1
|
Andreyeva AY, Kukhareva TA, Gostyukhina OL, Vialova OY, Tkachuk AA, Chelebieva ES, Podolskaya MS, Borovkov AB, Bogacheva EA, Lavrichenko DS, Kladchenko ES. Impacts of ocean acidification and hypoxia on cellular immunity, oxygen consumption and antioxidant status in Mediterranean mussel. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109932. [PMID: 39343062 DOI: 10.1016/j.fsi.2024.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
There is growing recognition that the hypoxic regions of the ocean are also becoming more acidic due to increasing levels of global carbon dioxide emissions. The impact of water acidification on marine life is largely unknown, as most previous studies have not taken into account the effects of hypoxia, which may affect how organisms respond to low pH levels. In this study, we experimentally examined the consequences of water acidification in combination with normoxic or hypoxic conditions on cellular immune parameters in Mediterranean mussels. We measured total hemocyte counts in hemolymph, the cellular composition of hemolymph, phagocytosis, reactive oxygen species (ROS) production. General response of the organism was evaluated on the basis of the activity of antioxidant enzymes in the hepatopancreas, as well as respiratory rates over an 8-day exposure period. The mussels were exposed to low pH conditions (7.3), either under normoxic conditions (dissolved oxygen concentration of 8 mg/L) or hypoxic conditions (dissolved oxygen concentration of 2 mg/L). The parameters were assessed at days 1, 3, 6, and 8 of the experiment. Experimental acidification under normoxic conditions reduced THC and ROS production by hemocytes during later stages of exposure, but phagocytic activity (PA) only decreased at day 3 and then recovered. Combined acidification and hypoxia suppressed PA in hemocytes at the beginning of exposure, while hemocyte ROS production and THC decreased by the end of the experiment. The hemolymph cellular composition and activity of antioxidant enzymes were unaffected by acidified conditions under different oxygen regimes, but mussel respiratory rate (RR) decreased with a more significant reduction in oxygen consumption under hypoxia. Mussels showed a relatively high tolerance to acidification in combination with various dissolved oxygen levels, although prolonged acidification exposure led to increased detrimental effects on immunity and metabolism.
Collapse
Affiliation(s)
- Alexandra Y Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Tatyana A Kukhareva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Olga L Gostyukhina
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Oksana Y Vialova
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Anastasia A Tkachuk
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Andrey B Borovkov
- Department of Biotechnology and Phytoresources, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Elizaveta A Bogacheva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Strain EMA, Swearer SE, Ambler I, Morris RL, Nickols KJ. Assessing the role of natural kelp forests in modifying seawater chemistry. Sci Rep 2024; 14:22386. [PMID: 39333559 PMCID: PMC11436852 DOI: 10.1038/s41598-024-72801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Climate change is causing widespread impacts on seawater pH through ocean acidification (OA). Kelp forests, in some locations can buffer the effects of OA through photosynthesis. However, the factors influencing this variation remain poorly understood. To address this gap, we conducted a literature review and field deployments of pH and dissolved oxygen (DO) loggers within four habitats: intact kelp forest, moderate kelp cover, sparse kelp cover and barrens at one site in Port Phillip Bay, a wind-wave dominated coastal embayment in Victoria, Australia. Additionally, a wave logger was placed directly in front of the intact kelp forest and barrens habitats. Most studies reported that kelp increased seawater pH and DO during the day, compared to controls without kelp. This effect was more pronounced in densely populated forests, particularly in shallow, sheltered conditions. Our field study was broadly consistent with these observations, with intact kelp habitat having higher seawater pH than habitats with less kelp or barrens and higher seawater DO compared to barrens, particularly in the afternoon and during calmer wave conditions. Although kelp forests can provide local refuges to biota from OA, the benefits are variable through time and may be reduced by declines in kelp density and increased wave exposure.
Collapse
Affiliation(s)
- Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia.
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS, 7053, Australia.
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Oceans Institute, The University of Western Australia, Crawley, WA, 6009, Australia
| | - India Ambler
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rebecca L Morris
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, CA, 91330, USA
- Ocean Visions, Leesburg, VA, 20176, USA
| |
Collapse
|
3
|
Zhou J, Zheng Y, Hou L, Qi L, Mao T, Yin G, Liu M. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N 2O emission. WATER RESEARCH 2024; 261:122041. [PMID: 38972235 DOI: 10.1016/j.watres.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Acidification of coastal waters, synergistically driven by increasing atmospheric carbon dioxide (CO2) and intensive land-derived nutrient inputs, exerts significant stresses on the biogeochemical cycles of coastal ecosystem. However, the combined effects of anthropogenic nitrogen (N) inputs and aquatic acidification on nitrification, a critical process of N cycling, remains unclear in estuarine and coastal ecosystems. Here, we showed that increased loading of ammonium (NH4+) in estuarine and coastal waters alleviated the inhibitory effect of acidification on nitrification rates but intensified the production of the potent greenhouse gas nitrous oxide (N2O), thus accelerating global climate change. Metatranscriptomes and natural N2O isotopic signatures further suggested that the enhanced emission of N2O may mainly source from hydroxylamine (NH2OH) oxidation rather than from nitrite (NO2-) reduction pathway of nitrifying microbes. This study elucidates how anthropogenic N inputs regulate the effects of coastal acidification on nitrification and associated N2O emissions, thereby enhancing our ability to predict the feedbacks of estuarine and coastal ecosystems to climate change and human perturbations.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Tieqiang Mao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
4
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
5
|
Khalil M, Stuhr M, Kunzmann A, Westphal H. Simultaneous ocean acidification and warming do not alter the lipid-associated biochemistry but induce enzyme activities in an asterinid starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173000. [PMID: 38719050 DOI: 10.1016/j.scitotenv.2024.173000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Ocean acidification and warming affect marine ecosystems from the molecular scale in organismal physiology to broad alterations of ecosystem functions. However, knowledge of their combined effects on tropical-subtropical intertidal species remains limited. Pushing the environmental range of marine species away from the optimum initiates stress impacting biochemical metabolic characteristics, with consequences on lipid-associated and enzyme biochemistry. This study investigates lipid-associated fatty acids (FAs) and enzyme activities involved in biomineralization of the tropical-subtropical starfish Aquilonastra yairi in response to projected near-future global change. The starfish were acclimatized to two temperature levels (27 °C, 32 °C) crossed with three pCO2 concentrations (455 μatm, 1052 μatm, 2066 μatm). Total lipid (ΣLC) and FAs composition were unaffected by combined elevated temperature and pCO2, but at elevated temperature, there was an increase in ΣLC, SFAs (saturated FAs) and PUFAs (polyunsaturated FAs), and a decrease in MUFAs (monounsaturated FAs). However, temperature was the sole factor to significantly alter SFAs composition. Positive parabolic responses of Ca-ATPase and Mg-ATPase enzyme activities were detected at 27 °C with elevated pCO2, while stable enzyme activities were observed at 32 °C with elevated pCO2. Our results indicate that the lipid-associated biochemistry of A. yairi is resilient and capable of coping with near-future ocean acidification and warming. However, the calcification-related enzymes Ca-ATPase and Mg-ATPase activity appear to be more sensitive to pCO2/pH changes, leading to vulnerability concerning the skeletal structure.
Collapse
Affiliation(s)
- Munawar Khalil
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany; Department of Marine Science, Faculty of Agriculture, Universitas Malikussaleh, Reuleut Main Campus, 24355 North Aceh, Indonesia.
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany
| |
Collapse
|
6
|
Tian H, Liu J, Shan X, Cao L, Jin X, Dou S. The incorporation of strontium and barium into the otoliths of the flounder Paralichthys olivaceus at early life stages demonstrates resilience to ocean acidification. JOURNAL OF FISH BIOLOGY 2024; 105:141-152. [PMID: 38653715 DOI: 10.1111/jfb.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Ocean acidification could modify the bioavailability and chemical properties of trace elements in seawater, which could affect their incorporation into the calcareous structures of marine organisms. Fish otoliths, biomineralized ear stones made by aragonite, are suspended within the endolymph fluid of teleosts, indicating that the elemental incorporation of otoliths might also be susceptible to ocean acidification. In this study, we evaluated the combined effects of CO2-induced ocean acidification (pH 8.10, 7.70, and 7.30, corresponding to ocean acidification scenarios under the representative concentration pathway 8.5 model as projected by the Intergovernmental Panel on Climate Change) and water elemental concentrations of strontium (Sr) and barium (Ba; low, medium, and high) on elemental incorporation into otoliths of the flounder Paralichthys olivaceus at early life stages. Our results revealed that the elemental incorporation of Sr and Ba into otoliths was principally dependent on the corresponding water elemental concentrations rather than on ocean acidification. Moreover, the partition coefficients (DMe) of Sr and Ba may stabilize after dynamic equilibrium is reached as the water elemental concentration increases, but are not affected by ocean acidification. Therefore, the incorporation of Sr and Ba into otoliths of the flounder at early life stages may not serve as an effective indicator of ocean acidification. In other words, the findings suggest that ocean acidification does not impact the incorporation of Sr and Ba incorporation into otoliths when tracing the temperature or salinity experiences of the flounder. Our findings will provide new knowledge for understanding the potential ecological effects of ocean acidification on the recruitment dynamics of fish species.
Collapse
Affiliation(s)
- Honglin Tian
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiujuan Shan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xianshi Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shuozeng Dou
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
7
|
Rovira GL, Capdevila P, Zentner Y, Margarit N, Ortega J, Casals D, Figuerola-Ferrando L, Aspillaga E, Medrano A, Pagès-Escolà M, Hereu B, Garrabou J, Linares C. When resilience is not enough: 2022 extreme marine heatwave threatens climatic refugia for a habitat-forming Mediterranean octocoral. J Anim Ecol 2024. [PMID: 38867406 DOI: 10.1111/1365-2656.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
Climate change is impacting ecosystems worldwide, and the Mediterranean Sea is no exception. Extreme climatic events, such as marine heat waves (MHWs), are increasing in frequency, extent and intensity during the last decades, which has been associated with an increase in mass mortality events for multiple species. Coralligenous assemblages, where the octocoral Paramuricea clavata lives, are strongly affected by MHWs. The Medes Islands Marine Reserve (NW Mediterranean) was considered a climate refugia for P. clavata, as their populations were showing some resilience to these changing conditions. In this study, we assessed the impacts of the MHWs that occurred between 2016 and 2022 in seven shallow populations of the octocoral P. clavata from a Mediterranean Marine Protected Area. The years that the mortality rates increased significantly were associated with the ones with strong MHWs, 2022 being the one with higher mortalities. In 2022, with 50 MHW days, the proportion of total affected colonies was almost 70%, with a proportion of the injured surface of almost 40%, reaching levels never attained in our study site since the monitoring was started. We also found spatial variability between the monitored populations. Whereas few of them showed low levels of mortality, others lost around 75% of their biomass. The significant impacts documented here raise concerns about the future of shallow P. clavata populations across the Mediterranean, suggesting that the resilience of this species may not be maintained to sustain these populations face the ongoing warming trends.
Collapse
Affiliation(s)
- Graciel la Rovira
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Pol Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Yanis Zentner
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Margarit
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Julia Ortega
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - David Casals
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Figuerola-Ferrando
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Alba Medrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pagès-Escolà
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Bernat Hereu
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Joaquim Garrabou
- Institut de Ciències del Mar-CSIC, Barcelona, Spain
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
8
|
Patra R, Sarma D. Silver Nanoparticle-Functionalized Postsynthetically Modified Thiol MOF UiO-66-NH-SH for Efficient CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10196-10210. [PMID: 38359330 DOI: 10.1021/acsami.3c18549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Thiols are essential functional groups imparting unique properties, such as reactivity and selectivity, to many vital enzymes and biomolecules. The integration of electronically soft thiol groups within metal-organic frameworks (MOFs) yields elevated reactivity and a pronounced affinity for soft metal ions. However, the scarcity of thiol-based ligands and synthetic challenges hinder the advancement of thiol-based MOFs. To bypass the difficulties of synthesizing thiol MOFs by a direct reaction between thiol-based ligands and corresponding metal salts, postsynthetic modification (PSM) of MOFs is an efficient strategy to introduce thiol functionality. Herein, we have introduced Ag nanoparticles in postsynthetically modified thiol MOFs UiO-66-NH-SH (1) (synthesized by reaction between UiO-66-NH2 and thioglycolic acid) and UiO-66-NH-SH (2) (synthesized by reaction between UiO-66-NH2 and 3-mercaptopropionic acid) to synthesize a series of heterogeneous catalysts for CO2 fixation. Catalysts Cat 1-2 and Cat 3 - 4 were synthesized from UiO-66-NH-SH (1) and UiO-66-NH-SH (2), respectively, by using varying concentrations of silver (AgNO3). Catalyst Ag@UiO-66-NH-SH (1) (Ag = 3.45%; namely Cat 2) shows the highest efficiency for the catalytic conversion of propargylic alcohol and terminal epoxide to the corresponding cyclic carbonates. Finally, a rationalized reaction mechanism is proposed by correlating our results with the current literature. This work presents a viable strategy to utilize the thiol functionality of MOFs (avoiding the complexities associated with synthesizing thiol MOFs directly from thiol ligands) as a platform for introducing catalytically active metal centers and applying them as a heterogeneous catalyst for CO2 fixation reactions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
9
|
Wang J, Zhu YG, Tiedje JM, Ge Y. Global biogeography and ecological implications of cobamide-producing prokaryotes. THE ISME JOURNAL 2024; 18:wrae009. [PMID: 38366262 PMCID: PMC10900890 DOI: 10.1093/ismejo/wrae009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Cobamides, a class of essential coenzymes synthesized only by a subset of prokaryotes, are model nutrients in microbial interaction studies and play significant roles in global ecosystems. Yet, their spatial patterns and functional roles remain poorly understood. Herein, we present an in-depth examination of cobamide-producing microorganisms, drawn from a comprehensive analysis of 2862 marine and 2979 soil metagenomic samples. A total of 1934 nonredundant metagenome-assembled genomes (MAGs) potentially capable of producing cobamides de novo were identified. The cobamide-producing MAGs are taxonomically diverse but habitat specific. They constituted only a fraction of all the recovered MAGs, with the majority of MAGs being potential cobamide users. By mapping the distribution of cobamide producers in marine and soil environments, distinct latitudinal gradients were observed: the marine environment showed peak abundance at the equator, whereas soil environments peaked at mid-latitudes. Importantly, significant and positive links between the abundance of cobamide producers and the diversity and functions of microbial communities were observed, as well as their promotional roles in essential biogeochemical cycles. These associations were more pronounced in marine samples than in soil samples, which suggests a heightened propensity for microorganisms to engage in cobamide sharing in fluid environments relative to the more spatially restricted soil environment. These findings shed light on the global patterns and potential ecological roles of cobamide-producing microorganisms in marine and soil ecosystems, enhancing our understanding of large-scale microbial interactions.
Collapse
Affiliation(s)
- Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, United States
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Klein JD, Maduna SN, Dicken ML, da Silva C, Soekoe M, McCord ME, Potts WM, Hagen SB, Bester‐van der Merwe AE. Local adaptation with gene flow in a highly dispersive shark. Evol Appl 2024; 17:e13628. [PMID: 38283610 PMCID: PMC10810256 DOI: 10.1111/eva.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024] Open
Abstract
Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non-model species, gene-environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome-wide SNPs obtained through a restriction site-associated DNA method (3RAD). A combination of differentiation-based genome-scan (outflank) and genotype-environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation-based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.
Collapse
Affiliation(s)
- Juliana D. Klein
- Molecular Breeding and Biodiversity Research Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - Simo N. Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research—NIBIOSvanvikNorway
| | - Matthew L. Dicken
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- Institute for Coastal and Marine Research (CMR), Ocean Sciences CampusNelson Mandela UniversityGqeberhaSouth Africa
| | - Charlene da Silva
- Department of Forestry, Fisheries and EnvironmentRogge BaySouth Africa
| | - Michelle Soekoe
- Division of Marine ScienceReel Science CoalitionCape TownSouth Africa
| | - Meaghen E. McCord
- South African Shark ConservancyHermanusSouth Africa
- Canadian Parks and Wilderness SocietyVancouverBritish ColumbiaCanada
| | - Warren M. Potts
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research—NIBIOSvanvikNorway
| | - Aletta E. Bester‐van der Merwe
- Molecular Breeding and Biodiversity Research Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
11
|
Zhang Z, Pan K, Liu H. Survival of Nutrient-Starved Diatoms Under Ocean Acidification: Perspective from Nutrient Sensing, Cadmium Detection, and Nitrogen Assimilation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:21. [PMID: 38150047 DOI: 10.1007/s00128-023-03849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Increased anthropogenic emissions of carbon dioxide (CO2) have resulted in ocean acidification (OA) that is intertwined with enhanced ocean stratification. Diatoms are assumed to suffer from a more nutrient-limited condition in the future ocean. This study aimed to explore how OA affects the diatom dynamics under nutrient-poor conditions and the ability of diatoms to perceive nutrients (nitrogen, phosphorus, silicon, and trace metals) and cadmium (Cd) stimuli and assimilate nitrogen when receiving nutrients or Cd supplementation. Our study observed that diatom population grown under OA condition declined faster than those grown under ambient condition. Ocean acidification greatly lower intracellular Ca2+ concentration in diatom cells. Intracellular Ca2+ burst was involved in phosphorus accumulation but not in nitrogen, silicon, essential metals, and cadmium uptake. Our data demonstrate slower NO3- assimilation rates of diatoms grown in acidified seawater. Our study also indicates that diatoms have a poor perception of phosphorus availability under OA condition.
Collapse
Affiliation(s)
- Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
12
|
Fan X, Wang Y, Tang C, Zhang X, He J, Buttino I, Yan X, Liao Z. Metabolic profiling of Mytilus coruscus mantle in response of shell repairing under acute acidification. PLoS One 2023; 18:e0293565. [PMID: 37889901 PMCID: PMC10610157 DOI: 10.1371/journal.pone.0293565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Mytilus coruscus is an economically important marine bivalve mollusk found in the Yangtze River estuary, which experiences dramatic pH fluctuations due to seasonal freshwater input and suffer from shell fracture or injury in the natural environment. In this study, we used intact-shell and damaged-shell M. coruscus and performed metabolomic analysis, free amino acids analysis, calcium-positive staining, and intracellular calcium level tests in the mantle to investigate whether the mantle-specific metabolites can be induced by acute sea-water acidification and understand how the mantle responds to acute acidification during the shell repair process. We observed that both shell damage and acute acidification induced alterations in phospholipids, amino acids, nucleotides, organic acids, benzenoids, and their analogs and derivatives. Glycylproline, spicamycin, and 2-aminoheptanoic acid (2-AHA) are explicitly induced by shell damage. Betaine, aspartate, and oxidized glutathione are specifically induced by acute acidification. Our results show different metabolic patterns in the mussel mantle in response to different stressors, which can help elucidate the shell repair process under ocean acidification. furthermore, metabolic processes related to energy supply, cell function, signal transduction, and amino acid synthesis are disturbed by shell damage and/or acute acidification, indicating that both shell damage and acute acidification increased energy consumption, and disturb phospholipid synthesis, osmotic regulation, and redox balance. Free amino acid analysis and enzymatic activity assays partially confirmed our findings, highlighting the adaptation of M. coruscus to dramatic pH fluctuations in the Yangtze River estuary.
Collapse
Affiliation(s)
- Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Changsheng Tang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| |
Collapse
|
13
|
Aboal JR, Pacín C, García-Seoane R, Varela Z, González AG, Fernández JA. Global decrease in heavy metal concentrations in brown algae in the last 90 years. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130511. [PMID: 36463737 DOI: 10.1016/j.jhazmat.2022.130511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario of global change, heavy metal pollution is of major concern because of its associated toxic effects and the persistence of these pollutants in the environment. This study is the first to evaluate the changes in heavy metal concentrations worldwide in brown algae over the last 90 years (>15,700 data across the globe reported from 1933 to 2020). The study findings revealed significant decreases in the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn of around 60-84% (ca. 2% annual) in brown algae tissues. The decreases were consistent across the different families considered (Dictyotaceae, Fucaceae, Laminariaceae, Sargassaceae and Others), and began between 1970 and 1990. In addition, strong relationships between these trends and pH, SST and heat content were detected. Although the observed metal declines could be partially explained by these strong correlations, or by adaptions in the algae, other evidences suggest an actual reduction in metal concentrations in oceans because of the implementation of environmental policies. In any case, this study shows a reduction in metal concentrations in brown algae over the last 50 years, which is important in itself, as brown algae form the basis of many marine food webs and are therefore potential distributors of pollutants.
Collapse
Affiliation(s)
- J R Aboal
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - C Pacín
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - R García-Seoane
- Instituto Español de Oceanografía, IEO-CSIC, Centro Oceanográfico de A Coruña, 15001 A Coruña, Spain.
| | - Z Varela
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - A G González
- Instituto de Oceanografía y Cambio Global, IOCAG. Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - J A Fernández
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| |
Collapse
|
14
|
Palombo C, Chiarore A, Ciscato M, Asnicar D, Mirasole A, Fabbrizzi E, Teixidó N, Munari M. Thanks mum. Maternal effects in response to ocean acidification of sea urchin larvae at different ecologically relevant temperatures. MARINE POLLUTION BULLETIN 2023; 188:114700. [PMID: 36773584 DOI: 10.1016/j.marpolbul.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Cristina Palombo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy.
| | - Maria Ciscato
- Department of Biology, University of Padova, Padova, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Padova, Italy; Aquatic Bioscience, Huntsman Marine Science Centre, 1 Lower Campus Road, St Andrews, New Brunswick, Canada E5B 2L7.
| | - Alice Mirasole
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy.
| | - Erika Fabbrizzi
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Nuria Teixidó
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France.
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Integrative Marine Ecology, Fano Marine Centre, Stazione Zoologica Anton Dohrn, Fano, Italy.
| |
Collapse
|
15
|
Henson HC, Holding JM, Meire L, Rysgaard S, Stedmon CA, Stuart-Lee A, Bendtsen J, Sejr M. Coastal freshening drives acidification state in Greenland fjords. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158962. [PMID: 36170921 DOI: 10.1016/j.scitotenv.2022.158962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Greenland's fjords and coastal waters are highly productive and sustain important fisheries. However, retreating glaciers and increasing meltwater are changing fjord circulation and biogeochemistry, which may threaten future productivity. The freshening of Greenland fjords caused by unprecedented melting of the Greenland Ice Sheet may alter carbonate chemistry in coastal waters, influencing CO2 uptake and causing biological consequences from acidification. However, few studies to date explore the current acidification state in Greenland coastal waters. Here we present the first-ever large-scale measurements of carbonate system parameters in 16 Greenlandic fjords and seek to identify the drivers of acidification state in these freshening ecosystems. Aragonite saturation state (Ω), a proxy for ocean acidification, was calculated from dissolved inorganic carbon (DIC) and total alkalinity from fjords along the east and west coast of Greenland spanning 68-75°N. Aragonite saturation was primarily >1 in the surface mixed layer. However, undersaturated-or corrosive--conditions (Ω < 1) were observed on both coasts (west: Ω = 0.28-3.11, east: Ω = 0.70-3.07), albeit at different depths. West Greenland fjords were largely corrosive at depth while undersaturation in East Greenland fjords was only observed in surface waters. This reflects a difference in the coastal boundary conditions and mechanisms driving acidification state. We suggest that advection of Sub Polar Mode Water and accumulation of DIC from organic matter decomposition drive corrosive conditions in the West, while freshwater alkalinity dilution drives acidification in the East. The presence of marine terminating glaciers also impacted local acidification states by influencing fjord circulation: upwelling driven by subglacial discharge brought corrosive bottom waters to shallower depths. Meanwhile, discharge from land terminating glaciers strengthened stratification and diluted alkalinity. Regardless of the drivers in each system, increasing freshwater discharge will likely lower carbonate saturation states and impact biotic and abiotic carbon uptake in the future.
Collapse
Affiliation(s)
| | - Johnna M Holding
- Arctic Research Centre, Aarhus University, Denmark; Department of Ecoscience, Aarhus University, Denmark
| | - Lorenz Meire
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands; Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | | | - Colin A Stedmon
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Alice Stuart-Lee
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
| | - Jørgen Bendtsen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Sejr
- Arctic Research Centre, Aarhus University, Denmark; Department of Ecoscience, Aarhus University, Denmark
| |
Collapse
|
16
|
Wei Y, Ding D, Gu T, Xu Y, Sun X, Qu K, Sun J, Cui Z. Ocean acidification and warming significantly affect coastal eutrophication and organic pollution: A case study in the Bohai Sea. MARINE POLLUTION BULLETIN 2023; 186:114380. [PMID: 36459769 DOI: 10.1016/j.marpolbul.2022.114380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Most coastal ecosystems are faced with novel challenges associated with human activities and climate change such as ocean acidification, warming, eutrophication, and organic pollution. However, data on the independent or combined effects of ocean acidification and warming on coastal eutrophication and organic pollution at present are relatively limited. Here, we applied the generalized additive models (GAMs) to explore the dynamics of coastal eutrophication and organic pollution in response to future climate change in the Bohai Sea. The GAMs reflected the fact that acidification alone favors eutrophication and organic pollution, while warming alone inhibits these two variables. Differently, the interactions between acidification and warming in the future may further exacerbate the organic pollution but may mitigate the progress of eutrophication. These different responses of eutrophication and organic pollution to acidification and warming may be attributed to algae growth and microbial respiration, as well as some physical processes such as stratification.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Ting Gu
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yong Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Xuemei Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
17
|
Proteomic and Transcriptomic Responses Enable Clams to Correct the pH of Calcifying Fluids and Sustain Biomineralization in Acidified Environments. Int J Mol Sci 2022; 23:ijms232416066. [PMID: 36555707 PMCID: PMC9781830 DOI: 10.3390/ijms232416066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Seawater pH and carbonate saturation are predicted to decrease dramatically by the end of the century. This process, designated ocean acidification (OA), threatens economically and ecologically important marine calcifiers, including the northern quahog (Mercenaria mercenaria). While many studies have demonstrated the adverse impacts of OA on bivalves, much less is known about mechanisms of resilience and adaptive strategies. Here, we examined clam responses to OA by evaluating cellular (hemocyte activities) and molecular (high-throughput proteomics, RNASeq) changes in hemolymph and extrapallial fluid (EPF-the site of biomineralization located between the mantle and the shell) in M. mercenaria continuously exposed to acidified (pH ~7.3; pCO2 ~2700 ppm) and normal conditions (pH ~8.1; pCO2 ~600 ppm) for one year. The extracellular pH of EPF and hemolymph (~7.5) was significantly higher than that of the external acidified seawater (~7.3). Under OA conditions, granulocytes (a sub-population of hemocytes important for biomineralization) were able to increase intracellular pH (by 54% in EPF and 79% in hemolymph) and calcium content (by 56% in hemolymph). The increased pH of EPF and hemolymph from clams exposed to high pCO2 was associated with the overexpression of genes (at both the mRNA and protein levels) related to biomineralization, acid-base balance, and calcium homeostasis, suggesting that clams can use corrective mechanisms to mitigate the negative impact of OA.
Collapse
|
18
|
Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters. Appl Environ Microbiol 2022; 88:e0165422. [DOI: 10.1128/aem.01654-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shellfish industries are threatened worldwide by recurrent summer mortality events. Such incidences are often associated with
Vibrio
disease outbreaks, and thus, it is critical that animals are able to mount sufficient immune responses.
Collapse
|
19
|
Nano-ecotoxicology in a changing ocean. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractThe ocean faces an era of change, driven in large by the release of anthropogenic CO2, and the unprecedented entry of pollutants into the water column. Nanomaterials, those particles < 100 nm, represent an emerging contaminant of environmental concern. Research on the ecotoxicology and fate of nanomaterials in the natural environment has increased substantially in recent years. However, commonly such research does not consider the wider environmental changes that are occurring in the ocean, i.e., ocean warming and acidification, and occurrence of co-contaminants. In this review, the current literature available on the combined impacts of nanomaterial exposure and (i) ocean warming, (ii) ocean acidification, (iii) co-contaminant stress, upon marine biota is explored. Here, it is identified that largely co-stressors influence nanomaterial ecotoxicity by altering their fate and behaviour in the water column, thus altering their bioavailability to marine organisms. By acting in this way, such stressors, are able to mitigate or elevate toxic effects of nanomaterials in a material-specific manner. However, current evidence is limited to a relatively small set of test materials and model organisms. Indeed, data is biased towards effects upon marine bivalve species. In future, expanding studies to involve other ecologically significant taxonomic groups, primarily marine phytoplankton will be highly beneficial. Although limited in number, the available evidence highlights the importance of considering co-occurring environmental changes in ecotoxicological research, as it is likely in the natural environment, the material of interest will not be the sole stressor encountered by biota. As such, research examining ecotoxicology alongside co-occurring environmental stressors is essential to effectively evaluating risk and develop effective long-term management strategies.
Collapse
|
20
|
Sui Y, Zhang T, Yao X, Yan M, Yang L, Mohsen M, Nguyen H, Zhang S, Jiang H, Lv L, Zheng L. Synthesized effects of medium-term exposure to seawater acidification and microplastics on the physiology and energy budget of the thick shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119598. [PMID: 35718043 DOI: 10.1016/j.envpol.2022.119598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification (OA) and microplastics (MPs) contamination are two results of human excises. In regions like estuarine areas, OA and MPs exposure are happening at the same time. The current research investigated the synthesized effects of OA and MPs exposure for a medium-term duration on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were treated by six combinations of three MPs levels (0, 10 and 1000 items L-1) × two pH levels (7.3, 8.1) for 21 d. As a result, under pH 7.3, clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), and scope for growth (SFG) significantly decreased, while the fecal organic dry weight ratio (E) significantly increased. 1000 items L-1 MPs led to decrease of CR, E, SFG and increase of AE under pH 8.1. Interactive effects from combination of pH and MPs were found in terms of CR, AE, E and RR, but not for SFG of M. coruscus.
Collapse
Affiliation(s)
- Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China; East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China; Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Tao Zhang
- Zhejiang Province Key Lab of Mariculture and Enhancement, Marine Fisheries Research Institute of Zhejiang, Zhoushan, China
| | - Xinyun Yao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Ming Yan
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Liguo Yang
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Haidang Nguyen
- Research Institute for Aquaculture, No.1, Dinh Bang, Tu Son, Bac Ninh, 16352, Viet Nam
| | - Shengmao Zhang
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Linlan Lv
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Liang Zheng
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.
| |
Collapse
|
21
|
Moreira JM, Mendes AC, Maulvault AL, Marques A, Rosa R, Pousão-Ferreira P, Sousa T, Anacleto P, Marques GM. Impacts of ocean warming and acidification on the energy budget of three commercially important fish species. CONSERVATION PHYSIOLOGY 2022; 10:coac048. [PMID: 35875680 PMCID: PMC9305255 DOI: 10.1093/conphys/coac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
A mechanistic model based on Dynamic Energy Budget (DEB) theory was developed to predict the combined effects of ocean warming, acidification and decreased food availability on growth and reproduction of three commercially important marine fish species: white seabream (Diplodus sargus), zebra seabream (Diplodus cervinus) and Senegalese sole (Solea senegalensis). Model simulations used a parameter set for each species, estimated by the Add-my-Pet method using data from laboratory experiments complemented with bibliographic sources. An acidification stress factor was added as a modifier of the somatic maintenance costs and estimated for each species to quantify the effect of a decrease in pH from 8.0 to 7.4 (white seabream) or 7.7 (zebra seabream and Senegalese sole). The model was used to project total length of individuals along their usual lifespan and number of eggs produced by an adult individual within one year, under different climate change scenarios for the end of the 21st century. For the Intergovernmental Panel on Climate Change SSP5-8.5, ocean warming led to higher growth rates during the first years of development, as well as an increase of 32-34% in egg production, for the three species. Ocean acidification contributed to reduced growth for white seabream and Senegalese sole and a small increase for zebra seabream, as well as a decrease in egg production of 48-52% and 14-33% for white seabream and Senegalese sole, respectively, and an increase of 4-5% for zebra seabream. The combined effect of ocean warming and acidification is strongly dependent on the decrease of food availability, which leads to significant reduction in growth and egg production. This is the first study to assess the combined effects of ocean warming and acidification using DEB models on fish, therefore, further research is needed for a better understanding of these climate change-related effects among different taxonomic groups and species.
Collapse
Affiliation(s)
- José M Moreira
- Corresponding author. MARETEC—Marine, Environment & Technology Center, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Ana Candeias Mendes
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Ana Luísa Maulvault
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
- MARE—Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Av. Nossa Sra do Cabo 939, 2750-374 Cascais, Portugal
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology—NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - António Marques
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Av. Nossa Sra do Cabo 939, 2750-374 Cascais, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Tânia Sousa
- MARETEC—Marine, Environment & Technology Center, LARSyS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
- MARE—Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Av. Nossa Sra do Cabo 939, 2750-374 Cascais, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Gonçalo M Marques
- MARETEC—Marine, Environment & Technology Center, LARSyS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
22
|
Varas O, Pulgar J, Duarte C, García-Herrera C, Abarca-Ortega A, Grenier C, Rodríguez-Navarro AB, Zapata J, Lagos NA, García-Huidobro MR, Aldana M. Parasitism by metacercariae modulates the morphological, organic and mechanical responses of the shell of an intertidal bivalve to environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154747. [PMID: 35337870 DOI: 10.1016/j.scitotenv.2022.154747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental variation alters biological interactions and their ecological and evolutionary consequences. In coastal systems, trematode parasites affect their hosts by disrupting their life-history traits. However, the effects of parasitism could be variable and dependent on the prevailing environmental conditions where the host-parasite interaction occurs. This study compared the effect of a trematode parasite in the family Renicolidae (metacercariae) on the body size and the shell organic and mechanical characteristics of the intertidal mussels Perumytilus purpuratus, inhabiting two environmentally contrasting localities in northern and central Chile (ca. 1600 km apart). Congruent with the environmental gradient along the Chilean coast, higher levels of temperature, salinity and pCO2, and a lower pH characterise the northern locality compared to that of central Chile. In the north, parasitised individuals showed lower body size and shell resistance than non-parasitised individuals, while in central Chile, the opposite pattern was observed. Protein level in the organic matter of the shell was lower in the parasitised hosts than in the non-parasitised ones regardless of the locality. However, an increase in polysaccharide levels was observed in the parasitised individuals from central Chile. These results evidence that body size and shell properties of P. purpuratus vary between local populations and that they respond differently when confronting the parasitism impacts. Considering that the parasite prevalence reaches around 50% in both populations, if parasitism is not included in the analysis, the true response of the host species would be masked by the effects of the parasite, skewing our understanding of how environmental variables will affect marine species. Considering parasitism and identifying its effects on host species faced with environmental drivers is essential to understand and accurately predict the ecological consequences of climate change.
Collapse
Affiliation(s)
- Oscar Varas
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultas de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultas de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultas de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Claudio García-Herrera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Aldo Abarca-Ortega
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristian Grenier
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain; Departamento de Mineralogía y Petrología, Universidad de Granada, Granada, Spain
| | | | - Javier Zapata
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile.
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| |
Collapse
|
23
|
Assessing the Benthic Response to Climate-Driven Methane Hydrate Destabilisation: State of the Art and Future Modelling Perspectives. ENERGIES 2022. [DOI: 10.3390/en15093307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Modern observations and geological records suggest that anthropogenic ocean warming could destabilise marine methane hydrate, resulting in methane release from the seafloor to the ocean-atmosphere, and potentially triggering a positive feedback on global temperature. On the decadal to millennial timescales over which hydrate-sourced methane release is hypothesized to occur, several processes consuming methane below and above the seafloor have the potential to slow, reduce or even prevent such release. Yet, the modulating effect of these processes on seafloor methane emissions remains poorly quantified, and the full impact of benthic methane consumption on ocean carbon chemistry is still to be explored. In this review, we document the dynamic interplay between hydrate thermodynamics, benthic transport and biogeochemical reaction processes, that ultimately determines the impact of hydrate destabilisation on seafloor methane emissions and the ocean carbon cycle. Then, we provide an overview of how state-of-the-art numerical models treat such processes and examine their ability to quantify hydrate-sourced methane emissions from the seafloor, as well as their impact on benthic biogeochemical cycling. We discuss the limitations of current models in coupling the dynamic interplay between hydrate thermodynamics and the different reaction and transport processes that control the efficiency of the benthic sink, and highlight their shortcoming in assessing the full implication of methane release on ocean carbon cycling. Finally, we recommend that current Earth system models explicitly account for hydrate driven benthic-pelagic exchange fluxes to capture potential hydrate-carbon cycle-climate feed-backs.
Collapse
|
24
|
Weber C, Hautmann M, Tajika A, Klug C. Is the relative thickness of ammonoid septa influenced by ocean acidification, phylogenetic relationships and palaeogeographic position? SWISS JOURNAL OF PALAEONTOLOGY 2022; 141:4. [PMID: 35510216 PMCID: PMC9016059 DOI: 10.1186/s13358-022-00246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The impact of increasing atmospheric CO2 and the resulting decreasing pH of seawater are in the focus of current environmental research. These factors cause problems for marine calcifiers such as reduced calcification rates and the dissolution of calcareous skeletons. While the impact on recent organisms is well established, little is known about long-term evolutionary consequences. Here, we assessed whether ammonoids reacted to environmental change by changing septal thickness. We measured the septal thickness of ammonoid phragmocones through ontogeny in order to test the hypothesis that atmospheric pCO2, seawater pH and other factors affected aragonite biomineralisation in ammonoids. Particularly, we studied septal thickness of ammonoids before and after the ocean acidification event in the latest Triassic until the Early Cretaceous. Early Jurassic ammonoid lineages had thinner septa relative to diameter than their Late Triassic relatives, which we tentatively interpret as consequence of a positive selection for reduced shell material as an evolutionary response to this ocean acidification event. This response was preserved within several lineages among the Early Jurassic descendants of these ammonoids. By contrast, we did not find a significant correlation between septal thickness and long-term atmospheric pCO2 or seawater pH, but we discovered a correlation with palaeolatitude. Supplementary Information The online version contains supplementary material available at 10.1186/s13358-022-00246-2.
Collapse
Affiliation(s)
- Céline Weber
- Paläontologisches Institut Und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Michael Hautmann
- Paläontologisches Institut Und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Amane Tajika
- Division of Paleontology (Invertebrates), American Museum of Natural History, Central Park West 79th Street, New York, NY 10024 USA
- University Museum, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033 Japan
| | - Christian Klug
- Paläontologisches Institut Und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| |
Collapse
|
25
|
Zhou L, Huang J, Jiang Y, Kong J, Xie X, Yin F. pH Regulates the Formation and Hatching of Cryptocaryon irritans Tomonts, Which Affects Cryptocaryoniasis Occurrence in Larimichthys crocea Aquaculture. Appl Environ Microbiol 2022; 88:e0005822. [PMID: 35254098 PMCID: PMC9004364 DOI: 10.1128/aem.00058-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Cryptocaryon irritans are the main pathogens of white spot disease in marine teleost. However, the occurrence of cryptocaryoniasis is influenced by several abiotic factors including the pH. To explore the effect of pH on the life cycle of C. irritans (encystment, cleavage, and hatchability), protomonts and tomonts of C. irritans were incubated in seawater of 10 different pH levels (2-11). pH 8 was used as the control. The change in morphology and infectivity of theronts that hatched from tomonts against Larimichthys crocea were then recorded. We found that pH 6-9 had no significant effect on the encystment, cleavage, and hatching of the parasites. However, pH beyond this limit decreased the cleavage and hatching of the tomonts. Furthermore, extreme pH decreased the number of theronts hatched by each tomont and the pathogenicity of the theronts, but increased the aspect ratio of the theronts. Infectivity experiments further revealed that extreme pH significantly decreased the infectivity of C. irritans against L. crocea. In conclusion, the C. irritans can survive in pH of 5 to 10, but pH 6-9 is the optimal range for the reproduction and infectivity of C. irritans. However, extreme pH negatively affects these aspects. IMPORTANCECryptocaryon irritans is a ciliate parasite that causes "white spot disease" in marine teleosts. The disease outbreak is influenced by hosts and a range of abiotic factors, such as temperature, salinity, and pH. Studies have shown that change in pH of seawater affects the structure (diversity and abundance of marine organisms) of marine ecosystem. However, how pH affects the life cycle and survival of C. irritans, and how future ocean acidification will affect the occurrence of cryptocaryoniasis, are not well understood. In this study, we explored the effect of pH on the formation and hatching of C. irritans tomonts. The findings of this study provide the foundation of the environmental adaptation of C. irritans, the occurrence of cryptocaryoniasis, and better management of marine fish culture.
Collapse
Affiliation(s)
- Liyao Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| | - Jiashuang Huang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| | - Yunyan Jiang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| | - Jindong Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
26
|
The Symbiotic Relationship between the Antarctic Limpet, Nacella concinna, and Epibiont Coralline Algae. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The Antarctic limpet, Nacella concinna, is one of the most abundant benthic marine invertebrates found in the intertidal zone of King George Island, Antarctica. The shell of N. concinna is often encrusted with the coralline algae Clathromorphum obtectulum. In this study, to reveal the relationship between the limpet and coralline algae, we examined how the coralline algae affect the physical condition (survival and health) and morphology of the limpet. We cultured the limpets for 22 days and compared mortality, weight, condition factor (CF), fatty acid content, and the structure of the shell surface between limpets both with and without coralline algae in the laboratory. We also measured the environmental factors (i.e., temperature, pH, and salinity) of the seawater at each sampling site and the CF of the limpets and correlated them with coverage of coralline algae. The presence of coralline algae significantly increased the mortality of the limpets by 40% and the shell weight by 1.4-fold but did not affect the CF. Additionally, coralline algae altered the fatty acid profiles related to the limpet’s lipid metabolism (saturated fatty acids (SFA) and some polyunsaturated fatty acids (PUFA)). Specifically, C16:0, C17:0, C18:0, and total SFA increased, whereas C18:2 and C18:3 decreased. However, observations with a scanning electron microscope showed that shell damage in limpets with coralline algae was much less than in limpets without coralline algae, suggesting that coralline algae may provide protection against endolithic algae. The area of coralline algae on the limpet shell was positively correlated with the pH and temperature of the seawater. The results suggest that although coralline algae are generally assumed to be parasitical, the relationship between N. concinna and coralline algae may change to mutualism under certain conditions.
Collapse
|
27
|
Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022. [DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Albarano L, Zupo V, Guida M, Libralato G, Caramiello D, Ruocco N, Costantini M. PAHs and PCBs Affect Functionally Intercorrelated Genes in the Sea Urchin Paracentrotus lividus Embryos. Int J Mol Sci 2021; 22:ijms222212498. [PMID: 34830379 PMCID: PMC8619768 DOI: 10.3390/ijms222212498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, C. da Torre Spaccata, 87071 Amendolara, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Correspondence:
| |
Collapse
|
29
|
Yin T, Papadimitriou S, Rérolle VMC, Arundell M, Cardwell CL, Walk J, Palmer MR, Fowell SE, Schaap A, Mowlem MC, Loucaides S. A Novel Lab-on-Chip Spectrophotometric pH Sensor for Autonomous In Situ Seawater Measurements to 6000 m Depth on Stationary and Moving Observing Platforms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14968-14978. [PMID: 34644501 DOI: 10.1021/acs.est.1c03517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a new, autonomous Lab-on-Chip (LOC) microfluidic pH sensor with a 6000 m depth capability, ten times the depth capability of the state of the art autonomous spectrophotometric sensor. The pH is determined spectrophotometrically using purified meta-Cresol Purple indicator dye offering high precision (<0.001 pH unit measurement reproducibility), high frequency (every 8 min) measurements on the total proton scale from the surface to the deep ocean (to 600 bar). The sensor requires low power (3 W during continuous operation or ∼1300 J per measurement) and low reagent volume (∼3 μL per measurement) and generates small waste volume (∼2 mL per measurement) which can be retained during deployments. The performance of the LOC pH sensor was demonstrated on fixed and moving platforms over varying environmental salinity, temperature, and pressure conditions. Measurement accuracy was +0.003 ± 0.022 pH units (n = 47) by comparison with validation seawater sample measurements in coastal waters. The combined standard uncertainty of the sensor in situ pHT measurements was estimated to be ≤0.009 pH units at pH 8.5, ≤ 0.010 pH units at pH 8.0, and ≤0.014 pH units at pH 7.5. Integrated on autonomous platforms, this novel sensor opens new frontiers for pH observations, especially within the largest and most understudied ecosystem on the planet, the deep ocean.
Collapse
Affiliation(s)
- Tianya Yin
- National Oceanography Centre, European Way, SO14 3ZH, Southampton, U.K
- University of Southampton, Waterfront Campus, European Way, SO14 3ZH, Southampton, U.K
| | | | | | - Martin Arundell
- National Oceanography Centre, European Way, SO14 3ZH, Southampton, U.K
| | | | - John Walk
- National Oceanography Centre, European Way, SO14 3ZH, Southampton, U.K
| | - Martin R Palmer
- University of Southampton, Waterfront Campus, European Way, SO14 3ZH, Southampton, U.K
| | - Sara E Fowell
- National Oceanography Centre, European Way, SO14 3ZH, Southampton, U.K
| | - Allison Schaap
- National Oceanography Centre, European Way, SO14 3ZH, Southampton, U.K
| | - Matthew C Mowlem
- National Oceanography Centre, European Way, SO14 3ZH, Southampton, U.K
| | | |
Collapse
|
30
|
Servetto N, de Aranzamendi MC, Bettencourt R, Held C, Abele D, Movilla J, González G, Bustos DM, Sahade R. Molecular mechanisms underlying responses of the Antarctic coral Malacobelemnon daytoni to ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105430. [PMID: 34340030 DOI: 10.1016/j.marenvres.2021.105430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Benthic organisms of the Southern Ocean are particularly vulnerable to ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. OA most strongly affects animals with calcium carbonate skeletons or shells, such as corals and mollusks. We exposed the abundant cold-water coral Malacobelemnon daytoni from an Antarctic fjord to low pH seawater (LpH) (7.68 ± 0.17) to test its physiological responses to OA, at the level of gene expression (RT-PCR) and enzyme activity. Corals were exposed in short- (3 days) and long-term (54 days) experiments to two pCO2 conditions (ambient and elevated pCO2 equaling RCP 8.5, IPCC 2019, approximately 372.53 and 956.78 μatm, respectively). Of the eleven genes studied through RT-PCR, six were significantly upregulated compared with control in the short-term in the LpH condition, including the antioxidant enzyme superoxide dismutase (SOD), Heat Shock Protein 70 (HSP70), Toll-like receptor (TLR), galaxin and ferritin. After long-term exposure to low pH conditions, RT-PCR analysis showed seven genes were upregulated. These include the mannose-binding C-Lectin and HSP90. Also, the expression of TLR and galaxin, among others, continued to be upregulated after long-term exposure to LpH. Expression of carbonic anhydrase (CA), a key enzyme involved in calcification, was also significantly upregulated after long-term exposure. Our results indicated that, after two months, M. daytoni is not acclimatized to this experimental LpH condition. Gene expression profiles revealed molecular impacts that were not evident at the enzyme activity level. Consequently, understanding the molecular mechanisms behind the physiological processes in the response of a coral to LpH is critical to understanding the ability of polar species to cope with future environmental changes. Approaches integrating molecular tools into Antarctic ecological and/or conservation research make an essential contribution given the current ongoing OA processes.
Collapse
Affiliation(s)
- N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.
| | - M C de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - R Bettencourt
- OKEANOS Marine Research Center/Department of Oceanography and Fisheries, Faculty of Science and Technology, University of the Azores, 9900-862, Horta, Portugal
| | - C Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - D Abele
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - J Movilla
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Estación de Investigación Jaume Ferrer, La Mola s/n 07720, Menorca, Spain
| | - G González
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - D M Bustos
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM CONICET-UNCUYO), and Facultad de Ciencias Exactas y Naturales (UNCUYO), Mendoza, Argentina
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.
| |
Collapse
|
31
|
Muffett K, Miglietta MP. Planktonic associations between medusae (classes Scyphozoa and Hydrozoa) and epifaunal crustaceans. PeerJ 2021; 9:e11281. [PMID: 33981503 PMCID: PMC8074843 DOI: 10.7717/peerj.11281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Jellyfish are known to carry various epibionts, including many of the subphylum Crustacea. However, the associations between gelatinous zooplankton and other invertebrates have been chronically overlooked. Crustacea, a massive clade of economically, ecologically, and culturally important species, includes many taxa that utilize gelatinous zooplankton for food, transport, and protection as both adults and juveniles. Here we compile 211 instances of epifaunal crustaceans recorded on Hydromedusae and Scyphomedusae from a century of literature. These include 78 identified crustacean species in 65 genera across nine orders found upon 37 Hydromedusa species and 48 Scyphomedusae. The crustacean life stage, location, nature of the association with the medusa, years, months, and depths are compiled to form a comprehensive view of the current state of the literature. Additionally, this review highlights areas where the current literature is lacking, particularly noting our poor understanding of the relationships between juvenile crabs of commercially valuable species and medusae.
Collapse
Affiliation(s)
- Kaden Muffett
- Department of Marine Biology, Texas A&M University - Galveston, Galveston, Texas, United States
| | - Maria Pia Miglietta
- Department of Marine Biology, Texas A&M University - Galveston, Galveston, Texas, United States
| |
Collapse
|
32
|
Woodstock MS, Sutton TT, Frank T, Zhang Y. An early warning sign: trophic structure changes in the oceanic Gulf of Mexico from 2011—2018. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Zhang M, Zhen Y, Mi T, Lin S. Integrated RNA-seq and Proteomic Studies Reveal Resource Reallocation towards Energy Metabolism and Defense in Skeletonema marinoi in Response to CO 2 Increase. Appl Environ Microbiol 2021; 87:AEM.02614-20. [PMID: 33355106 PMCID: PMC8090871 DOI: 10.1128/aem.02614-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
Rising atmospheric CO2 concentrations are causing ocean acidification (OA) with significant consequences for marine organisms. Because CO2 is essential for photosynthesis, the effect of elevated CO2 on phytoplankton is more complex and the mechanism is poorly understood. Here we applied RNA-seq and iTRAQ proteomics to investigate the impacts of CO2 increase (from ∼400 to 1000 ppm) on the temperate coastal marine diatom Skeletonema marinoi We identified 32,389 differentially expressed genes (DEGs) and 1,826 differentially expressed proteins (DEPs) from elevated CO2 conditions, accounting for 48.5% of total genes and 25.9% of total proteins we detected, respectively. Elevated pCO2 significantly inhibited the growth of S marinoi, and the 'omic' data suggested that this might be due to compromised photosynthesis in the chloroplast and raised mitochondrial energy metabolism. Furthermore, many genes/proteins associated with nitrogen metabolism, transcriptional regulation, and translational regulation were markedly up-regulated, suggesting enhanced protein synthesis. In addition, S marinoi exhibited higher capacity of ROS production and resistance to oxidative stress. Overall, elevated pCO2 seems to repress photosynthesis and growth of S marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.Importance Rising atmospheric CO2 concentrations are causing ocean acidification with significant consequences for marine organisms. Chain-forming centric diatoms of Skeletonema is one of the most successful groups of eukaryotic primary producers with widespread geographic distribution. Among the recognized 28 species, S. marinoi can be a useful model for investigating the ecological, genetic, physiological, and biochemical characteristics of diatoms in temperate coastal regions. In this study, we found that the elevated pCO2 seems to repress photosynthesis and growth of S. marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Department of marine science, University of Connecticut, Groton, CT 06340, USA
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Senjie Lin
- Department of marine science, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
34
|
Holland O, Shaw J, Stark JS, Wilson KA. Hull fouling marine invasive species pose a very low, but plausible, risk of introduction to East Antarctica in climate change scenarios. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Oakes Holland
- Institute for Future Environments Queensland University of Technology Brisbane Australia
| | - Justine Shaw
- School of Biological Sciences The University of Queensland St. Lucia QLD Australia
- Australian Antarctic Division Kingston TAS Australia
| | | | - Kerrie A. Wilson
- Institute for Future Environments Queensland University of Technology Brisbane Australia
| |
Collapse
|
35
|
Ji Y, Gao K. Effects of climate change factors on marine macroalgae: A review. ADVANCES IN MARINE BIOLOGY 2020; 88:91-136. [PMID: 34119047 DOI: 10.1016/bs.amb.2020.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine macroalgae, the main primary producers in coastal waters, play important roles in the fishery industry and global carbon cycles. With progressive ocean global changes, however, they are increasingly exposed to enhanced levels of multiple environmental drivers, such as ocean acidification, warming, heatwaves, UV radiation and deoxygenation. While most macroalgae have developed physiological strategies against variations of these drivers, their eco-physiological responses to each or combinations of the drivers differ spatiotemporally and species-specifically. Many freshwater macroalgae are tolerant of pH drop and its diel fluctuations and capable of acclimating to changes in carbonate chemistry. However, calcifying species, such as coralline algae, are very sensitive to acidification of seawater, which reduces their calcification, and additionally, temperature rise and UV further decrease their physiological performance. Except for these calcifying species, both economically important and harmful macroalgae can benefit from elevated CO2 concentrations and moderate temperature rise, which might be responsible for increasing events of harmful macroalgal blooms including green macroalgal blooms caused by Ulva spp. and golden tides caused by Sargassum spp. Upper intertidal macroalgae, especially those tolerant of dehydration during low tide, increase their photosynthesis under elevated CO2 concentrations during the initial dehydration period, however, these species might be endangered by heatwaves, which can expose them to high temperature levels above their thermal windows' upper limit. On the other hand, since macroalgae are distributed in shallow waters, they are inevitably exposed to solar UV radiation. The effects of UV radiation, depending on weather conditions and species, can be harmful as well as beneficial to many species. Moderate levels of UV-A (315-400nm) can enhance photosynthesis of green, brown and red algae, while UV-B (280-315nm) mainly show inhibitory impacts. Although little has been documented on the combined effects of elevated CO2, temperature or heatwaves with UV radiation, exposures to heatwaves during midday under high levels of UV radiation can be detrimental to most species, especially to their microscopic stages which are less tolerant of climate change induced stress. In parallel, reduced availability of dissolved O2 in coastal water along with eutrophication might favour the macroalgae's carboxylation process by suppressing their oxygenation or photorespiration. In this review, we analyse effects of climate change-relevant drivers individually and/or jointly on different macroalgal groups and different life cycle stages based on the literatures surveyed, and provide perspectives for future studies.
Collapse
Affiliation(s)
- Yan Ji
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; School of Biological & Chemical Engineering, Qingdao Technical College, Qingdao, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
36
|
Field Testing of Biohybrid Robotic Jellyfish to Demonstrate Enhanced Swimming Speeds. Biomimetics (Basel) 2020; 5:biomimetics5040064. [PMID: 33233340 PMCID: PMC7709697 DOI: 10.3390/biomimetics5040064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
Biohybrid robotic designs incorporating live animals and self-contained microelectronic systems can leverage the animals’ own metabolism to reduce power constraints and act as natural chassis and actuators with damage tolerance. Previous work established that biohybrid robotic jellyfish can exhibit enhanced speeds up to 2.8 times their baseline behavior in laboratory environments. However, it remains unknown if the results could be applied in natural, dynamic ocean environments and what factors can contribute to large animal variability. Deploying this system in the coastal waters of Massachusetts, we validate and extend prior laboratory work by demonstrating increases in jellyfish swimming speeds up to 2.3 times greater than their baseline, with absolute swimming speeds up to 6.6 ± 0.3 cm s−1. These experimental swimming speeds are predicted using a hydrodynamic model with morphological and time-dependent input parameters obtained from field experiment videos. The theoretical model can provide a basis to choose specific jellyfish with desirable traits to maximize enhancements from robotic manipulation. With future work to increase maneuverability and incorporate sensors, biohybrid robotic jellyfish can potentially be used to track environmental changes in applications for ocean monitoring.
Collapse
|
37
|
EAT BREATHE EXCRETE REPEAT: Physiological Responses of the Mussel Mytilus galloprovincialis to Diclofenac and Ocean Acidification. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Combined effects of the nonsteroidal anti-inflammatory drug diclofenac and lowered seawater pH were assessed on the physiological responses of the mussel Mytilus galloprovincialis. Bivalves were exposed for 1 week to natural pH (8.1) and two reduced pH values (pH −0.4 units and pH −0.7 units), as predicted under a climate change scenario. After the first week, exposure continued for additional 2 weeks, both in the absence and in the presence of environmentally relevant concentrations of diclofenac (0.05 and 0.5 µg/L). Clearance rate, respiration rate, and excretion rate were measured after 7 days of exposure to pH only and after 14 (T1) and 21 (T2) days of exposure to the various pH*diclofenac combinations. At all sampling times, pH significantly affected all the biological parameters considered, whereas diclofenac generally exhibited a significant influence only at T2. Overall, results demonstrated that the physiological performance of M. galloprovincialis was strongly influenced by the experimental conditions tested, in particular by the interaction between the two stressors after 21 days of exposure. Further studies are needed to assess the combined effects of climate changes and emerging contaminants on bivalve physiology during different life stages, especially reproduction.
Collapse
|
38
|
Ross T, Du Preez C, Ianson D. Rapid deep ocean deoxygenation and acidification threaten life on Northeast Pacific seamounts. GLOBAL CHANGE BIOLOGY 2020; 26:6424-6444. [PMID: 32777119 PMCID: PMC7693292 DOI: 10.1111/gcb.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 05/14/2023]
Abstract
Anthropogenic climate change is causing our oceans to lose oxygen and become more acidic at an unprecedented rate, threatening marine ecosystems and their associated animals. In deep-sea environments, where conditions have typically changed over geological timescales, the associated animals, adapted to these stable conditions, are expected to be highly vulnerable to any change or direct human impact. Our study coalesces one of the longest deep-sea observational oceanographic time series, reaching back to the 1960s, with a modern visual survey that characterizes almost two vertical kilometers of benthic seamount ecosystems. Based on our new and rigorous analysis of the Line P oceanographic monitoring data, the upper 3,000 m of the Northeast Pacific (NEP) has lost 15% of its oxygen in the last 60 years. Over that time, the oxygen minimum zone (OMZ), ranging between approximately 480 and 1,700 m, has expanded at a rate of 3.0 ± 0.7 m/year (due to deepening at the bottom). Additionally, carbonate saturation horizons above the OMZ have been shoaling at a rate of 1-2 m/year since the 1980s. Based on our visual surveys of four NEP seamounts, these deep-sea features support ecologically important taxa typified by long life spans, slow growth rates, and limited mobility, including habitat-forming cold water corals and sponges, echinoderms, and fish. By examining the changing conditions within the narrow realized bathymetric niches for a subset of vulnerable populations, we resolve chemical trends that are rapid in comparison to the life span of the taxa and detrimental to their survival. If these trends continue as they have over the last three to six decades, they threaten to diminish regional seamount ecosystem diversity and cause local extinctions. This study highlights the importance of mitigating direct human impacts as species continue to suffer environmental changes beyond our immediate control.
Collapse
Affiliation(s)
- Tetjana Ross
- Institute of Ocean Sciences, Fisheries and Oceans Canada (DFO)SidneyBCCanada
| | - Cherisse Du Preez
- Institute of Ocean Sciences, Fisheries and Oceans Canada (DFO)SidneyBCCanada
| | - Debby Ianson
- Institute of Ocean Sciences, Fisheries and Oceans Canada (DFO)SidneyBCCanada
| |
Collapse
|
39
|
Han X, Zhang J, Yue C, Pang J, Zhang H, Jiang Z. Novel copolymers with intrinsic microporosity containing tetraphenyl-bipyrimidine for enhanced gas separation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Effects of Low pH and Low Salinity Induced by Meltwater Inflow on the Behavior and Physical Condition of the Antarctic Limpet, Nacella concinna. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seawater acidification and freshening in the intertidal zone of Marian Cove, Antarctica, which occurs by the freshwater inflow from snow fields and glaciers, could affect the physiology and behavior of intertidal marine organisms. In this study, we exposed Antarctic limpets, Nacella concinna, to two different pH (8.00 and 7.55) and salinity (34.0 and 27.0 psu) levels and measured their righting ability after being flipped over, mortality, condition factor, and shell dissolution. During the 35-day exposure, there was no significant difference in behavior and mortality between different treatments. However, the condition factor was negatively affected by low salinity. Both low pH and low salinity negatively influenced shell formation by decreasing the aragonite saturation state (Ωarg) and enhancing shell dissolution. Our results suggest that, though limpets can tolerate short-term low pH and salinity conditions, intrusions of meltwater accompanied by the glacial retreat may act as a serious threat to the population of N. concinna.
Collapse
|
41
|
García-Huidobro MR, Aldana M, Varas O, Pulgar J, García-Herrera C, Abarca-Ortega A, Grenier C, Rodríguez-Navarro AB, Lagos NA. Geographical variability and parasitism on body size, reproduction and shell characteristics of the keyhole limpet Fissurella crassa (Mollusca: Vetigastropoda). MARINE ENVIRONMENTAL RESEARCH 2020; 161:105060. [PMID: 33070932 DOI: 10.1016/j.marenvres.2020.105060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Environmental variation may alter biological interactions and their ecological consequences. For instance, in marine ecosystems hosts and parasites are subject to environmental variability across latitudinal gradients, and their co-evolutionary dynamics may be the result of the interplay with local physical-chemical variables in seawater. Thus, assessing the environmental conditions required for a host in order to improve their survival is essential to understand the host-parasite interaction and dynamics. In this study, we evaluated the impact of parasitism by Proctoeces humboldti on the body size and reproduction of the intertidal keyhole limpet Fissurella crassa collected from three populations spanning ca. 1500 km along the latitudinal gradient of the Chilean coast. In addition, for the first time, we explore whether the effect of parasitism can be extended to changes in the organic composition and mechanical properties of the host shell. Our results show that parasitism prevalence and intensity, and body size of F. crassa increased in central Chile (ca. 33°S). Unlike body size, which was greater in parasitized limpets than in non-parasitized limpets at the three study sites, reproductive performance followed this trend only in central Chile populations, with no differences between parasitized and non-parasitized limpets collected in the northern Chilean (ca. 23°S), and lower in parasitized than non-parasitized individuals from the south-central Chile (ca. 37°S). The organic composition of F. crassa shells showed significant differences between parasite conditions (e.g. polysaccharides and water decreased in parasitized limpets) and across sites (e.g. proteins levels increase in shell of parasitized limpets from central Chile, but decreased at south-central Chile). However, variability in shell mechanical properties (e.g. toughness and elastic module) do not showed significant differences across sites and parasitism condition. These results suggest the interplay of both parasitism and environmental fluctuations upon the reproductive performance and morphology of the host. In addition, our result highlight that the host may also trade-offs reproduction, growth and shell organic composition to maintain the shell functionality (e.g. protection for mechanical forces and durophagous predators).
Collapse
Affiliation(s)
- M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile.
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - Oscar Varas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Claudio García-Herrera
- Laboratorio de Biomateriales y Biomecánica, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Aldo Abarca-Ortega
- Laboratorio de Biomateriales y Biomecánica, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Christian Grenier
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain; Departamento de Mineralogía y Petrología, Universidad de Granada, Granada, Spain
| | | | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| |
Collapse
|
42
|
Wall-Palmer D, Janssen AW, Goetze E, Choo LQ, Mekkes L, Peijnenburg KTCA. Fossil-calibrated molecular phylogeny of atlantid heteropods (Gastropoda, Pterotracheoidea). BMC Evol Biol 2020; 20:124. [PMID: 32957910 PMCID: PMC7507655 DOI: 10.1186/s12862-020-01682-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aragonite shelled, planktonic gastropod family Atlantidae (shelled heteropods) is likely to be one of the first groups to be impacted by imminent ocean changes, including ocean warming and ocean acidification. With a fossil record spanning at least 100 Ma, atlantids have experienced and survived global-scale ocean changes and extinction events in the past. However, the diversification patterns and tempo of evolution in this family are largely unknown. RESULTS Based on a concatenated maximum likelihood phylogeny of three genes (cytochrome c oxidase subunit 1 mitochondrial DNA, 28S and 18S ribosomal rRNA) we show that the three extant genera of the family Atlantidae, Atlanta, Protatlanta and Oxygyrus, form monophyletic groups. The genus Atlanta is split into two groups, one exhibiting smaller, well ornamented shells, and the other having larger, less ornamented shells. The fossil record, in combination with a fossil-calibrated phylogeny, suggests that large scale atlantid extinction was accompanied by considerable and rapid diversification over the last 25 Ma, potentially driven by vicariance events. CONCLUSIONS Now confronted with a rapidly changing modern ocean, the ability of atlantids to survive past global change crises gives some optimism that they may be able to persist through the Anthropocene.
Collapse
Affiliation(s)
- Deborah Wall-Palmer
- Plankton Diversity and Evolution, Nauralis Biodiversity Center, Leiden, The Netherlands.
| | - Arie W Janssen
- Plankton Diversity and Evolution, Nauralis Biodiversity Center, Leiden, The Netherlands
| | - Erica Goetze
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, USA
| | - Le Qin Choo
- Plankton Diversity and Evolution, Nauralis Biodiversity Center, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Lisette Mekkes
- Plankton Diversity and Evolution, Nauralis Biodiversity Center, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Katja T C A Peijnenburg
- Plankton Diversity and Evolution, Nauralis Biodiversity Center, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Porzio L, Arena C, Lorenti M, De Maio A, Buia MC. Long-term response of Dictyota dichotoma var. intricata (C. Agardh) Greville (Phaeophyceae) to ocean acidification: Insights from high pCO 2 vents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138896. [PMID: 32408206 DOI: 10.1016/j.scitotenv.2020.138896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The ocean acidification may severely affect macroalgal communities of the shallowest coastal habitats where they play relevant structural and functional roles. In this paper were investigated the physiological traits of two populations of Dictyota dichotoma var. intricata, living at two different pH for several generations to assess the reasons of the algae reduced abundance at current (8.1) compared to low pH (6.7). Besides, through transplant experiments, the two populations were analysed for the stress response and reversibility of physiological performance at different pH. The long-term acclimation to high pCO2/low pH favours an ecotype characterised by low energetic costs, higher photochemical efficiency and more resistance to the oxidative stress, compared to individuals living at current pH. These traits promoted the growth and reproduction of the community living at pH 6.7, favouring a lower macroalgal diversity, but a higher ecological success under ocean acidification. The similar behaviour observed between Dictyota living at pH 6.7 and transplanted thalli from pH 6.7 to 8.1, suggested a high tolerance to pH changes in the short-term. On the contrary, adaptive responses may have favoured molecular adjustments on the long-term, as showed by the significant differences between the wild populations at pH 8.1 and 6.7. The overall data indicate that both plasticity and adaptive mechanisms may be the reasons for the success of the brown seaweeds under future high pCO2/low pH. The plasticity due to photochemistry adjustments is likely involved in the early response to environmental changes. Conversely, modifications in the photosynthetic biochemical machinery suggest that more complex adaptive mechanisms occurred in the current population of Dictyota living at pH 6.7. Further studies on population genetics will reveal if any differentiation is taking place at the population level or a local adaptation has already occurred in Dictyota and other brown algae under chronic low pH.
Collapse
Affiliation(s)
- Lucia Porzio
- Stazione Zoologica Anton Dohrn of Naples, Integrative Marine Ecology Department, Branch office 'Villa Dohrn', Punta S. Pietro, 80077 Ischia, Naples, Italy.
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy.
| | - Maurizio Lorenti
- Stazione Zoologica Anton Dohrn of Naples, Integrative Marine Ecology Department, Branch office 'Villa Dohrn', Punta S. Pietro, 80077 Ischia, Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Maria Cristina Buia
- Stazione Zoologica Anton Dohrn of Naples, Integrative Marine Ecology Department, Branch office 'Villa Dohrn', Punta S. Pietro, 80077 Ischia, Naples, Italy
| |
Collapse
|
44
|
Hall ER, Wickes L, Burnett LE, Scott GI, Hernandez D, Yates KK, Barbero L, Reimer JJ, Baalousha M, Mintz J, Cai WJ, Craig JK, DeVoe MR, Fisher WS, Hathaway TK, Jewett EB, Johnson Z, Keener P, Mordecai RS, Noakes S, Phillips C, Sandifer PA, Schnetzer A, Styron J. Acidification in the U.S. Southeast: Causes, Potential Consequences and the Role of the Southeast Ocean and Coastal Acidification Network. FRONTIERS IN MARINE SCIENCE 2020; 7:1-548. [PMID: 32802822 PMCID: PMC7424514 DOI: 10.3389/fmars.2020.00548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Coastal acidification in southeastern U.S. estuaries and coastal waters is influenced by biological activity, run-off from the land, and increasing carbon dioxide in the atmosphere. Acidification can negatively impact coastal resources such as shellfish, finfish, and coral reefs, and the communities that rely on them. Organismal responses for species located in the U.S. Southeast document large negative impacts of acidification, especially in larval stages. For example, the toxicity of pesticides increases under acidified conditions and the combination of acidification and low oxygen has profoundly negative influences on genes regulating oxygen consumption. In corals, the rate of calcification decreases with acidification and processes such as wound recovery, reproduction, and recruitment are negatively impacted. Minimizing the changes in global ocean chemistry will ultimately depend on the reduction of carbon dioxide emissions, but adaptation to these changes and mitigation of the local stressors that exacerbate global acidification can be addressed locally. The evolution of our knowledge of acidification, from basic understanding of the problem to the emergence of applied research and monitoring, has been facilitated by the development of regional Coastal Acidification Networks (CANs) across the United States. This synthesis is a product of the Southeast Coastal and Ocean Acidification Network (SOCAN). SOCAN was established to better understand acidification in the coastal waters of the U.S. Southeast and to foster communication among scientists, resource managers, businesses, and governments in the region. Here we review acidification issues in the U.S. Southeast, including the regional mechanisms of acidification and their potential impacts on biological resources and coastal communities. We recommend research and monitoring priorities and discuss the role SOCAN has in advancing acidification research and mitigation of and adaptation to these changes.
Collapse
Affiliation(s)
- Emily R. Hall
- Mote Marine Laboratory, Sarasota, FL, United States
- Correspondence: Emily R. Hall
| | - Leslie Wickes
- Thrive Blue Consulting, Charleston, SC, United States
| | - Louis E. Burnett
- Grice Marine Laboratory, College of Charleston, Charleston, SC, United States
| | - Geoffrey I. Scott
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Debra Hernandez
- Southeastern Coastal Ocean Observing and Research Regional Association, Charleston, SC, United States
| | | | - Leticia Barbero
- National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
| | - Janet J. Reimer
- College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States
| | - Mohammed Baalousha
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Jennifer Mintz
- National Oceanic and Atmospheric Administration, Ocean Acidification Program, Silver Spring, MD, United States
| | - Wei-Jun Cai
- College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States
| | - J. Kevin Craig
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort, NC, United States
| | - M. Richard DeVoe
- South Carolina Sea Grant Consortium, Charleston, SC, United States
| | - William S. Fisher
- United States Environmental Protection Agency, Gulf Ecology Laboratory, Gulf Breeze, FL, United States
| | | | - Elizabeth B. Jewett
- National Oceanic and Atmospheric Administration, Ocean Acidification Program, Silver Spring, MD, United States
| | - Zackary Johnson
- Nicholas School of the Environment and Biology Department, Duke University, Beaufort, NC, United States
| | - Paula Keener
- Global Ocean Visions, LLC, Charleston, SC, United States
| | | | - Scott Noakes
- Center for Applied Isotope Studies, The University of Georgia, Athens, GA, United States
| | - Charlie Phillips
- Phillips Seafood, Sapelo Sea Farms, South Atlantic Fisheries Management Council, Townsend, GA, United States
| | - Paul A. Sandifer
- Hollings Marine Laboratory, College of Charleston, Charleston, SC, United States
| | - Astrid Schnetzer
- Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jay Styron
- Carolina Mariculture Company, Cedar Island, NC, United States
| |
Collapse
|
45
|
Increased irradiance availability mitigates the physiological performance of species of the calcifying green macroalga Halimeda in response to ocean acidification. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Single and combined effects of the "Deadly trio" hypoxia, hypercapnia and warming on the cellular metabolism of the great scallop Pecten maximus. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110438. [PMID: 32251734 DOI: 10.1016/j.cbpb.2020.110438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
In the ocean the main climate drivers affecting marine organisms are warming, hypercapnia, and hypoxia. We investigated the acute effects of warming (W), warming plus hypercapnia (WHc, ~1800 μatm CO2), warming plus hypoxia (WHo, ~12.1 kPa O2), and a combined exposure of all three drivers (Deadly Trio, DT) on king scallops (Pecten maximus). All exposures started at 14 °C and temperature was increased by 2 °C once every 48 h until the lethal temperature was reached (28 °C). Gill samples were taken at 14 °C, 18 °C, 22 °C, and 26 °C and analyzed for their metabolic response by 1H-nuclear magnetic resonance (NMR) spectroscopy. Scallops were most tolerant to WHc and most susceptible to oxygen reduction (WHo and DT). In particular under DT, scallops' mitochondrial energy metabolism was affected. Changes became apparent at 22 °C and 26 °C involving significant accumulation of glycogenic amino acids (e.g. glycine and valine) and anaerobic end-products (e.g. acetic acid and succinate). In line with these observations the LT50 was lower under the exposure to DT (22.5 °C) than to W alone (~ 25 °C) indicating a narrowing of the thermal niche due to an imbalance between oxygen demand and supply.
Collapse
|
47
|
Hernroth B, Tassidis H, Baden SP. Immunosuppression of aquatic organisms exposed to elevated levels of manganese: From global to molecular perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103536. [PMID: 31705914 DOI: 10.1016/j.dci.2019.103536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Manganese (Mn) is an essential trace metal for all organisms. However, in excess it causes toxic effects but the impact on aquatic environments has so far been highly overlooked. Manganese is abundant both in costal and deep sea sediments and becomes bioavailable (Mn2+) during redox conditions. This is an increasing phenomenon due to eutrophication-induced hypoxia and aggravated through the ongoing climate change. Intracellular accumulation of Mn2+ causes oxidative stress and activates evolutionary conserved pathways inducing apoptosis and cell cycle arrest. Here, studies are compiled on how excess of dissolved Mn suppresses the immune system of various aquatic organisms by adversely affecting both renewal of immunocytes and their functionality, such as phagocytosis and activation of pro-phenoloxidase. These impairments decrease the animal's bacteriostatic capacity, indicating higher susceptibility to infections. Increased distribution of pathogens, which is believed to accompany climate change, requires preserved immune sentinel functions and Mn can be crucial for the outcome of host-pathogen interactions.
Collapse
Affiliation(s)
- Bodil Hernroth
- Department of Natural Science, Kristianstad University, SE-291 88, Kristianstad, Sweden; The Royal Swedish Academy of Sciences, Kristineberg Marine Research Station, SE-450 34, Fiskebäckskil, Sweden.
| | - Helena Tassidis
- Department of Natural Science, Kristianstad University, SE-291 88, Kristianstad, Sweden
| | - Susanne P Baden
- Department of Biological and Environmental Sciences, University of Gothenburg, Kristineberg Marine Research Station, SE-45034, Fiskebäckskil, Sweden
| |
Collapse
|
48
|
Esposito R, Ruocco N, Albarano L, Ianora A, Manfra L, Libralato G, Costantini M. Combined Effects of Diatom-Derived Oxylipins on the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2020; 21:ijms21030719. [PMID: 31979078 PMCID: PMC7036778 DOI: 10.3390/ijms21030719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Oxylipins are diatom-derived secondary metabolites, deriving from the oxidation of polyunsatured fatty acids that are released from cell membranes after cell damage or senescence of these single-celled algae. Previous results revealed harmful toxic effects of polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) on sea urchin Paracentrotus lividus embryonic development by testing individual compounds and mixtures of the same chemical group. Here, we investigated the combined effects of these compounds on sea urchin development at the morphological and molecular level for the first time. Our results demonstrated that oxylipin mixtures had stronger effects on sea urchin embryos compared with individual compounds, confirming that PUAs induce malformations and HEPEs cause developmental delay. This harmful effect was also confirmed by molecular analysis. Twelve new genes, involved in stress response and embryonic developmental processes, were isolated from the sea urchin P. lividus; these genes were found to be functionally interconnected with 11 genes already identified as a stress response of P. lividus embryos to single oxylipins. The expression levels of most of the analyzed genes targeted by oxylipin mixtures were involved in stress, skeletogenesis, development/differentiation, and detoxification processes. This work has important ecological implications, considering that PUAs and HEPEs represent the most abundant oxylipins in bloom-forming diatoms, opening new perspectives in understanding the molecular pathways activated by sea urchins exposed to diatom oxylipins.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Luisa Albarano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Loredana Manfra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Correspondence: ; Tel.: +39-081-5833-3285
| |
Collapse
|
49
|
Mohan PM, Swathi V. Intertidal Biodiversity and Their Response to Climatic Variables, Temperature and pH—What We Know. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ojms.2020.104016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Gallo A, Boni R, Buia MC, Monfrecola V, Esposito MC, Tosti E. Ocean acidification impact on ascidian Ciona robusta spermatozoa: New evidence for stress resilience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134100. [PMID: 31476502 DOI: 10.1016/j.scitotenv.2019.134100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/24/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Rising atmospheric CO2 is causing a progressive decrease of seawater pH, termed ocean acidification. Predicting its impact on marine invertebrate reproduction is essential to anticipate the consequences of future climate change on species fitness and survival. Ocean acidification may affect reproductive success either in terms of gamete or progeny quality threating species survival. Despite an increasing number of studies focusing on the effects of ocean acidification on the early life history of marine organisms, very few have investigated the effects on invertebrate gamete quality. In this study, we set up two experimental approaches simulating the ocean conditions predicted for the end of this century, in situ transplant experiments at a naturally acidified volcanic vent area along the Ischia island coast and microcosm experiments, to evaluate the short-term effects of the predicted near-future levels of ocean acidification on sperm quality of the ascidian Ciona robusta after parental exposure. In the first days of exposure to acidified conditions, we detected alteration of sperm motility, morphology and physiology, followed by a rapid recovery of physiological conditions that provide a new evidence of resilience of ascidian spermatozoa in response to ocean acidification. Overall, the short-term tolerance to adverse conditions opens a new scenario on the marine species capacity to continue to reproduce and persist in changing oceans.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Maria Cristina Buia
- Center of Villa Dohrn Ischia - Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Vincenzo Monfrecola
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|