1
|
Chen KY, Stanford O, Wenzel JA, Joyner RL, Dobs AS. Patient perspectives on cancer care during COVID-19: A qualitative study. PLoS One 2024; 19:e0306035. [PMID: 38990967 PMCID: PMC11238955 DOI: 10.1371/journal.pone.0306035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE The COVID-19 pandemic posed unique challenges to cancer-related care as health systems balanced competing risks of timely delivery of care and minimizing exposure to infection in a high-risk, immunocompromised patient population. This study aimed to better understand how pandemic-related factors affected the patient experience of cancer care during this time. METHODS We conducted fifteen semi-structured interviews with adults from rural counties in Maryland who were diagnosed with and/or actively treated for cancer at the TidalHealth healthcare network between January 2020 and October 2022. RESULTS Interviews from fifteen participants were analyzed. Two major themes emerged including COVID Impact on Care, and COVID Impact on Mental Health. Subthemes under COVID Impact on Care include Staffing Shortages, Hospital Regulations, Visitation, Importance of Advocacy, and Telehealth Utilization, and subthemes under COVID Impact on Mental Health include Loneliness, Support Networks, and Perceptions of COVID and Personal Protection. Overall, participants described positive care experiences despite notable delays, disruptions to continuity of care, difficult transitions to telemedicine, visitation policies that limited patient support, increased mental health struggles related to social distancing measures, and greater desire for patient advocacy. CONCLUSION Our findings reveal significant impacts of the COVID-19 pandemic on experiences of cancer treatment and survivorship in a more vulnerable, rural patient population with lower healthcare access and income level. Our findings suggest areas for targeted interventions to limit disruptions to quality care in future public health emergencies.
Collapse
Affiliation(s)
- Krista Y. Chen
- School of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Olivia Stanford
- School of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Office of Community Outreach and Engagement, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer A. Wenzel
- School of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- School of Nursing, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert L. Joyner
- Richard A. Henson Research Institute, TidalHealth Peninsula Regional, Salisbury, Maryland, United States of America
| | - Adrian S. Dobs
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
3
|
Frerichs KA, Verkleij CPM, Mateos MV, Martin TG, Rodriguez C, Nooka A, Banerjee A, Chastain K, Perales-Puchalt A, Stephenson T, Uhlar C, Kobos R, van der Holt B, Kruyswijk S, Kuipers MT, Groen K, Vishwamitra D, Skerget S, Cortes-Selva D, Doyle M, Zaaijer HL, Zweegman S, Verona RI, van de Donk NWCJ. Teclistamab impairs humoral immunity in patients with heavily pretreated myeloma: importance of immunoglobulin supplementation. Blood Adv 2024; 8:194-206. [PMID: 38052042 PMCID: PMC10787247 DOI: 10.1182/bloodadvances.2023011658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Teclistamab and other B-cell maturation antigen (BCMA)-targeting bispecific antibodies (BsAbs) have substantial activity in patients with heavily pretreated multiple myeloma (MM) but are associated with a high rate of infections. BCMA is also expressed on normal plasma cells and mature B cells, which are essential for the generation of a humoral immune response. The aim of this study was to improve the understanding of the impact of BCMA-targeting BsAbs on humoral immunity. The impact of teclistamab on polyclonal immunoglobulins and B cell counts was evaluated in patients with MM who received once-weekly teclistamab 1.5 mg/kg subcutaneously. Vaccination responses were assessed in a subset of patients. Teclistamabinduced rapid depletion of peripheral blood B cells in patients with MM and eliminated normal plasma cells in ex vivo assays. In addition, teclistamab reduced the levels of polyclonal immunoglobulins (immunoglobulin G [IgG], IgA, IgE, and IgM), without recovery over time while receiving teclistamab therapy. Furthermore, response to vaccines against Streptococcus pneumoniae, Haemophilus influenzae type B, and severe acute respiratory syndrome coronavirus 2 was severely impaired in patients treated with teclistamab compared with vaccination responses observed in patients with newly diagnosed MM or relapsed/refractory MM. Intravenous immunoglobulin (IVIG) use was associated with a significantly lower risk of serious infections among patients treated with teclistamab (cumulative incidence of infections at 6 months: 5.3% with IVIG vs 54.8% with observation only [P < .001]). In conclusion, our data show severe defects in humoral immunity induced by teclistamab, the impact of which can be mitigated by the use of immunoglobulin supplementation. This trial was registered at www.ClinicalTrials.gov as #NCT04557098.
Collapse
Affiliation(s)
- Kristine A Frerichs
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | | | | | - Ajay Nooka
- Winship Cancer Institute, Emory University, Atlanta, GA
| | | | | | | | | | | | - Rachel Kobos
- Janssen Research & Development, Spring House, PA
| | - Bronno van der Holt
- HOVON Foundation, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sandy Kruyswijk
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maria T Kuipers
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kaz Groen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | | | | | | | - Hans L Zaaijer
- Department of Medical Microbiology, Amsterdam UMC location, Academic Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
5
|
Mondaca S, Walbaum B, Le Corre N, Ferrés M, Valdés A, Martínez-Valdebenito C, Ruiz-Tagle C, Macanas-Pirard P, Ross P, Cisternas B, Pérez P, Cabrera O, Cerda V, Ormazábal I, Barrera A, Prado ME, Venegas MI, Palma S, Broekhuizen R, Kalergis AM, Bueno SM, Espinoza MA, Balcells ME, Nervi B. Influence of SARS-CoV-2 mRNA Vaccine Booster among Cancer Patients on Active Treatment Previously Immunized with Inactivated versus mRNA Vaccines: A Prospective Cohort Study. Vaccines (Basel) 2023; 11:1193. [PMID: 37515009 PMCID: PMC10384024 DOI: 10.3390/vaccines11071193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer patients on chemotherapy have a lower immune response to SARS-CoV-2 vaccines. Therefore, through a prospective cohort study of patients with solid tumors receiving chemotherapy, we aimed to determine the immunogenicity of an mRNA vaccine booster (BNT162b2) among patients previously immunized with an inactivated (CoronaVac) or homologous (BNT162b2) SARS-CoV-2 vaccine. The primary outcome was the proportion of patients with anti-SARS-CoV-2 neutralizing antibody (NAb) seropositivity at 8-12 weeks post-booster. The secondary end points included IgG antibody (TAb) seropositivity and specific T-cell responses. A total of 109 patients were included. Eighty-four (77%) had heterologous vaccine schedules (two doses of CoronaVac followed by the BNT162b2 booster) and twenty-five had (23%) homologous vaccine schedules (three doses of BNT162b2). IgG antibody positivity for the homologous and heterologous regimen were 100% and 96% (p = 0.338), whereas NAb positivity reached 100% and 92% (p = 0.13), respectively. Absolute NAb positivity and Tab levels were associated with the homologous schedule (with a beta coefficient of 0.26 with p = 0.027 and a geometric mean ratio 1.41 with p = 0.044, respectively). Both the homologous and heterologous vaccine regimens elicited a strong humoral and cellular response after the BNT162b2 booster. The homologous regimen was associated with higher NAb positivity and Tab levels after adjusting for relevant covariates.
Collapse
Affiliation(s)
- Sebastián Mondaca
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Benjamín Walbaum
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Nicole Le Corre
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Marcela Ferrés
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Alejandro Valdés
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Constanza Martínez-Valdebenito
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Cinthya Ruiz-Tagle
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Patricia Macanas-Pirard
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Patricio Ross
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Betzabé Cisternas
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Patricia Pérez
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Olivia Cabrera
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Valentina Cerda
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Ivana Ormazábal
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Aldo Barrera
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - María E Prado
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - María I Venegas
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Silvia Palma
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Richard Broekhuizen
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330032, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Manuel A Espinoza
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330032, Chile
| | - M Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Bruno Nervi
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| |
Collapse
|
6
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
7
|
Fujii K, Fukuda K, Kawakami M, Mitani A, Tanaka G, Kage H. Lung Adenocarcinoma Size Decrease after SARS-CoV-2 Vaccination during Long-Term Pembrolizumab Treatment: A Case Report. Case Rep Oncol 2023; 16:907-911. [PMID: 37900823 PMCID: PMC10601772 DOI: 10.1159/000533705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/18/2023] [Indexed: 10/31/2023] Open
Abstract
A man in his late 40s was diagnosed with clinical stage 4B lung adenocarcinoma with a PD-L1 tumor proportion score of 100% and high tumor mutational burden. A partial response was achieved after administration of pembrolizumab. The patient received two doses of a SARS-CoV-2 vaccine (BNT162b2) after 59 courses, and a chest computed tomography revealed consolidation in the peri-tumoral area, which subsequently disappeared, and the tumor continued to shrink in the next 4 months. This case provides indirect evidence for the persistence of cancer immunity during long-term treatment with immune checkpoint inhibitors and the potential for further activation.
Collapse
Affiliation(s)
- Koki Fujii
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kensuke Fukuda
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Masanori Kawakami
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Goh Tanaka
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Hidenori Kage
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Next-Generation Precision Medicine Development Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Fatal Outcome of COVID-19 Relapse in a Fully Vaccinated Patient with Non-Hodgkin Lymphoma Receiving Maintenance Therapy with the Anti-CD20 Monoclonal Antibody Obinutuzumab: A Case Report. Vaccines (Basel) 2022; 10:vaccines10071021. [PMID: 35891185 PMCID: PMC9323164 DOI: 10.3390/vaccines10071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Few data are available regarding the effectiveness of anti-SARS-CoV-2 vaccine in immunocompromised patients. Vaccination may have a suboptimal efficacy in this population, in particular if patients are exposed to anti-B-cell therapy. We report the virological and clinical characteristics of a patient with follicle center lymphoma under bimonthly maintenance therapy with obinutuzumab, an anti-CD20 monoclonal antibody. Despite three doses of BNT162b2 vaccine, the patient was infected by the SARS-CoV-2 Omicron variant. After an initial period of clinical and molecular remission due to early therapy with sotrovimab, the patient experienced a fatal relapse sustained by the same viral strain.
Collapse
|