each of the two tetraploidization events and inferred a dominant and sensitive subgenome for each event. In particular, we found strong evidence of two sequential tetraploidization events, with one (Dc-α) approximately 46-52 million years ago (Mya) and the other (Dc-β) approximately 77-87 Mya, both likely allotetraploidization in nature. The Dc-β event was likely common to all Apiales plants, occurring around the divergence of Apiales-Bruniales and after the divergence of Apiales-Asterales, likely playing an important role in the derivation and divergence of Apiales species. Furthermore, we found that rounds of polyploidy events contributed to the expansion of gene families responsible for plastidial methylerythritol phosphate (MEP), the precursor of carotenoid accumulation, and shaped underlying regulatory pathways. The alignment of orthologous and paralogous genes related to different events of polyploidization and speciation constitutes a comparative genomics platform for studying Apiales, Asterales, and many other related species. CONCLUSIONS Hierarchical inference of homology revealed two tetraploidization events that shaped the carrot genome, which likely contributed to the successful establishment of Apiales plants and the expansion of MEP, upstream of the carotenoid accumulation pathway.
Collapse
Affiliation(s)
- Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- College of Mathematics and Science, Handan University, Handan, 056005 Hebei China
| | - Jigao Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Chendan Wei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - He Guo
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Ying Liu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Jin Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Xiuqing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Frederiction, New Brunswick E3B 4Z7 Canada
| | - Xiyin Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
- School of Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| |
Collapse
|
30
|
Kou Y, Zhang L, Fan D, Cheng S, Li D, Hodel RGJ, Zhang Z. Evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae), in south-east China during the late Neogene: old lineage, young populations. ANNALS OF BOTANY 2020; 125:105-117. [PMID: 31765468 PMCID: PMC6948213 DOI: 10.1093/aob/mcz153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Many monotypic gymnosperm lineages in south-east China paradoxically remain in relict status despite long evolutionary histories and ample opportunities for allopatric speciation, but this paradox has received little attention and has yet to be resolved. Here, we address this issue by investigating the evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae). METHODS DNA sequences from two chloroplast regions and 14 nuclear loci were obtained for 134 samples. The demographic history was inferred and the contribution of isolation by environment (IBE) in patterning genetic divergence was compared with that of isolation by distance (IBD). KEY RESULTS Three genetic clusters were identified. Approximate Bayesian computation analyses showed that the three clusters diverged in the late Pliocene (~3.68 Ma) and two admixture events were detected. Asymmetric gene flow and similar population divergence times (~ 3.74 Ma) were characterized using the isolation with migration model. Neither IBD nor IBE contributed significantly to genetic divergence, and the contribution of IBE was much smaller than that of IBD. CONCLUSIONS These results suggest that several monotypic relict gymnosperm lineages like P. chienii in south-east China did not remain in situ and undiversified for millions of years. On the contrary, they have been evolving and the extant populations have become established more recently, having insufficient time to speciate. Our findings provide a new perspective for understanding the formation and evolution of the relict gymnosperm flora of China as well as of the Sino-Japanese Flora.
Collapse
Affiliation(s)
- Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Li Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dezhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Richard G J Hodel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G. Genetic and Molecular Control of Floral Organ Identity in Cereals. Int J Mol Sci 2019; 20:E2743. [PMID: 31167420 PMCID: PMC6600504 DOI: 10.3390/ijms20112743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan.
| | - Qasim Raza
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku 39020, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Ajmal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
32
|
Bei X, Shahid MQ, Wu J, Chen Z, Wang L, Liu X. Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility-related genes in neo-tetraploid rice. PLoS One 2019; 14:e0214953. [PMID: 30951558 PMCID: PMC6450637 DOI: 10.1371/journal.pone.0214953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
Autotetraploid rice is a useful germplasm for polyploid rice breeding, however, low seed setting is the major barrier in commercial utilization of autotetraploid rice. Our research group has developed neo-tetraploid rice lines, which have the characteristics of high fertility and heterosis when crossed with autotetraploid rice. In the present study, re-sequencing and RNA-seq were employed to detect global DNA variations and differentially expressed genes (DEGs) during meiosis stage in three neo-tetraploid rice lines compared to their parents, respectively. Here, a total of 4109881 SNPs and 640592 InDels were detected in neo-tetraploid lines compared to the reference genome, and 1805 specific presence/absence variations (PAVs) were detected in three lines. Approximately 12% and 0.5% of the total SNPs and InDels identified in three lines were located in genic regions, respectively. A total of 28 genes, harboring at least one of the large-effect SNP and/or InDel which affect the integrity of the encoded protein, were identified in the three lines. Together, 324 specific mutation genes, including 52 meiosis-related genes and 8 epigenetics-related genes were detected in neo-tetraploid rice compared to their parents. Of these 324 genes, five meiosis-related and three epigenetics-related genes displayed differential expressions during meiosis stage. Notably, 498 specific transcripts, 48 differentially expressed transposons and 245 differentially expressed ncRNAs were also detected in neo-tetraploid rice. Our results suggested that genomic structural reprogramming, DNA variations and differential expressions of some important meiosis and epigenetics related genes might be associated with high fertility in neo-tetraploid rice.
Collapse
Affiliation(s)
- Xuejun Bei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinwen Wu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhixiong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lan Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
33
|
Lian S, Liu T, Zhang Z, Yuan H, Wang L, Cheng L. Neighboring genes are closely related to whole genome duplications after their separation. Interdiscip Sci 2019; 11:655-667. [PMID: 30877640 DOI: 10.1007/s12539-019-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The gene order in a eukaryotic genome is not random. Some neighboring genes show specific similarities, while others become separated during evolution. Whole genome duplication events (WGDs) have been recognized as an important evolutionary force. The potential relationship between the separation of neighboring genes and WGDs needs to be investigated. In this study, we investigated whether there is a potential relationship between separated neighboring gene pairs and WGDs, and the mechanism by which neighboring genes are separated. Additionally, we studied whether neighboring genes tend to show intrachromosomal colocalization after their neighborhood was disrupted and the factors facilitating the intrachromosomal colocalization of separated neighboring genes. RESULTS The separation of neighboring gene pairs is closely related to whole genome duplication events. Furthermore, we found that there is a double linear relationship between separated neighboring genes, total genes, and WGDs. The process of separation of neighboring genes caused by WGDs is also not random but abides by the double linear model. Separated neighboring gene pairs tend to show intrachromosomal colocalization. The conservativism of separated neighboring genes and histone modification facilitate the intrachromosomal colocalization of neighboring genes after their separation. CONCLUSIONS These results provide new insight into the understanding of evolutionary roles of locations and the relationship of neighboring gene pairs with whole genome duplications. Furthermore, understanding the proposed mechanism for intrachromosomal colocalization of separated genes benefits our knowledge of chromosomal interactions in the nucleus.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Tianliang Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hongyu Yuan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- College of Life Sciences, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
34
|
Panchy NL, Azodi CB, Winship EF, O'Malley RC, Shiu SH. Expression and regulatory asymmetry of retained Arabidopsis thaliana transcription factor genes derived from whole genome duplication. BMC Evol Biol 2019; 19:77. [PMID: 30866803 PMCID: PMC6416927 DOI: 10.1186/s12862-019-1398-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Transcription factors (TFs) play a key role in regulating plant development and response to environmental stimuli. While most genes revert to single copy after whole genome duplication (WGD) event, transcription factors are retained at a significantly higher rate. Little is known about how TF duplicates have diverged in their expression and regulation, the answer to which may contribute to a better understanding of the elevated retention rate among TFs. Results Here we assessed what features may explain differences in the retention of TF duplicates and other genes using Arabidopsis thaliana as a model. We integrated 34 expression, sequence, and conservation features to build a linear model for predicting the extent of duplicate retention following WGD events among TFs and 19 groups of genes with other functions. We found that TFs was the least well predicted, demonstrating the features of TFs are substantially deviated from duplicate genes in other function groups. Consistent with this, the evolution of TF expression patterns and cis-regulatory cites favors the partitioning of ancestral states among the resulting duplicates: one “ancestral” TF duplicate retains most ancestral expression and cis-regulatory sites, while the “non-ancestral” duplicate is enriched for novel regulatory sites. By modeling the retention of ancestral expression and cis-regulatory states in duplicate pairs using a system of differential equations, we found that TF duplicate pairs in a partitioned state are preferentially maintained. Conclusions These TF duplicates with asymmetrically partitioned ancestral states are likely maintained because one copy retains ancestral functions while the other, at least in some cases, acquires novel cis-regulatory sites that may be important for novel, adaptive traits. Electronic supplementary material The online version of this article (10.1186/s12862-019-1398-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas L Panchy
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA.,Present address: NIMBioS, University of Tennessee, Claxton Bldg. 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996-3410, USA
| | - Christina B Azodi
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Eamon F Winship
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Present address: MYcroarray, 5692 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | | | - Shin-Han Shiu
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Plant Biology Laboratories, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA.
| |
Collapse
|
35
|
Pont C, Wagner S, Kremer A, Orlando L, Plomion C, Salse J. Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biol 2019; 20:29. [PMID: 30744646 PMCID: PMC6369560 DOI: 10.1186/s13059-019-1627-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How contemporary plant genomes originated and evolved is a fascinating question. One approach uses reference genomes from extant species to reconstruct the sequence and structure of their common ancestors over deep timescales. A second approach focuses on the direct identification of genomic changes at a shorter timescale by sequencing ancient DNA preserved in subfossil remains. Merged within the nascent field of paleogenomics, these complementary approaches provide insights into the evolutionary forces that shaped the organization and regulation of modern genomes and open novel perspectives in fostering genetic gain in breeding programs and establishing tools to predict future population changes in response to anthropogenic pressure and global warming.
Collapse
Affiliation(s)
- Caroline Pont
- INRA-UCA UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, 63100, Clermont-Ferrand, France
| | - Stefanie Wagner
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, allées Jules Guesde, Bâtiment A, 31000, Toulouse, France.,INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Antoine Kremer
- INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, allées Jules Guesde, Bâtiment A, 31000, Toulouse, France.,Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade, 1350K, Copenhagen, Denmark
| | - Christophe Plomion
- INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Jerome Salse
- INRA-UCA UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, 63100, Clermont-Ferrand, France.
| |
Collapse
|
36
|
Silva MDS, Funch LS, da Silva LB. The growth ring concept: seeking a broader and unambiguous approach covering tropical species. Biol Rev Camb Philos Soc 2019; 94:1161-1178. [PMID: 30681759 DOI: 10.1111/brv.12495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
Abstract
The concept of growth rings is little discussed in the literature and their treatment remains somewhat confusing in terms of the diversity of structures described. This situation has a major impact on the study of growth rings in tropical species, in which variations and complexity are greater and accuracy of identification less good. The rigid conceptual delimitations used by dendrochronologists and wood anatomists of temperate regions cannot be applied to the study of growth rings in most tropical species, which has led to neglect of this subject. With the objective of discussing the concept of growth rings, the present study consists of a survey of anatomical, periodicity, causal and evolutionary aspects of the treatment of these structures as evidenced in previous studies, and the evaluation of their application and limitations to the development of this concept. Anatomical aspects arise through radial integrity, or the presence of early and late wood; the degree of distinction of the rings, which may vary from well to poorly defined; and tangential continuity, meaning that rings may form a complete circle in the transverse section of the trunk, or instead be tangentially discontinuous, lens-shaped or in wedges. In addition there are a diversity of anatomical markers which enable us to recognize growth rings. Regarding periodicity, the rings may be annual, infra-annual or supra-annual. Causal aspects include genetic, endogenous and environmental components. Evolutionary aspects continue to be insufficiently investigated, and although most comparative studies treat growth rings recognized by different markers as though they were a single character, it remains questionable whether they can be regarded as homologous or the result of homoplasy. We conclude that the elaboration of a robust but broad definition which can include all the variation observed in growth rings of tropical species is a complex task, which is only possible by overcoming the restrictions adopted by dendrochronologists and wood anatomists of temperate regions for whom growth rings are essentially annual, strongly demarcated, tangentially continuous and restricted to the most pronounced markers.
Collapse
Affiliation(s)
- Marcelo Dos S Silva
- Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Universitária, s/n, Feira de Santana, BA 44.031-460, Brazil.,Laboratório de Anatomia Vegetal e Identificação de Madeiras (LAVIM), Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, Campus de Ondina, 147, Salvador, BA 40.170-290, Brazil
| | - Ligia S Funch
- Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Universitária, s/n, Feira de Santana, BA 44.031-460, Brazil
| | - Lazaro B da Silva
- Laboratório de Anatomia Vegetal e Identificação de Madeiras (LAVIM), Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, Campus de Ondina, 147, Salvador, BA 40.170-290, Brazil
| |
Collapse
|
37
|
Mohanta TK, Khan AL, Hashem A, Allah EFA, Yadav D, Al-Harrasi A. Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC PLANT BIOLOGY 2019; 19:39. [PMID: 30669974 PMCID: PMC6341768 DOI: 10.1186/s12870-018-1625-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/28/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chloroplasts are one of the most indispensable organelles that make life forms on the earth possible by their capacity to photosynthesize. These organelles possess a circular genome with a number of coding genes responsible for self-regulation. tRNAs are an important evolutionary-conserved gene family that are responsible for protein translation. However, within the chloroplast genome, tRNA machinery are poorly understood. RESULTS In the present study, the chloroplast genome of six monocot plants, Oryza nivara (NC_005973), Oryza sativa (NC_001320), Sachharum officinarum (NC_006084), Sorghum bicolor (NC_008602), Triticum aestivum (NC_002762), and Zea mays (NC_001666) were downloaded and analyzed to identify tRNA sequences. Further analysis of the tRNA sequences in the chloroplast genomes of the monocot plants resulted in the identification of several novel features. The length of tRNAs in the chloroplast genome of the monocot plants ranged from 59 to 155 nucleotides. Pair-wise sequence alignment revealed the presence of a conserved A-C-x-U-A-x-U-A-x-U-x5-U-A-A nucleotide consensus sequence. In addition, the tRNAs in chloroplast genomes of the monocot plants also contain 21-28 anti-codons against 61 sense codons in the genome. They also contain a group I intron and a C-A-U anti-codon for tRNAIle, which is a common anti-codon of tRNAMet. Evolutionary analysis indicates that tRNAs in the chloroplast genome have evolved from multiple common ancestors, and tRNAMet appears to be the ancestral tRNA that underwent duplication and diversification to give rise to other tRNAs. CONCLUSION The results obtained from the study of chloroplast tRNA will greatly help to increase our understanding of tRNA biology at a new level. Functional studies of the reported novel aspects of the chloroplast tRNA of the monocot plants will greatly help to decipher their roles in diverse cellular processes.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Elsayed Fathi Abd_ Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541 Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| |
Collapse
|
38
|
Histology versus phylogeny: Viewing plant embryogenesis from an evo-devo perspective. Curr Top Dev Biol 2019; 131:545-564. [DOI: 10.1016/bs.ctdb.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Liu C, Zhang TZ. Functional diversifications of GhERF1 duplicate genes after the formation of allotetraploid cotton. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:60-74. [PMID: 30578593 DOI: 10.1111/jipb.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Whole genome duplication, a prevalent force of evolution in plants, results in massive genome restructuring in different organisms. Roles of the resultant duplicated genes are poorly understood, both functionally and evolutionarily. In the present study, differentially expressed ethylene responsive factors (GhERF1s), anchored on Chr-A07 and Chr-D07, were isolated from a high-yielding cotton hybrid (XZM2) and its parents. The GhERF1 was located in the B3 subgroup of the ethylene responsive factors subfamily involved in conferring tolerance to abiotic stress. Nucleotide sequence analysis of 524 diverse accessions, together with quantitative real-time polymerase chain reaction analysis, elucidated that de-functionalization of GhERF1-7A occurred due to one base insertion following formation of the allotetraploid cotton. Our quantitative trait loci and association mapping analyses highlighted a role for GhERF1-7A in conferring high boll number per plant in modern cotton cultivars. Overexpression of GhERF1-7A in transgenic Arabidopsis resulted in a substantial increase in the number of siliques and total seed yield. Neo-functionalization of GhERF1-7A was also observed in modern cultivars rather than in races and/or landraces, further supporting its role in the development of high-yielding cotton cultivars. Both de- and neo-functionalization occurred in one of the duplicate genes, thus providing new genomic insight into the evolution of allotetraploid cotton species.
Collapse
Affiliation(s)
- Chunxiao Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Zhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- Crop Science Institute, Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
40
|
Deng G, Cheung FMH, Sun Z, Peng X, Li S, Gong P, Cai L. Near-infrared fluorescence imaging for vascular visualization and fungal detection in plants. Chem Commun (Camb) 2018; 54:13240-13243. [PMID: 30406774 DOI: 10.1039/c8cc07782g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We found that heptamethine dye IR-820 showed distinct emission peaks in both the NIR-Ia and NIR-Ib windows. IR-820 yielded images of vascular structures in the NIR-Ib window with unprecedented details. NIR-Ib fluorescence imaging was useful not only for studying plant transpiration, but also for detecting and differentiating fungal pathogens.
Collapse
Affiliation(s)
- Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wang JP, Yu JG, Li J, Sun PC, Wang L, Yuan JQ, Meng FB, Sun SR, Li YX, Lei TY, Pan YX, Ge WN, Wang ZY, Zhang L, Song XM, Liu C, Duan XQ, Shen SQ, Xie YQ, Hou Y, Zhang J, Wang JY, Wang X. Two Likely Auto-Tetraploidization Events Shaped Kiwifruit Genome and Contributed to Establishment of the Actinidiaceae Family. iScience 2018; 7:230-240. [PMID: 30267683 PMCID: PMC6161637 DOI: 10.1016/j.isci.2018.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023] Open
Abstract
The genome of kiwifruit (Actinidia chinensis) was sequenced previously, the first in the Actinidiaceae family. It was shown to have been affected by polyploidization events, the nature of which has been elusive. Here, we performed a reanalysis of the genome and found clear evidence of 2 tetraploidization events, with one occurring ∼50–57 million years ago (Mya) and the other ∼18–20 Mya. Two subgenomes produced by each event have been under balanced fractionation. Moreover, genes were revealed to express in a balanced way between duplicated copies of chromosomes. Besides, lowered evolutionary rates of kiwifruit genes were observed. These findings could be explained by the likely auto-tetraploidization nature of the polyploidization events. Besides, we found that polyploidy contributed to the expansion of key functional genes, e.g., vitamin C biosynthesis genes. The present work also provided an important comparative genomics resource in the Actinidiaceae and related families. Two independent paleo-tetraploidization events may have occurred in Actinidiaceae The tetraploidization events are likely autotetraploid in nature These events contribute to the expansion of key trait genes Hierarchical deconvolution allowed analysis of the kiwifruit genome interweaving homology
Collapse
Affiliation(s)
- Jin-Peng Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Ji-Gao Yu
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jing Li
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Peng-Chuan Sun
- Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Li Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jia-Qing Yuan
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Fan-Bo Meng
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Sang-Rong Sun
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yu-Xian Li
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Tian-Yu Lei
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yu-Xin Pan
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Wei-Na Ge
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Zhen-Yi Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Xiao-Ming Song
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Chao Liu
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Xue-Qian Duan
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Shao-Qi Shen
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yang-Qin Xie
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yue Hou
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jin Zhang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jian-Yu Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China.
| |
Collapse
|
42
|
Dong S, Zhao C, Chen F, Liu Y, Zhang S, Wu H, Zhang L, Liu Y. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics 2018; 19:614. [PMID: 30107780 PMCID: PMC6092842 DOI: 10.1186/s12864-018-4991-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mitochondrial genomes of flowering plants (angiosperms) are highly dynamic in genome structure. The mitogenome of the earliest angiosperm Amborella is remarkable in carrying rampant foreign DNAs, in contrast to Liriodendron, the other only known early angiosperm mitogenome that is described as 'fossilized'. The distinctive features observed in the two early flowering plant mitogenomes add to the current confusions of what early flowering plants look like. Expanded sampling would provide more details in understanding the mitogenomic evolution of early angiosperms. Here we report the complete mitochondrial genome of water lily Nymphaea colorata from Nymphaeales, one of the three orders of the earliest angiosperms. RESULTS Assembly of data from Pac-Bio long-read sequencing yielded a circular mitochondria chromosome of 617,195 bp with an average depth of 601×. The genome encoded 41 protein coding genes, 20 tRNA and three rRNA genes with 25 group II introns disrupting 10 protein coding genes. Nearly half of the genome is composed of repeated sequences, which contributed substantially to the intron size expansion, making the gross intron length of the Nymphaea mitochondrial genome one of the longest among angiosperms, including an 11.4-Kb intron in cox2, which is the longest organellar intron reported to date in plants. Nevertheless, repeat mediated homologous recombination is unexpectedly low in Nymphaea evidenced by 74 recombined reads detected from ten recombinationally active repeat pairs among 886,982 repeat pairs examined. Extensive gene order changes were detected in the three early angiosperm mitogenomes, i.e. 38 or 44 events of inversions and translocations are needed to reconcile the mitogenome of Nymphaea with Amborella or Liriodendron, respectively. In contrast to Amborella with six genome equivalents of foreign mitochondrial DNA, not a single horizontal gene transfer event was observed in the Nymphaea mitogenome. CONCLUSIONS The Nymphaea mitogenome resembles the other available early angiosperm mitogenomes by a similarly rich 64-coding gene set, and many conserved gene clusters, whereas stands out by its highly repetitive nature and resultant remarkable intron expansions. The low recombination level in Nymphaea provides evidence for the predominant master conformation in vivo with a highly substoichiometric set of rearranged molecules.
Collapse
Affiliation(s)
- Shanshan Dong
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chaoxian Zhao
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouzhou Zhang
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, 518083 China
| |
Collapse
|
43
|
Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. JOURNAL OF TROPICAL ECOLOGY 2018. [DOI: 10.1017/s0266467418000202] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract:The main phases of plant dispersal into, and out of the South-East Asian region are discussed in relation to plate tectonics and changing climates. The South-East Asian area was a backwater of angiosperm evolution until the collision of the Indian Plate with Asia during the early Cenozoic. The Late Cretaceous remains poorly understood, but the Paleocene topography was mountainous, and the climate was probably seasonally dry, with the result that frost-tolerant conifers were common in upland areas and a low-diversity East Asian aspect flora occurred at low altitudes. India's drift into the perhumid low latitudes during the Eocene brought opportunities for the dispersal into South-East Asia of diverse groups of megathermal angiosperms which originated in West Gondwana. They successfully dispersed and became established across the South-East Asian region, initially carried by wind or birds, beginning at about 49 Ma, and with a terrestrial connection after about 41 Ma. Many Paleocene lineages probably went extinct, but a few dispersed in the opposite direction into India. The Oligocene was a time of seasonally dry climates except along the eastern and southern seaboard of Sundaland, but with the collision of the Australian Plate with Sunda at the end of the Oligocene widespread perhumid conditions became established across the region. The uplift of the Himalaya, coinciding with the middle Miocene thermal maximum, created opportunities for South-East Asian evergreen taxa to disperse into north India, and then with the late Miocene strengthening of the Indian monsoon, seasonally dry conditions expanded across India and Indochina, resulting eventually in the disappearance of closed forest over much of the Indian peninsula. This drying affected Sunda, but it is thought unlikely that a ‘savanna’ corridor was present across Sunda during the Pleistocene. Some dispersals from Australasia occurred following its collision with Sunda and following the uplift of New Guinea and the islands of Wallacea, Gondwanan montane taxa also found their way into the region. Phases of uplift across the Sunda region created opportunities for allopatric speciation and further dispersal opportunities. There is abundant evidence to suggest that the Pleistocene refuge theory applies to the South-East Asian region.
Collapse
|
44
|
Woźniak NJ, Sicard A. Evolvability of flower geometry: Convergence in pollinator-driven morphological evolution of flowers. Semin Cell Dev Biol 2018; 79:3-15. [DOI: 10.1016/j.semcdb.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
|
45
|
Moriyama Y, Koshiba-Takeuchi K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Brief Funct Genomics 2018; 17:329-338. [DOI: 10.1093/bfgp/ely007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuuta Moriyama
- Institute of Science and Technology Austria (IST), Klosterneuburg, Austria
| | | |
Collapse
|
46
|
Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 84:AEM.01553-17. [PMID: 29079624 PMCID: PMC5734042 DOI: 10.1128/aem.01553-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/23/2017] [Indexed: 12/02/2022] Open
Abstract
Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5′ sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two members of this family exhibit aliphatic and aryl-aldehyde reductase activity, and further that such activity can be recovered from pseudogenized AAD genes via ancestral-state reconstruction. The phylogeny of yeast AAD genes suggests that these proteins may have played an important ancestral role in detoxifying aromatic aldehydes in ligninolytic fungi. However, in yeast adapted to niches rich in sugars, AAD genes become subject to mutational erosion. Our findings shed new light on the selective pressures and molecular mechanisms by which genes undergo pseudogenization.
Collapse
|
47
|
Chanderbali AS, Berger BA, Howarth DG, Soltis DE, Soltis PS. Evolution of floral diversity: genomics, genes and gamma. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0509. [PMID: 27994132 DOI: 10.1098/rstb.2015.0509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 11/12/2022] Open
Abstract
A salient feature of flowering plant diversification is the emergence of a novel suite of floral features coinciding with the origin of the most species-rich lineage, Pentapetalae. Advances in phylogenetics, developmental genetics and genomics, including new analyses presented here, are helping to reconstruct the specific evolutionary steps involved in the evolution of this clade. The enormous floral diversity among Pentapetalae appears to be built on a highly conserved ground plan of five-parted (pentamerous) flowers with whorled phyllotaxis. By contrast, lability in the number and arrangement of component parts of the flower characterize the early-diverging eudicot lineages subtending Pentapetalae. The diversification of Pentapetalae also coincides closely with ancient hexaploidy, referred to as the gamma whole-genome triplication, for which the phylogenetic timing, mechanistic details and molecular evolutionary consequences are as yet not fully resolved. Transcription factors regulating floral development often persist in duplicate or triplicate in gamma-derived genomes, and both individual genes and whole transcriptional programmes exhibit a shift from broadly overlapping to tightly defined expression domains in Pentapetalae flowers. Investigations of these changes associated with the origin of Pentapetalae can lead to a more comprehensive understanding of what is arguably one of the most important evolutionary diversification events within terrestrial plants.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Andre S Chanderbali
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Brent A Berger
- Department of Biological Sciences, St John's University, Queens, NY 11439, USA
| | - Dianella G Howarth
- Department of Biological Sciences, St John's University, Queens, NY 11439, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA .,Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
48
|
Zhang Y, Ma LJ. Deciphering Pathogenicity of Fusarium oxysporum From a Phylogenomics Perspective. ADVANCES IN GENETICS 2017; 100:179-209. [PMID: 29153400 DOI: 10.1016/bs.adgen.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fusarium oxysporum is a large species complex of both plant and human pathogens that attack a diverse array of species in a host-specific manner. Comparative genomic studies have revealed that the host-specific pathogenicity of the F. oxysporum species complex (FOSC) was determined by distinct sets of supernumerary (SP) chromosomes. In contrast to common vertical transfer, where genetic materials are transmitted via cell division, SP chromosomes can be transmitted horizontally between phylogenetic lineages, explaining the polyphyletic nature of the host-specific pathogenicity of the FOSC. The existence of a diverse array of SP chromosomes determines the broad host range of this species complex, while the conserved core genome maintains essential house-keeping functions. Recognition of these SP chromosomes enables the functional and structural compartmentalization of F. oxysporum genomes. In this review, we examine the impact of this group of cross-kingdom pathogens on agricultural productivity and human health. Focusing on the pathogenicity of F. oxysporum in the phylogenomic framework of the genus Fusarium, we elucidate the evolution of pathogenicity within the FOSC. We conclude that a population genomics approach within a clearly defined phylogenomic framework is essential not only for understanding the evolution of the pathogenicity mechanism but also for identifying informative candidates associated with pathogenicity that can be developed as targets in disease management programs.
Collapse
Affiliation(s)
- Yong Zhang
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Li-Jun Ma
- University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
49
|
Zhang Y, Klepsch M, Jansen S. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. PLANT, CELL & ENVIRONMENT 2017; 40:2133-2146. [PMID: 28667823 DOI: 10.1111/pce.13014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Vesselless wood represents a rare phenomenon within the angiosperms, characterizing Amborellaceae, Trochodendraceae and Winteraceae. Anatomical observations of bordered pits and their pit membranes based on light, scanning and transmission electron microscopy (SEM and TEM) are required to understand functional questions surrounding vesselless angiosperms and the potential occurrence of cryptic vessels. Interconduit pit membranes in 11 vesselless species showed a similar ultrastructure as mesophytic vessel-bearing angiosperms, with a mean thickness of 245 nm (± 53, SD; n = six species). Shrunken, damaged and aspirated pit membranes, which were 52% thinner than pit membranes in fresh samples (n = four species), occurred in all dried-and-rehydrated samples, and in fresh latewood of Tetracentron sinense and Trochodendron aralioides. SEM demonstrated that shrunken pit membranes showed artificially enlarged, > 100 nm wide pores. Moreover, perfusion experiments with stem segments of Drimys winteri showed that 20 and 50 nm colloidal gold particles only passed through 2 cm long dried-and-rehydrated segments, but not through similar sized fresh ones. These results indicate that pit membrane shrinkage is irreversible and associated with a considerable increase in pore size. Moreover, our findings suggest that pit membrane damage, which may occur in planta, could explain earlier records of vessels in vesselless angiosperms.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
50
|
Roodt D, Lohaus R, Sterck L, Swanepoel RL, Van de Peer Y, Mizrachi E. Evidence for an ancient whole genome duplication in the cycad lineage. PLoS One 2017; 12:e0184454. [PMID: 28886111 PMCID: PMC5590961 DOI: 10.1371/journal.pone.0184454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/24/2017] [Indexed: 11/26/2022] Open
Abstract
Contrary to the many whole genome duplication events recorded for angiosperms (flowering plants), whole genome duplications in gymnosperms (non-flowering seed plants) seem to be much rarer. Although ancient whole genome duplications have been reported for most gymnosperm lineages as well, some are still contested and need to be confirmed. For instance, data for ginkgo, but particularly cycads have remained inconclusive so far, likely due to the quality of the data available and flaws in the analysis. We extracted and sequenced RNA from both the cycad Encephalartos natalensis and Ginkgo biloba. This was followed by transcriptome assembly, after which these data were used to build paralog age distributions. Based on these distributions, we identified remnants of an ancient whole genome duplication in both cycads and ginkgo. The most parsimonious explanation would be that this whole genome duplication event was shared between both species and had occurred prior to their divergence, about 300 million years ago.
Collapse
Affiliation(s)
- Danielle Roodt
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
| | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Riaan L. Swanepoel
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- * E-mail:
| |
Collapse
|