1
|
Valéry M, Tanguy ML, Gelli M, Smolenschi C, Hollebecque A, Boilève A, de Sevilla EF, Tselikas L, Bonnet B, Goéré D, Taïeb J, Boige V, Ducreux M, Malka D. Oxaliplatin-induced peripheral neuropathy with hepatic arterial versus intravenous infusion in metastatic colorectal cancer. Support Care Cancer 2024; 32:660. [PMID: 39283505 DOI: 10.1007/s00520-024-08807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND Oxaliplatin, a major drug in metastatic colorectal cancer (mCRC), is responsible for cumulative, dose-limiting peripheral neuropathy (PN). Whether the hepatic arterial infusion (HAI) route can limit oxaliplatin-induced PN in comparison with the intravenous (IV) route has not been specifically explored so far. METHODS We compared the frequency and severity of PN in oxaliplatin-naive patients with mCRC included in trials that evaluated treatment with oxaliplatin administered either by HAI (ACCORD 04, CHOICE, OSCAR, and PACHA-01 trials) or by IV route (FFCD 2000-05 trial). We retrieved anonymized, prospectively collected data from trial databases for the ACCORD 04, CHOICE, and FFCD 2000-05 trials and through a review of Gustave Roussy patients' electronic medical records for PACHA-01 and OSCAR trials. The primary endpoint was the incidence of clinically significant PN (grades 2 to 4) according to the cumulative dose of oxaliplatin received. Secondary endpoints were time to onset of neuropathy as a function of the cumulative dose of oxaliplatin, discontinuation of oxaliplatin for neurotoxicity, and safety. RESULTS A total of 363 patients were included (IV, 300; HAI, 63). In total, 180 patients in the IV group (60%) and 30 patients in the HAI group (48%) developed clinically significant PN, with no significant difference between the two groups (p = 0.23). No difference was shown in the time to onset of PN either (p = 0.23). CONCLUSION The administration of oxaliplatin HAI rather than IV in the treatment of mCRC does not reduce the incidence, precocity, and severity of PN.
Collapse
Affiliation(s)
- Marine Valéry
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Marie-Laure Tanguy
- Service de Biostatistique et d'Épidémiologie, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
- Équipe Labellisée Ligue Contre Le Cancer, Oncostat U1018, INSERM, Université Paris-Saclay, Villejuif, France
| | - Maximiliano Gelli
- Département de Chirurgie Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Cristina Smolenschi
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
- Département d'Innovation Thérapeutique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Antoine Hollebecque
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
- Département d'Innovation Thérapeutique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Alice Boilève
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
- INSERM Unité Dynamique Des Cellules Tumorales, Université Paris-Saclay, Gustave Roussy, 94805, Villejuif, France
| | | | - Lambros Tselikas
- Département d'Imagerie Médicale et de Radiologie Interventionnelle, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Baptiste Bonnet
- Département d'Imagerie Médicale et de Radiologie Interventionnelle, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Diane Goéré
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Universitaire Saint-Louis, Paris, France
| | - Julien Taïeb
- Service d'Oncologie Digestive, Hôpital Européen Georges Pompidou, Paris, France
| | - Valérie Boige
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Michel Ducreux
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
- INSERM Unité Dynamique Des Cellules Tumorales, Université Paris-Saclay, Gustave Roussy, 94805, Villejuif, France
| | - David Malka
- INSERM Unité Dynamique Des Cellules Tumorales, Université Paris-Saclay, Gustave Roussy, 94805, Villejuif, France.
- Département d'Oncologie Médicale, Institut Mutualiste Montsouris, 42 Boulevard Jourdan, 75014 Paris, France.
| |
Collapse
|
2
|
Molinares D, Kurtevski S, Zhu Y. Chemotherapy-Induced Peripheral Neuropathy: Diagnosis, Agents, General Clinical Presentation, and Treatments. Curr Oncol Rep 2023; 25:1227-1235. [PMID: 37702983 DOI: 10.1007/s11912-023-01449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE OF REVIEW This review aims to discuss pathophysiology, diagnosis, clinical presentation, and treatment of chemotherapy-induced peripheral neuropathy. Agent-specific presentation and pathophysiology is also being discussed. RECENT FINDINGS As new systemic oncological treatments continue to be developed, the number of cancer survivors continues to grow. Survivors are living longer with the long-term side effects of oncological treatments. We reviewed the pathophysiology of agent-specific chemotherapy-induced peripheral neuropathy and the updates in its treatment and preventative tools. Chemotherapy-induced peripheral neuropathy is a debilitating long-term side effect that often impairs cancer survivors' function and quality of life. The increasing life expectancy of cancer survivors has resulted in increased prevalence of this condition. Understanding its intricacies can provide physicians with better treatment tools and research opportunities to develop or identify new therapeutic agents.
Collapse
Affiliation(s)
- Diana Molinares
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, 1611 NW 12th avenue, Miami, FL, 33136, USA.
| | - Sara Kurtevski
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, 1611 NW 12th avenue, Miami, FL, 33136, USA
| | - Yingrong Zhu
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, 1611 NW 12th avenue, Miami, FL, 33136, USA
| |
Collapse
|
3
|
Marini HR, Facchini BA, di Francia R, Freni J, Puzzolo D, Montella L, Facchini G, Ottaiano A, Berretta M, Minutoli L. Glutathione: Lights and Shadows in Cancer Patients. Biomedicines 2023; 11:2226. [PMID: 37626722 PMCID: PMC10452337 DOI: 10.3390/biomedicines11082226] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In cases of cellular injury, there is an observed increase in the production of reactive oxygen species (ROS). When this production becomes excessive, it can result in various conditions, including cancerogenesis. Glutathione (GSH), the most abundant thiol-containing antioxidant, is fundamental to re-establishing redox homeostasis. In order to evaluate the role of GSH and its antioxi-dant effects in patients affected by cancer, we performed a thorough search on Medline and EMBASE databases for relevant clinical and/or preclinical studies, with particular regard to diet, toxicities, and pharmacological processes. The conjugation of GSH with xenobiotics, including anti-cancer drugs, can result in either of two effects: xenobiotics may lose their harmful effects, or GSH conjugation may enhance their toxicity by inducing bioactivation. While being an interesting weapon against chemotherapy-induced toxicities, GSH may also have a potential protective role for cancer cells. New studies are necessary to better explain the relationship between GSH and cancer. Although self-prescribed glutathione (GSH) implementation is prevalent among cancer patients with the intention of reducing the toxic effects of anticancer treatments and potentially preventing damage to normal tissues, this belief lacks substantial scientific evidence for its efficacy in reducing toxicity, except in the case of cisplatin-related neurotoxicity. Therefore, the use of GSH should only be considered under medical supervision, taking into account the appropriate timing and setting.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80133 Napoli, Italy;
| | - Raffaele di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-ONLUS), 33170 Pordenone, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Napoli, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| |
Collapse
|
4
|
Ben Mahmoud IT, Ben Said A, Berguiga S, Houij R, Cherif I, Hamdi A, Ben Ayed W, Limayem I. Incidence and risk factors associated with development of oxalipatin-induced acute peripheral neuropathy in colorectal cancer patients. J Oncol Pharm Pract 2023; 29:311-318. [PMID: 34918549 DOI: 10.1177/10781552211068138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Oxaliplatin utilized in colorectal neoplasms treatment could induce acute peripheral neuropathy (APN) which is a dreadful and frequent adverse event. The objective of this study is to estimate incidence of APN induced by oxaliplatin cumulative incidence in cancer patients colorectal and to describe the distribution of the APN incidence according to demographic and clinical characteristics, as well as according to oxaliplatin cumulative dose. MATERIAL AND METHODS This is a prospective descriptive study which took place from June to December 2018 at the Salah Azaiz Institute, Tunis. Demographic data, clinical data and data on oxaliplatin administration were collected from patient interview, medical files and pharmaceutical databases. RESULTS The APN (grade 1, grade 2 and grade 3) cumulative incidence during the period of six months of follow up was 86% (95% CI [0.7815-0.9132]). While 38.3% (95% CI [0.29-0.48]) of the patients had grade 2 or 3 neuropathy. The search for factors associated with the risk of grade 2 and 3 NAP revealed trend significant association with diabetes (adjusted RR = 5.7 (IC95% [0.9- 37.3]; p = 0.07). Moreover, there was significant association with oxaliplatin cumulative dose (≥421 mg/m2) to increase the risk of APN grade 2 and 3 (adjusted RR = 7.8; [2.7-22.7]; p = 0.0001). Furthermore, significant association with obesity to increase the risk of APN grade 2 and 3 (adjusted RR = 5.3 [1.1- 25.4]; p = 0.04) was found. Among the patients included, 31.1% experienced oxaliplatin dose reduction and in the majority of cases this reduction is due to neurotoxicity (90.9%). CONCLUSION The high incidence of oxaliplatin-induced APN remains an embarrassing and handicapping side effect. Our study has shown that oxaliplatin cumulative dose (≥421 mg/m2), diabetes and obesity are risk factor for the development of grade 2 and 3 APN.
Collapse
Affiliation(s)
- Imen Toukabri Ben Mahmoud
- 59075Salah Azaiez Institute Department of Pharmacy, Tunis, Tunisia.,Faculty of Pharmacy, 108055University of Monastir, Monastir, Tunisia
| | - Azza Ben Said
- 59075Salah Azaiez Institute Department of Pharmacy, Tunis, Tunisia.,Faculty of Pharmacy, 108055University of Monastir, Monastir, Tunisia
| | - Souad Berguiga
- 59075Salah Azaiez Institute Department of Pharmacy, Tunis, Tunisia
| | - Racha Houij
- 59075Salah Azaiez Institute Department of Pharmacy, Tunis, Tunisia
| | - Ines Cherif
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Adel Hamdi
- 59075Salah Azaiez Institute Department of Pharmacy, Tunis, Tunisia.,Faculty of Pharmacy, 108055University of Monastir, Monastir, Tunisia
| | - Wiem Ben Ayed
- 59075Salah Azaiez Institute Department of Pharmacy, Tunis, Tunisia
| | - Imen Limayem
- 59075Salah Azaiez Institute Department of Pharmacy, Tunis, Tunisia.,Faculty of Pharmacy, 108055University of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
6
|
Zhang S. Chemotherapy-induced peripheral neuropathy and rehabilitation: A review. Semin Oncol 2021; 48:193-207. [PMID: 34607709 DOI: 10.1053/j.seminoncol.2021.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication after chemotherapy that can damage the sensory, motor, autonomic, or cranial nerves in approximately 30%-60% of patients with cancer. CIPN can lead to detrimental dose modifications and/or premature chemotherapy discontinuation due to patient intolerance. The long-term impact of CIPN is particularly challenging and can have a profound impact on the quality of life (QoL) and survivorship. However, this condition is often underdiagnosed. No agents have been established to prevent CIPN. Pre-chemotherapy testing is recommended for high-risk patients. Duloxetine is considered a first-line treatment, whereas gabapentin, pregabalin, tricyclic antidepressants, and topical compounding creams may be used for neuropathic pain control. Home-based, low-to-moderate walking, and resistance exercise during chemotherapy can reduce the severity and prevalence of CIPN symptoms, especially in older patients. Pre-habilitation and rehabilitation should be recommended for all patients receiving cytotoxic chemotherapies. The purpose of this article is to review common chemotherapeutic drugs causing CIPN, risk factors, diagnosis and treatment of CIPN, and evidence of the benefits of rehabilitation.
Collapse
Affiliation(s)
- Shangming Zhang
- Department of Physical Medicine and Rehabilitation, Penn State Health Milton S. Hershey medical Center, Hershey, PA.
| |
Collapse
|
7
|
Verrilli AM, Leibman NF, Hohenhaus AE, Mosher BA. Safety and efficacy of a ribose-cysteine supplement to increase erythrocyte glutathione concentration in healthy dogs. Am J Vet Res 2021; 82:653-658. [PMID: 34296936 DOI: 10.2460/ajvr.82.8.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the safety of oral administration of a d-ribose-l-cysteine (RibCys) supplement to dogs and the effect of this supplementation on erythrocyte glutathione (GSH) concentration. ANIMALS 24 healthy adult dogs. PROCEDURES In a randomized, double-blinded, controlled trial, dogs received 500 mg of a RibCys supplement or placebo (n = 12/group), PO, every 12 hours for 4 weeks. Dogs were evaluated weekly by means of a physical examination, CBC, serum biochemical analysis, urinalysis, and owner-completed quality-of-life questionnaire. Erythrocyte GSH concentration was measured on day 0 (ie, the day before treatment began) and weekly during supplementation. RESULTS No dose-limiting adverse effects were noted in any dog. Two dogs in each group had mild, self-limiting diarrhea and anemia. No significant increase in erythrocyte GSH concentration was noted in either group at any time point. Two dogs in the RibCys group had improved skin and coat health and improved clinical signs of osteoarthritis. No clinical or owner-perceived improvements were noted in the placebo group. CONCLUSIONS AND CLINICAL RELEVANCE The RibCys supplement was safe and well tolerated in all dogs. Owners reported improvements in dermatologic and orthopedic conditions in some dogs in the RibCys group. No significant differences were observed in erythrocyte GSH concentration before or after RibCys treatment. This lack of significant differences may have been attributable to the use of healthy dogs, which would not be expected to have depleted GSH concentrations. Given the observed safety profile of RibCys, additional research is warranted to explore the potential usefulness of RibCys supplementation in dogs with cancer and those undergoing treatment for cancer.
Collapse
|
8
|
Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153402. [PMID: 33203590 DOI: 10.1016/j.phymed.2020.153402] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy. PURPOSE This review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications. METHODS We obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects. RESULTS Representative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values. CONCLUSION This review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiao-Lu Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
9
|
Protective effect of the oral administration of cystine and theanine on oxaliplatin-induced peripheral neuropathy: a pilot randomized trial. Int J Clin Oncol 2020; 25:1814-1821. [PMID: 32594273 PMCID: PMC7498479 DOI: 10.1007/s10147-020-01728-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oxaliplatin, one of the key cytotoxic drugs for colorectal cancer, frequently causes peripheral neuropathy which leads to dose modification and decreased patients' quality of life. However, prophylactic or therapeutic measures have not yet been established. Orally administered amino acids, cystine and theanine, promoted the synthesis of glutathione which was one of the potential candidates for preventing the neuropathy. The aim of this study was to determine whether daily oral administration of cystine and theanine attenuated oxaliplatin-induced peripheral neuropathy (OXLIPN). METHODS Twenty-eight colorectal cancer patients who received infusional 5-fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) therapy were randomly and evenly assigned to the cystine and theanine group and the control group. OXLIPN was assessed up to the sixth course using original 7-item questionnaire as well as Common Terminology Criteria for Adverse Events (CTCAE) grading scale. RESULTS Neuropathy scores according to our original questionnaire were significantly smaller in the cystine and theanine group at the fourth (p = 0.026), fifth (p = 0.029), and sixth course (p = 0.038). Furthermore, significant differences were also observed in CTCAE neuropathy grades at the fourth (p = 0.037) and the sixth course (p = 0.017). There was one patient in each group who required dose reduction due to OXLIPN. Except for neurotoxicity, no significant differences were noted in the incidence of adverse events, and the total amount of administered oxaliplatin. CONCLUSION The results demonstrated the daily oral administration of cystine and theanine attenuated OXLIPN.
Collapse
|
10
|
Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J Neurol 2020; 268:3269-3282. [PMID: 32474658 DOI: 10.1007/s00415-020-09942-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Oxaliplatin (OXA) is a commonly used platinum-based chemotherapy drug for colorectal cancer. OXA-induced peripheral neurotoxcity (OIPN) is a comprehensive adverse reaction of OXA. OIPN can be divided into acute and chronic types according to clinical features and different mechanisms. The main clinical features of acute OIPN are cold-sensitive sensory symptoms and neuropathic pain in limbs. In addition to the above symptoms, chronic OIPN also produces autonomic nerve dysfunction. The most important mechanism involved in acute OIPN is the alteration of voltage-gated Na + channels, and nuclear DNA damage in chronic OIPN. There are some methods like reducing exposure to cold, calcium and magnesium salts, amifostine could be beneficial in acute OIPN prevention and dose modification, changing in schedule glutathione, duloxetine, selective serotonin reuptake inhibitors, carbonic anhydrase inhibitor in chronic OIPN prevention. Recent updates are provided in this article in relation to the clinical features, potential mechanisms, prevention and treatment of OIPN.
Collapse
|
11
|
Ezzi MS, Othieno-Abinya NA, Amayo E, Oyiro P, McLigeyo A, Yatich RB, Shoba B. Prevalence and Predictors of Cisplatin-Induced Peripheral Neuropathy at the Kenyatta National Hospital. J Glob Oncol 2020; 5:1-6. [PMID: 31479343 PMCID: PMC6733204 DOI: 10.1200/jgo.19.00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To determine the prevalence, predictors, and/or risk factors of chemotherapy-induced peripheral neuropathy in patients undergoing chemotherapy with cisplatin at Kenyatta National Hospital, Nairobi, Kenya. METHODS This was a cross-sectional analysis of patients who underwent chemotherapy with cisplatin for at least 2 months at Kenyatta National Hospital oncology units. Peripheral neuropathy was determined by history and physical examination per the protocol. Data are presented in tables. Descriptive inferential statistics such as means, medians, and proportions were determined where applicable. RESULTS We recruited 67 patients who were undergoing chemotherapy with cisplatin. Fifty-six patients (83.6%) had peripheral neuropathy. Forty-five patients (81%) had mild-grade (grades 1 and 2) peripheral neuropathy. Only two patients (3.1%) had grade 4 neuropathy. Almost all patients who were overweight or obese developed peripheral neuropathy. CONCLUSION Peripheral neuropathy among patients receiving cisplatin is quite prevalent at Kenyatta National Hospital (83.6% prevalence rate). However, most of the patients had a mild grade of neuropathy, which is largely consistent with literature elsewhere.
Collapse
|
12
|
Kachrani R, Santana A, Rogala B, Pawasauskas J. Chemotherapy-Induced Peripheral Neuropathy: Causative Agents, Preventative Strategies, and Treatment Approaches. J Pain Palliat Care Pharmacother 2020; 34:141-152. [DOI: 10.1080/15360288.2020.1734144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rishi Kachrani
- Rishi Kachrani, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Anthony Santana, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Britny Rogala, PharmD, BCOP is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Department of Pharmacy, Women & Infants Hospital,
| | - Anthony Santana
- Rishi Kachrani, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Anthony Santana, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Britny Rogala, PharmD, BCOP is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Department of Pharmacy, Women & Infants Hospital,
| | - Britny Rogala
- Rishi Kachrani, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Anthony Santana, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Britny Rogala, PharmD, BCOP is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Department of Pharmacy, Women & Infants Hospital,
| | - Jayne Pawasauskas
- Rishi Kachrani, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Anthony Santana, PharmD Candidate is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Britny Rogala, PharmD, BCOP is in the Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA; Department of Pharmacy, Women & Infants Hospital,
| |
Collapse
|
13
|
Bondad N, Boostani R, Barri A, Elyasi S, Allahyari A. Protective effect of N-acetylcysteine on oxaliplatin-induced neurotoxicity in patients with colorectal and gastric cancers: A randomized, double blind, placebo-controlled, clinical trial. J Oncol Pharm Pract 2020; 26:1575-1582. [PMID: 32063109 DOI: 10.1177/1078155219900788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Neuropathy is one of the most prevalent and dose-limiting side effects of platinum chemotherapeutic agents. N-acetylcysteine is an antioxidant thiol which is able to increase whole blood concentration of glutathione, which may be protective against chemotherapy-induced neuropathy. The aim of this study was to evaluate the effect of N-acetylcysteine on neurotoxicity induced by oxaliplatin in patients with gastric or colorectal cancers. METHODS During this randomized, double-blinded, placebo-controlled clinical trial, the preventive effect of N-acetylcysteine effervescent tablets was assessed in comparison with placebo, on neuropathy occurrence. Thirty-two patients with colorectal or gastric cancer randomly received N-acetylcysteine (two 600 mg tablets) or placebo tablets 1 h before receiving oxaliplatin in dose in XELOX (oxaliplatin and capecitabine regimen) for eight courses of chemotherapy. Neuropathy severity was assessed after eight courses of chemotherapy based on National Cancer Institute Common Terminology for Adverse Events (NCI-CTCAE) criteria neuropathy grading scale and also sensory and motor electrophysiological assessment was performed by a neurologist. RESULTS The NCI-CTCAE scale grade of patients in intervention group was significantly lower than placebo group after eight course of oxaliplatin (P = 0.01); however, the sensory electrophysiological assessment result was not significantly different (P = 0.501). No patient in both group had motor electrophysiological changes. CONCLUSION The results of this study showed that N-acetylcysteine could reduce the incidence of the neuropathy induced by oxaliplatin and delay its occurrence in patients with gastric or colorectal cancers.
Collapse
Affiliation(s)
- Nazanin Bondad
- Department of Internal Medicine, Mashhad University of Medical sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Barri
- Department of Hematology and Medical Oncology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Allahyari
- Department of Hematology and Medical Oncology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Kumar A, Gatto G, Delogu F, Pilia L. DFT study of [Pt(Cl)2L] complex (L = rubeanic acid) and its derived compounds with DNA purine bases. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Santos NAGD, Ferreira RS, Santos ACD. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 2019; 136:111079. [PMID: 31891754 DOI: 10.1016/j.fct.2019.111079] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Cisplatin has dramatically improved the survival rate of cancer patients, but it has also increased the prevalence of hearing and neurological deficits in this population. Cisplatin induces ototoxicity, peripheral (most prevalent) and central (rare) neurotoxicity. This review addresses the ototoxicity and the neurotoxicity associated with cisplatin-based chemotherapy, providing an integrated view of the potential protective agents that have been evaluated in vitro, in vivo and in clinical trials, their targets and mechanisms of protection and their effects on the antitumor activity of cisplatin. So far, the findings are insufficient to support the use of any oto- or neuroprotective agent before, during or after cisplatin chemotherapy. Despite their promising effects in vitro and in animal studies, many agents have not been evaluated in clinical trials. Additionally, the clinical trials have limitations concerning the sample size, controls, measurement, heterogeneous groups, several arms of treatment, short follow-up or no blinding. Besides that, for most agents, the effects on the antitumor activity of cisplatin have not been evaluated in tumor-bearing animals, which discourages clinical trials. Further well-designed randomized controlled clinical trials are necessary to definitely demonstrate the effectiveness of the oto- or neuroprotective agents proposed by animal and in vitro studies.
Collapse
Affiliation(s)
- Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
α-Lipoic acid prevents against cisplatin cytotoxicity via activation of the NRF2/HO-1 antioxidant pathway. PLoS One 2019; 14:e0226769. [PMID: 31877176 PMCID: PMC6932784 DOI: 10.1371/journal.pone.0226769] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
The production of reactive oxygen species (ROS) by cisplatin is one of the major mechanisms of cisplatin-induced cytotoxicity. We examined the preventive effect of α-lipoic acid (LA) on cisplatin-induced toxicity via its antioxidant effects on in vitro and ex vivo culture systems. To elucidate the mechanism of the antioxidant activity of LA, NRF2 was inhibited using NRF2 siRNA, and the change in antioxidant activity of LA was characterized. MTT assays showed that LA was safe at concentrations up to 0.5 mM in HEI-OC1 cells and had a protective effect against cisplatin-induced cytotoxicity. Intracellular ROS production in HEI-OC1 cells was rapidly increased by cisplatin for up to 48 h. However, treatment with LA significantly reduced the production of ROS and increased the expression of the antioxidant proteins HO-1 and SOD1. Ex vivo, the organs of Corti of the group pretreated with LA exhibited better preservation than the group that received cisplatin alone. We also confirmed the nuclear translocation of NRF2 after LA administration, and that NRF2 inhibition decreased the antioxidant activity of LA. Together, these results indicate that the antioxidant activity of LA was through the activation of the NRF2/HO-1 antioxidant pathway.
Collapse
|
17
|
Fernando W, Rupasinghe HPV, Hoskin DW. Dietary phytochemicals with anti-oxidant and pro-oxidant activities: A double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett 2019; 452:168-177. [PMID: 30910593 DOI: 10.1016/j.canlet.2019.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022]
Abstract
Many advances have been made in the development and introduction of new anti-cancer drugs to the clinic. However, limited attention has been paid to improving the efficacy of currently available treatments through complementary phytochemical interventions that affect cellular reactive oxygen species (ROS) levels, which are important for the etiology of certain cancers and the effectiveness of radiotherapy and some chemotherapy. In this regard, the maintenance of redox homeostasis may be influenced by the intake of anti-oxidant and pro-oxidant compounds from dietary sources. Interestingly, certain dietary phytochemicals exhibit both anti-oxidant and pro-oxidant activities, depending on their concentration and cellular microenvironment. There is evidence that concurrent administration of some dietary phytochemicals enhances the efficacy of certain cancer treatments by increasing intracellular ROS accumulation. Paradoxically, consumption of the same dietary phytochemicals under conditions that result in the scavenging of ROS might also negatively affect the outcome of ROS-dependent cancer treatments. This review discusses the potential impact of consuming dietary phytochemicals with anti-oxidant and/or pro-oxidant activities on the effectiveness of concurrent chemotherapy and/or radiotherapy in cancer patients.
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
| | - David W Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
18
|
Lee D, Kanzawa-Lee G, Knoerl R, Wyatt G, Smith EML. Characterization of Internal Validity Threats to Phase III Clinical Trials for Chemotherapy-Induced Peripheral Neuropathy Management: A Systematic Review. Asia Pac J Oncol Nurs 2019; 6:318-332. [PMID: 31572750 PMCID: PMC6696803 DOI: 10.4103/apjon.apjon_14_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: The recent American Society of Clinical Oncology (ASCO) Clinical Guidelines for chemotherapy-induced peripheral neuropathy (CIPN) management (48 Phase III trials reviewed) only recommend duloxetine. However, before concluding that a CIPN intervention is ineffective, scientists and clinicians should consider the risk of Type II error in Phase III studies. The purpose of this systematic review was to characterize internal threats to validity in Phase III CIPN management trials. Methods: The PubMed, CINAHL, EMBASE®, and Scopus databases were searched for Phase III clinical trials testing interventions for CIPN management between 1990 and 2018. The key search terms were neoplasms, cancer, neuropathy, and CIPN. Two independent researchers evaluated 24 studies, using a modified Joanna Briggs Institute Checklist for Randomized Control Trials developed by the authors specific for CIPN intervention trials. Results: Two studies exhibited minimal or no design flaws. 22/24 Phase III clinical trials for CIPN have two or greater design flaws due to sample heterogeneity, malapropos mechanism of action, malapropos intervention dose, malapropos timing of the outcome measurement, confounding variables, lack of a valid and reliable measurement, and suboptimal statistical validity. Conclusions: Numerous CIPN interventions have been declared ineffective based on the results of Phase III trials. However, internal validity threats to numerous studies may have resulted in Type II error and subsequent dismissal of a potentially effective intervention. Patients may benefit from rigorous retesting of several agents (e.g., alpha-lipoic acid, duloxetine, gabapentin, glutathione, goshajinkigan, lamotrigine, nortriptyline, venlafaxine, and Vitamin E) to expand and validate the evidence regarding ASCO's recommendations for CIPN management.
Collapse
Affiliation(s)
- Deborah Lee
- Michigan State University, School of Nursing, East Lansing, Ann Arbor, MI, USA
| | | | - Robert Knoerl
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gwen Wyatt
- Michigan State University, School of Nursing, East Lansing, Ann Arbor, MI, USA
| | | |
Collapse
|
19
|
Smith EML, Knoerl R, Yang JJ, Kanzawa-Lee G, Lee D, Bridges CM. In Search of a Gold Standard Patient-Reported Outcome Measure for Use in Chemotherapy- Induced Peripheral Neuropathy Clinical Trials. Cancer Control 2018; 25:1073274818756608. [PMID: 29480026 PMCID: PMC5925747 DOI: 10.1177/1073274818756608] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: To test a reduced version—CIPN15—of the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Chemotherapy-Induced Peripheral Neuropathy scale (QLQ-CIPN20) to establish a possible gold-standard patient-reported outcome measure for chemotherapy-induced peripheral neuropathy (CIPN). Methods: Using a prospective, longitudinal, case–control design, patients (n = 121) receiving neurotoxic chemotherapy completed the CIPN15 at baseline and 12 weeks and underwent objective neurological assessment using the 5-item Total Neuropathy Score-Clinical (TNSc). Healthy controls (n = 30) completed the CIPN15 once. Structural validity was evaluated using factor analysis. Because a stable factor structure was not found, a sum score was used to evaluate measures of the CIPN15’s psychometric properties—reliability, validity, sensitivity, and responsiveness—as follows: internal consistency via Cronbach’s α and item–item correlations; test–retest reliability via correlation between 2 CIPN15 scores from each patient; concurrent validity via correlation between CIPN15 and 5-item TNSc scores; contrasting group validity via comparison of CIPN15 scores from patients and healthy controls; sensitivity via descriptive statistics (means, standard deviation, ranges); and responsiveness via Cohen’s d effect size. Results: Most patients received single agent oxaliplatin (33.7%), paclitaxel (21.2%), or more than 1 neurotoxic drug concurrently (29.8%). Factor analysis revealed no stable factor structure. Cronbach’s α for the CIPN15 sum score was 0.91 (confidence interval [CI] = 0.89-0.93). Test–retest reliability was demonstrated based on strong correlations between the 2 scores obtained at the 12-week time point (r = 0.86; CI = 0.80-0.90). The CIPN15 and 5-item TNSc items reflecting symptoms (not signs) were moderately correlated (r range 0.57-0.72): concurrent validity. Statistically significant differences were found between patient and healthy control CIPN15 mean scores (P < .0001): contrasting group validity. All items encompassed the full score range but the CIPN15 linearly converted sum score did not: sensitivity. The CIPN15 was responsive based on a Cohen’s d of 0.52 (CI = 0.25-0.79). Conclusion: The sum-scored CIPN15 is reliable, valid, sensitive, and responsive when used to assess taxane- and platinum-induced CIPN.
Collapse
Affiliation(s)
| | - Robert Knoerl
- 2 Phylllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana Farber Cancer Institute, Boston, MA, USA
| | - James J Yang
- 1 University of Michigan School of Nursing, Ann Arbor, MI, USA
| | | | - Deborah Lee
- 1 University of Michigan School of Nursing, Ann Arbor, MI, USA
| | - Celia M Bridges
- 1 University of Michigan School of Nursing, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Bajetta E, Rimassa L, Carnaghi C, Del Vecchio M, Celio L, Cassata A. Preliminary Experience with High-Dose Cisplatin, Reduced Glutathione and Natural Interferon-α in Dacarbazine-Resistant Malignant Melanoma. TUMORI JOURNAL 2018; 84:48-51. [PMID: 9619714 DOI: 10.1177/030089169808400110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and background The incidence of malignant melanoma is rapidly increasing in many countries, and when this disease has reached advanced stages, standard therapies have little impact. Dacarbazine (DTIC) is the most effective chemotherapeutic agent with an overall response rate of 20-25%, but durable responses are uncommon. Interesting results with the use of cisplatin (CDDP) have been reported in DTIC-resistant melanoma. Moreover, malignant melanoma is an immunogenic tumor and a potential target for biological response modifier (BRM) therapies. The aim of the present study was to evaluate the efficacy and tolerability of a chemo-immunotherapeutic regimen including high-dose CDDP combined with glutathione (GSH) to limit platinum-related toxicity, and natural interferon-α (IFN-α) in patients with DTIC-resistant metastatic melanoma. Methods The treatment schedule included GSH 1,500 mg/m2 i.v. and CDDP 40 mg/m2 i.v. for 4 consecutive days every 3 weeks, with a maximum of 6 courses, and IFN-α 3 MIU i.m. 3 times a week, continuative for a maximum of 12 months. Results Twelve patients were enrolled in this phase II trial. Accrual was stopped due to treatment-related toxicity. Ten patients were evaluable for response; there were 2 partial responses, lasting 5+ and 9+ months, respectively, and 2 cases of stable disease, lasting 3+ and 8+ months. None of these patients completed the therapeutic program due to treatment-related side effects. Conclusions This regimen seems to be only partially active in DTIC-resistant metastatic melanoma. Hematologic and non-hema-tologic (nausea and vomiting, peripheral neurotoxicity, and asthenia) side effects are significant and GSH is not effective in limiting CDDP-related neurotoxicity in pretreated patients. Therefore, there is no indication to employ this regimen as second-line treatment in metastatic melanoma and these disappointing results highlight the urgent need for new therapeutic approaches.
Collapse
Affiliation(s)
- E Bajetta
- Division of Medical Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Monfrini M, Ravasi M, Maggioni D, Donzelli E, Tredici G, Cavaletti G, Scuteri A. Comparing the different response of PNS and CNS injured neurons to mesenchymal stem cell treatment. Mol Cell Neurosci 2018; 86:16-24. [DOI: 10.1016/j.mcn.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/03/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022] Open
|
22
|
Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm J 2017; 26:177-190. [PMID: 30166914 PMCID: PMC6111235 DOI: 10.1016/j.jsps.2017.12.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide, accounting for almost 13% of deaths in the world. Among the conventional cancer treatments, chemotherapy is most frequently carried out to treat malignant cancer rather than localised lesions which is amenable to surgery and radiotherapy. However, anticancer drugs are associated with a plethora of side effects. Each drug, within every class, has its own set of adverse reactions which may cause patient incompliance and deterioration of the quality of life. One of the major causes of adverse reactions, especially for drugs targeting DNA, is the excessive production of reactive oxygen species (ROS) and subsequent build up of oxidative stress. To curb these undesired side effects, several dietary supplements have been tested, amongst which antioxidants have gained increasing popularity as adjuvant in chemotherapy. However, many oncologists discourage the use of antioxidant rich food supplements because these may interfere with the modalities which kill cancer by generating free radicals. In the present review, all studies reporting concomitant use of several antioxidants with chemotherapy are indiscriminately included and discussed impartially. The effect of supplementation of thirteen different antioxidants and their analogues as a single agent or in combination with chemotherapy has been compiled in this article. The present review encompasses a total of 174 peer-reviewed original articles from 1967 till date comprising 93 clinical trials with a cumulative number of 18,208 patients, 56 animal studies and 35 in vitro studies. Our comprehensive data suggests that antioxidant has superior potential of ameliorating chemotherapeutic induced toxicity. Antioxidant supplementation during chemotherapy also promises higher therapeutic efficiency and increased survival times in patients.
Collapse
|
23
|
Ferreira RS, Dos Santos NAG, Martins NM, Fernandes LS, Dos Santos AC. Caffeic Acid Phenethyl Ester (CAPE) Protects PC12 Cells from Cisplatin-Induced Neurotoxicity by Activating the NGF-Signaling Pathway. Neurotox Res 2017; 34:32-46. [PMID: 29260495 DOI: 10.1007/s12640-017-9849-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
Cisplatin is a highly effective chemotherapeutic drug that is toxic to the peripheral nervous system. Findings suggest that axons are early targets of the neurotoxicity of cisplatin. Although many compounds have been reported as neuroprotective, there is no effective treatment against the neurotoxicity of cisplatin. Caffeic acid phenethyl ester (CAPE) is a propolis component with neuroprotective potential mainly attributed to antioxidant and anti-inflammatory mechanisms. We have recently demonstrated the neurotrophic potential of CAPE in a cellular model of neurotoxicity related to Parkinson's disease. Now, we have assessed the neurotrophic and neuroprotective effects of CAPE against cisplatin-induced neurotoxicity in PC12 cells. CAPE (10 μM) attenuated the inhibition of neuritogenesis and the downregulation of markers of neuroplasticity (GAP-43, synapsin I, synaptophysin, and 200-kD neurofilament) induced by cisplatin (5 μM). This concentration of cisplatin does not affect cell viability, and it was used in order to assess the early neurotoxic events triggered by cisplatin. When a lethal dose of cisplatin was used (IC50 = 32 μM), CAPE (10 μM) increased cell viability. The neurotrophic effect of CAPE is not dependent on NGF nor is it additive to the effect of NGF, but it might involve the activation of the NGF-high-affinity receptors (trkA). The involvement of other neurotrophin receptors such as trkB and trkC is unlikely. This is the first study to demonstrate the protective potential of CAPE against the neurotoxicity of cisplatin and to suggest the involvement of trkA receptors in the neuroprotective mechanism of CAPE. Based on these findings, the beneficial effect of CAPE on cisplatin-induced peripheral neuropathy should be further investigated.
Collapse
Affiliation(s)
- Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nádia Maria Martins
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Laís Silva Fernandes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
24
|
Bakogeorgos M, Georgoulias V. Risk-reduction and treatment of chemotherapy-induced peripheral neuropathy. Expert Rev Anticancer Ther 2017; 17:1045-1060. [PMID: 28868935 DOI: 10.1080/14737140.2017.1374856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN), a common adverse effect of several chemotherapeutic agents, has a significant impact on quality of life and may even compromise treatment efficacy, requiring chemotherapy dose reduction or discontinuation. CIPN is predominantly related with sensory rather than motor symptoms and the most common related cytotoxic agents are platinum compounds, taxanes and vinca alkaloids. CIPN symptoms may resolve after treatment cessation, but they can also be permanent and continue for years. Areas covered: We present an overview of CIPN pathophysiology, clinical assessment, prevention and treatment identified through a Pubmed search. Expert commentary: No substantial progress has been made in the last few years within the field of prevention and/or treatment of CIPN, in spite of remarkable efforts. Continuous research could expand our knowledge about chemotherapeutic-specific neuropathic pathways and eventually lead to the conception of innovative and targeted agents for the prevention and/or treatment of this debilitating chemotherapy adverse effect.
Collapse
|
25
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
26
|
Wagner AD, Syn NLX, Moehler M, Grothe W, Yong WP, Tai B, Ho J, Unverzagt S, Cochrane Upper GI and Pancreatic Diseases Group. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev 2017; 8:CD004064. [PMID: 28850174 PMCID: PMC6483552 DOI: 10.1002/14651858.cd004064.pub4] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Gastric cancer is the fifth most common cancer worldwide. In "Western" countries, most people are either diagnosed at an advanced stage, or develop a relapse after surgery with curative intent. In people with advanced disease, significant benefits from targeted therapies are currently limited to HER-2 positive disease treated with trastuzumab, in combination with chemotherapy, in first-line. In second-line, ramucirumab, alone or in combination with paclitaxel, demonstrated significant survival benefits. Thus, systemic chemotherapy remains the mainstay of treatment for advanced gastric cancer. Uncertainty remains regarding the choice of the regimen. OBJECTIVES To assess the efficacy of chemotherapy versus best supportive care (BSC), combination versus single-agent chemotherapy and different chemotherapy combinations in advanced gastric cancer. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE and Embase up to June 2016, reference lists of studies, and contacted pharmaceutical companies and experts to identify randomised controlled trials (RCTs). SELECTION CRITERIA We considered only RCTs on systemic, intravenous or oral chemotherapy versus BSC, combination versus single-agent chemotherapy and different chemotherapy regimens in advanced gastric cancer. DATA COLLECTION AND ANALYSIS Two review authors independently identified studies and extracted data. A third investigator was consulted in case of disagreements. We contacted study authors to obtain missing information. MAIN RESULTS We included 64 RCTs, of which 60 RCTs (11,698 participants) provided data for the meta-analysis of overall survival. We found chemotherapy extends overall survival (OS) by approximately 6.7 months more than BSC (hazard ratio (HR) 0.3, 95% confidence intervals (CI) 0.24 to 0.55, 184 participants, three studies, moderate-quality evidence). Combination chemotherapy extends OS slightly (by an additional month) versus single-agent chemotherapy (HR 0.84, 95% CI 0.79 to 0.89, 4447 participants, 23 studies, moderate-quality evidence), which is partly counterbalanced by increased toxicity. The benefit of epirubicin in three-drug combinations, in which cisplatin is replaced by oxaliplatin and 5-FU is replaced by capecitabine is unknown.Irinotecan extends OS slightly (by an additional 1.6 months) versus non-irinotecan-containing regimens (HR 0.87, 95% CI 0.80 to 0.95, 2135 participants, 10 studies, high-quality evidence).Docetaxel extends OS slightly (just over one month) compared to non-docetaxel-containing regimens (HR 0.86, 95% CI 0.78 to 0.95, 2001 participants, eight studies, high-quality evidence). However, due to subgroup analyses, we are uncertain whether docetaxel-containing combinations (docetaxel added to a single-agent or two-drug combination) extends OS due to moderate-quality evidence (HR 0.80, 95% CI 0.71 to 0.91, 1466 participants, four studies, moderate-quality evidence). When another chemotherapy was replaced by docetaxel, there is probably little or no difference in OS (HR 1.05; 0.87 to 1.27, 479 participants, three studies, moderate-quality evidence). We found there is probably little or no difference in OS when comparing capecitabine versus 5-FU-containing regimens (HR 0.94, 95% CI 0.79 to 1.11, 732 participants, five studies, moderate-quality evidence) .Oxaliplatin may extend (by less than one month) OS versus cisplatin-containing regimens (HR 0.81, 95% CI 0.67 to 0.98, 1105 participants, five studies, low-quality evidence). We are uncertain whether taxane-platinum combinations with (versus without) fluoropyrimidines extend OS due to very low-quality evidence (HR 0.86, 95% CI 0.71 to 1.06, 482 participants, three studies, very low-quality evidence). S-1 regimens improve OS slightly (by less than an additional month) versus 5-FU-containing regimens (HR 0.91, 95% CI 0.83 to 1.00, 1793 participants, four studies, high-quality evidence), however since S-1 is used in different doses and schedules between Asian and non-Asian population, the applicability of this finding to individual populations is uncertain. AUTHORS' CONCLUSIONS Chemotherapy improves survival (by an additional 6.7 months) in comparison to BSC, and combination chemotherapy improves survival (by an additional month) compared to single-agent 5-FU. Testing all patients for HER-2 status may help to identify patients with HER-2-positive tumours, for whom, in the absence of contraindications, trastuzumab in combination with capecitabine or 5-FU in combination with cisplatin has been shown to be beneficial. For HER-2 negative people, all different two-and three-drug combinations including irinotecan, docetaxel, oxaliplatin or oral 5-FU prodrugs are valid treatment options for advanced gastric cancer, and consideration of the side effects of each regimen is essential in the treatment decision. Irinotecan-containing combinations and docetaxel-containing combinations (in which docetaxel was added to a single-agent or two-drug (platinum/5-FUcombination) show significant survival benefits in the comparisons studied above. Furthermore, docetaxel-containing three-drug regimens have increased response rates, but the advantages of the docetaxel-containing three-drug combinations (DCF, FLO-T) are counterbalanced by increased toxicity. Additionally, oxaliplatin-containing regimens demonstrated a benefit in OS as compared to the same regimen containing cisplatin, and there is a modest survival improvement of S-1 compared to 5-FU-containing regimens.Whether the survival benefit for three-drug combinations including cisplatin, 5-FU, and epirubicin as compared to the same regimen without epirubicin is still valid when second-line therapy is routinely administered and when cisplatin is replaced by oxaliplatin and 5-FU by capecitabine is questionable. Furthermore, the magnitude of the observed survival benefits for the three-drug regimens is not large enough to be clinically meaningful as defined recently by the American Society for Clinical Oncology (Ellis 2014). In contrast to the comparisons in which a survival benefit was observed by adding a third drug to a two-drug regimen at the cost of increased toxicity, the comparison of regimens in which another chemotherapy was replaced by irinotecan was associated with a survival benefit (of borderline statistical significance), but without increased toxicity. For this reason irinotecan/5-FU-containing combinations are an attractive option for first-line treatment. Although they need to be interpreted with caution, subgroup analyses of one study suggest that elderly people have a greater benefit form oxaliplatin, as compared to cisplatin-based regimens, and that people with locally advanced disease or younger than 65 years might benefit more from a three-drug regimen including 5-FU, docetaxel, and oxaliplatin as compared to a two-drug combination of 5-FU and oxaliplatin, a hypothesis that needs further confirmation. For people with good performance status, the benefit of second-line chemotherapy has been established in several RCTs.
Collapse
Affiliation(s)
- Anna Dorothea Wagner
- Lausanne University Hospitals and ClinicsDepartment of OncologyRue du Bugnon 46LausanneSwitzerland1011
| | - Nicholas LX Syn
- National University Cancer InstituteDepartment of Haematology‐Oncology1E Kent Ridge RoadNUHS Tower Block, Level 7SingaporeSingapore119228
| | - Markus Moehler
- University Medical Center of the Johannes Gutenberg UniversityDepartment of Internal MedicineLangenbeckstrasse 1MainzGermany55131
| | - Wilfried Grothe
- Martin‐Luther‐University Halle‐WittenbergDepartment of Internal Medicine IErnst‐Grube‐Str. 40Halle/SaaleGermany06097
| | - Wei Peng Yong
- National University Cancer InstituteDepartment of Haematology‐Oncology1E Kent Ridge RoadNUHS Tower Block, Level 7SingaporeSingapore119228
| | - Bee‐Choo Tai
- National University of SingaporeSaw Swee Hock School of Public Health12 Science Drive 2#10‐03FSingaporeSingapore117549
| | - Jingshan Ho
- National University Cancer InstituteDepartment of Haematology‐Oncology1E Kent Ridge RoadNUHS Tower Block, Level 7SingaporeSingapore119228
| | - Susanne Unverzagt
- Martin‐Luther‐University Halle‐WittenbergInstitute of Medical Epidemiology, Biostatistics and InformaticsMagdeburge Straße 8Halle/SaaleGermany06097
| | | |
Collapse
|
27
|
Fu X, Wu H, Li J, Wang C, Li M, Ma Q, Yang W. Efficacy of Drug Interventions for Chemotherapy-Induced Chronic Peripheral Neurotoxicity: A Network Meta-analysis. Front Neurol 2017. [PMID: 28642731 PMCID: PMC5462987 DOI: 10.3389/fneur.2017.00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Peripheral neurotoxicity is a disturbing issue for cancer patients who are treated with chemotherapy. Several medications have been developed for preventing chemotherapy-induced chronic neurotoxicity (CICNT) however; their relative efficacies have not yet been studied. In this study, we conducted a network meta-analysis to give intervention recommendations. The literature was searched in a variety of databases and eligible studies were chosen based on predefined criteria. Data extraction and statistical analysis was performed, and the results are displayed using the odds ratio (OR) and corresponding 95% credible intervals (CrI) with respect to overall and severe neurotoxicity. The medications were ranked according to their surface under cumulative ranking curve values. The consistency of direct and indirect evidence was also evaluated. We found that patients with amifostine or vitamin E (VE) treatment exhibited a lower risk of overall neurotoxicity compared to those using the placebo (amifostine: OR = 0.10, 95% CrI: 0.02–0.46; VE: OR = 0.08, 95% CrI: 0.01–0.99). In regard to preventing severe neurotoxicity, glutathione and amifostine treatment appeared to be significantly more effective than the placebo (glutathione: OR = 0.19, 95% CrI: 0.04–0.64; amifostine: OR = 0.12, 95% CrI: 0.02–0.48). In summary, amifostine, VE, and glutathione treatment is considered to be effective in lowering the risk of CICNT. However, further studies which consider safety are required.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Huijie Wu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinyao Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Can Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ming Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qianqian Ma
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
29
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 657] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
30
|
Aromolaran KA, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain 2017; 13:1744806917714693. [PMID: 28580836 PMCID: PMC5480635 DOI: 10.1177/1744806917714693] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN.
Collapse
Affiliation(s)
- Kelly A Aromolaran
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
31
|
Zhao M, Wu J, Gao Y. The Specific α1-Adrenergic Receptor Antagonist Prazosin Influences the Urine Proteome. PLoS One 2016; 11:e0164796. [PMID: 27780262 PMCID: PMC5079574 DOI: 10.1371/journal.pone.0164796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022] Open
Abstract
Urine, reflecting many changes in the body, is a better source than blood for biomarker discovery. However, even under physiological conditions, the urine proteome often varies. Understanding how various regulating factors affect urine proteome helps link changes to urine proteome with urinary biomarkers of physiological conditions as well as corresponding diseases. To evaluate the possible impact of α1-adrenergic receptor on urine proteome, this study investigated effects of the specific inhibitor prazosin on the urine proteome in a rat model by using tandem mass tagging and two-dimensional liquid chromatography-tandem mass spectrometry. A total of 775 proteins were identified, approximately half of which were influenced by prazosin treatment, indicating that the sympathetic nervous system exerts a significant impact on urine proteome. Eight significantly changed proteins were previously annotated as urinary candidate biomarkers. Angiotensinogen, haptoglobin, and beta-2 microglobulin, which were reported to be associated with blood pressure, were validated via Western blot. Prazosin is widely used in clinical practice; thus, these protein changes should be considered when studying corresponding diseases such as hypertension, post-traumatic stress disorder and benign prostatic hyperplasia. The related physiological activities of α1-receptors, controlling blood pressure and fear response might significantly affect the urine proteome and warrant further biomarker studies.
Collapse
Affiliation(s)
- Mindi Zhao
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Youhe Gao
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Moss RW. Should Patients Undergoing Chemotherapy and Radiotherapy Be Prescribed Antioxidants? Integr Cancer Ther 2016; 5:63-82. [PMID: 16484715 DOI: 10.1177/1534735405285882] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In September 2005, CA: A Cancer Journal for Clinicians published a warning by Gabriella D’Andrea, MD, against the concurrent use of antioxidants with radiotherapy and chemotherapy. However, several deficiencies of the CA article soon became apparent, not least the selective omission of prominent studies that contradicted the author’s conclusions. While acknowledging that only large-scale, randomized trials could provide a valid basis for therapeutic recommendations, the author sometimes relied on laboratory rather than clinical data to support her claim that harm resulted from the concurrent use of antioxidants and chemotherapy. She also sometimes extrapolated from chemoprevention studies rather than those on the concurrent use of antioxidants per se. The article overstated the degree to which the laboratory data diverged in regard to the safety and efficacy of antioxidant therapy: in fact, the preponderance of data suggests a synergistic or at least harmless effect with most high-dose dietary antioxidants and chemotherapy. The practical recommendations made in the article to avoid the general class of antioxidants during chemotherapy are inconsistent, in that if antioxidants were truly a threat to the efficacy of standard therapy, antioxidant-rich foods, especially fruits and vegetables, ought also be proscribed during treatment. Yet no such recommendation is made. Furthermore, the wide-scale use by both medical and radiation oncologists of synthetic antioxidants (eg, amifostine) to control the adverse effects of cytotoxic treatments is similarly overlooked. In sum, this CA article is incomplete: there is far more information available regarding antioxidant supplements as an appropriate adjunctive cancer therapy than is acknowledged. Patients would be well advised to seek the opinion of physicians who are adequately trained and experienced in the intersection of 2 complex fields, that is, chemotherapeutics and nutritional oncology. Physicians whose goal is comprehensive cancer therapy should refer their patients to qualified integrative practitioners who have such training and expertise to guide patients. A blanket rejection of the concurrent use of antioxidants with chemotherapy is not justified by the preponderance of evidence at this time and serves neither the scientific community nor cancer patients.
Collapse
Affiliation(s)
- Ralph W Moss
- Cancer Communications, Lemont, Pennsylvania 16851, USA.
| |
Collapse
|
33
|
Yoshino F, Yoshida A, Toyama T, Wada-Takahashi S, Takahashi SS. α-Glucosyl hesperidin suppressed the exacerbation of 5-fluorouracil-induced oral mucositis in the hamster cheek pouch. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Schloss J, Colosimo M, Vitetta L. New Insights into Potential Prevention and Management Options for Chemotherapy-Induced Peripheral Neuropathy. Asia Pac J Oncol Nurs 2016; 3:73-85. [PMID: 27981142 PMCID: PMC5123533 DOI: 10.4103/2347-5625.170977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Neurological complications such as chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain are frequent side effects of neurotoxic chemotherapy agents. An increasing survival rate and frequent administration of adjuvant chemotherapy treatments involving neurotoxic agents makes it imperative that accurate diagnosis, prevention, and treatment of these neurological complications be implemented. METHODS A consideration was undertaken of the current options regarding protective and treatment interventions for patients undergoing chemotherapy with neurotoxic chemotherapy agent or experience with CIPN. Current knowledge on the mechanism of action has also been identified. The following databases PubMed, the Cochrane Library, Science Direct, Scopus, EMBASE, MEDLINE, CINAHL, CNKI, and Google Scholar were searched for relevant article retrieval. RESULTS A range of pharmaceutical, nutraceutical, and herbal medicine treatments were identified that either showed efficacy or had some evidence of efficacy. Duloxetine was the most effective pharmaceutical agent for the treatment of CIPN. Vitamin E demonstrated potential for the prevention of cisplatin-IPN. Intravenous glutathione for oxaliplatin, Vitamin B6 for both oxaliplatin and cisplatin, and omega 3 fatty acids for paclitaxel have shown protection for CIPN. Acetyl-L-carnitine may provide some relief as a treatment option. Acupuncture may be of benefit for some patients and Gosha-jinki-gan may be of benefit for protection from adverse effects of oxaliplatin induced peripheral neuropathy. CONCLUSIONS Clinicians and researchers acknowledge that there are numerous challenges involved in understanding, preventing, and treating peripheral neuropathy caused by chemotherapeutic agents. New insights into mechanisms of action from chemotherapy agents may facilitate the development of novel preventative and treatment options, thereby enabling medical staff to better support patients by reducing this debilitating side effect.
Collapse
Affiliation(s)
- Janet Schloss
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Office of Research, Endeavour College of Natural Health, University of Technology, Brisbane, Australia
| | - Maree Colosimo
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Medical Oncology Group of Australia, Clinical Oncology Society of Australia, Queensland Clinical Oncology Group, Brisbane, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney 2006, Sydney, Australia
- Medlab Clinical, Sydney, Australia
| |
Collapse
|
35
|
Majithia N, Temkin SM, Ruddy KJ, Beutler AS, Hershman DL, Loprinzi CL. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: outcomes and lessons. Support Care Cancer 2015; 24:1439-47. [PMID: 26686859 DOI: 10.1007/s00520-015-3063-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common and debilitating complications of cancer treatment. Due to a lack of effective management options for patients with CIPN, the National Cancer Institute (NCI) sponsored a series of trials aimed at both prevention and treatment. A total of 15 such studies were approved, evaluating use of various neuro-modulatory agents which have shown benefit in other neuropathic pain states. Aside from duloxetine, none of the pharmacologic methods demonstrated therapeutic benefit for patients with CIPN. Despite these disappointing results, the series of trials revealed important lessons that have informed subsequent work. Some examples of this include the use of patient-reported symptom metrics, the elimination of traditional--yet unsubstantiated--practice approaches, and the discovery of molecular genetic predictors of neuropathy. Current inquiry is being guided by the results from these large-scale trials, and as such, stands better chance of identifying durable solutions for this treatment-limiting toxicity.
Collapse
Affiliation(s)
- Neil Majithia
- Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Sarah M Temkin
- Community Oncology and Prevention Trials Research Group, Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Kathryn J Ruddy
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andreas S Beutler
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dawn L Hershman
- Department of Medicine, Department of Epidemiology, Mailman School of Public Health, Columbia University College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, 161 Fort Washington Ave #1068, New York, NY, 10032, USA
| | - Charles L Loprinzi
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
36
|
Santabarbara G, Maione P, Rossi A, Gridelli C. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opin Pharmacother 2015; 17:561-70. [DOI: 10.1517/14656566.2016.1122757] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci 2015; 130:81-7. [DOI: 10.1016/j.lfs.2015.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023]
|
38
|
De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit Rev Oncol Hematol 2015; 96:34-45. [PMID: 26004917 DOI: 10.1016/j.critrevonc.2015.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Taxane induced neuropathy (TIN) is the most limiting side effect of taxane based chemotherapy, relative to the majority of breast cancer patients undergoing therapy with both docetaxel and paclitaxel. The symptoms begin symmetrically from the toes, because the tips of the longest nerves are affected for first. The patients report sensory symptoms such as paresthesia, dysesthesia, numbness, electric shock-like sensation, motor impairment and neuropathic pain. There is a great inter-individual variability among breast cancer women treated with taxanes, in fact 20-30% of them don't develop neurotoxicity. Actually, there is no standard therapy for TIN, although many medications, antioxidants and natural substances have been tested in vitro and in vivo. We will summarize all most recent literature data on TIN prevention and treatment, in order to reach an improvement in TIN management. Further studies are needed to evaluate new therapies that restore neuronal function and improve life quality of patients.
Collapse
Affiliation(s)
- Francesca De Iuliis
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Ludovica Taglieri
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Gerardo Salerno
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Rosina Lanza
- Ginecology and Obstetrics Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
39
|
Avan A, Postma TJ, Ceresa C, Avan A, Cavaletti G, Giovannetti E, Peters GJ. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist 2015; 20:411-432. [PMID: 25765877 PMCID: PMC4391771 DOI: 10.1634/theoncologist.2014-0044] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023] Open
Abstract
Neurotoxicity is a burdensome side effect of platinum-based chemotherapy that prevents administration of the full efficacious dosage and often leads to treatment withdrawal. Peripheral sensory neurotoxicity varies from paresthesia in fingers to ataxic gait, which might be transient or irreversible. Because the number of patients being treated with these neurotoxic agents is still increasing, the need for understanding the pathogenesis of this dramatic side effect is critical. Platinum derivatives, such as cisplatin and carboplatin, harm mainly peripheral nerves and dorsal root ganglia neurons, possibly because of progressive DNA-adduct accumulation and inhibition of DNA repair pathways (e.g., extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase/stress-activated protein kinase, and p38 mitogen-activated protein kinass), which finally mediate apoptosis. Oxaliplatin, with a completely different pharmacokinetic profile, may also alter calcium-sensitive voltage-gated sodium channel kinetics through a calcium ion immobilization by oxalate residue as a calcium chelator and cause acute neurotoxicity. Polymorphisms in several genes, such as voltage-gated sodium channel genes or genes affecting the activity of pivotal metal transporters (e.g., organic cation transporters, organic cation/carnitine transporters, and some metal transporters, such as the copper transporters, and multidrug resistance-associated proteins), can also influence drug neurotoxicity and treatment response. However, most pharmacogenetics studies need to be elucidated by robust evidence. There are supportive reports about the effectiveness of several neuroprotective agents (e.g., vitamin E, glutathione, amifostine, xaliproden, and venlafaxine), but dose adjustment and/or drug withdrawal seem to be the most frequently used methods in the management of platinum-induced peripheral neurotoxicity. To develop alternative options in the treatment of platinum-induced neuropathy, studies on in vitro models and appropriate trials planning should be integrated into the future design of neuroprotective strategies to find the best patient-oriented solution.
Collapse
Affiliation(s)
- Abolfazl Avan
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tjeerd J Postma
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cecilia Ceresa
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Guido Cavaletti
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elisa Giovannetti
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Godefridus J Peters
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Abstract
Glutathione is an endogenous peptide with antioxidant and other metabolic functions. The nomenclature, formulae, elemental composition, and appearance and uses of the drug are included. The methods used for the synthesis and biosynthesis of glutathione are described. This profile contains the physical characteristics of the drug including: solubility, X-ray powder diffraction pattern, crystal structure, melting point, and differential scanning calorimetry. The spectral methods that were used for both the identification and analysis of glutathione include ultraviolet spectrum, vibrational spectrum, 1H and 13C nuclear magnetic resonance spectra, and mass spectrum. The profile also includes the compendial methods of analysis and the other methods of analysis that are reported in the literature. These other methods of e-analysis are: potentiometric, voltammetric, amperometric, spectrophotometric, specrtofluorometric, chemiluminescence, chromatographic and immunoassay methods. The stability of and several reviews on drug are also provided. More than 170 references are listed at the end this comprehensive profile on glutathione.
Collapse
|
41
|
Hong G, White J, Zhong L, Carlson LE. Survey of Policies and Guidelines on Antioxidant Use for Cancer Prevention, Treatment, and Survivorship in North American Cancer Centers: What Do Institutions Perceive as Evidence? Integr Cancer Ther 2015; 14:305-17. [PMID: 25716350 DOI: 10.1177/1534735415572884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Health care policies and guidelines that are clear and consistent with research evidence are important for maximizing clinical outcomes. To determine whether cancer centers in Canada and the United States had policies and/or guidelines about antioxidant use, and whether policies were aligned with the evidence base, we reviewed current research evidence in the field, and we undertook a survey of the policies and guidelines on antioxidant use at cancer institutions across North America. METHODS A survey of policies and guidelines on antioxidant use and the development and communication of the policies and guidelines was conducted by contacting cancer institutions in North America. We also conducted a Website search for each institution to explore any online resources. RESULTS Policies and guidelines on antioxidant use were collected from 78 cancer institutions. Few cancer institutions had policies (5%) but most provided guidelines (69%). Antioxidants from diet were generally encouraged at cancer institutions, consistent with the current research evidence. In contrast, specific antioxidant supplements were generally not recommended at cancer institutions. Policies and guidelines were developed using evidence-based methods (53%), by consulting another source (35%), or through discussions/conference (26%), and communicated mainly through online resources (65%) or written handouts (42%). For cancer institutions that had no policy or guideline on antioxidants, lack of information and lack of time were the most frequently cited reasons. CONCLUSIONS Policies and guidelines on antioxidants from diet were largely consistent with the research evidence. Policies and guidelines on antioxidant supplements during treatment were generally more restrictive than the research evidence might suggest, perhaps due to the specificity of results and the inability to generalize findings across antioxidants, adding to the complexity of their optimal and safe use. Improved communication of comprehensive research evidence to cancer institutions may aid in the development of more evidence-based policies and guidelines.
Collapse
Affiliation(s)
- Gyeongyeon Hong
- Tom Baker Cancer Centre-Holy Cross Site, Calgary, Alberta, Canada
| | - Jennifer White
- Tom Baker Cancer Centre-Holy Cross Site, Calgary, Alberta, Canada
| | - Lihong Zhong
- Tom Baker Cancer Centre-Holy Cross Site, Calgary, Alberta, Canada
| | - Linda E Carlson
- Tom Baker Cancer Centre-Holy Cross Site, Calgary, Alberta, Canada University of Calgary Department of Oncology, Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
42
|
Fehrenbacher JC. Chemotherapy-Induced Peripheral Neuropathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:471-508. [DOI: 10.1016/bs.pmbts.2014.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Friesland A, Weng Z, Duenas M, Massa SM, Longo FM, Lu Q. Amelioration of cisplatin-induced experimental peripheral neuropathy by a small molecule targeting p75 NTR. Neurotoxicology 2014; 45:81-90. [PMID: 25277379 PMCID: PMC4268328 DOI: 10.1016/j.neuro.2014.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/18/2014] [Accepted: 09/22/2014] [Indexed: 12/18/2022]
Abstract
Cisplatin is an effective and widely used first-line chemotherapeutic drug for treating cancers. However, many patients sustain cisplatin-induced peripheral neuropathy (CIPN), often leading to a reduction in drug dosages or complete cessation of treatment altogether. Therefore, it is important to understand cisplatin mechanisms in peripheral nerve tissue mediating its toxicity and identify signaling pathways for potential intervention. Rho GTPase activation is increased following trauma in several models of neuronal injury. Thus, we investigated whether components of the Rho signaling pathway represent important neuroprotective targets with the potential to ameliorate CIPN and thereby optimize current chemotherapy treatment regimens. We have developed a novel CIPN model in the mouse. Using this model and primary neuronal culture, we determined whether LM11A-31, a small-molecule, orally bioavailable ligand of the p75 neurotrophin receptor (p75(NTR)), can modulate Rho GTPase signaling and reduce CIPN. Von Frey filament analysis of sural nerve function showed that LM11A-31 treatment prevented decreases in peripheral nerve sensation seen with cisplatin treatment. Morphometric analysis of harvested sural nerves revealed that cisplatin-induced abnormal nerve fiber morphology and the decreases in fiber area were alleviated with concurrent LM11A-31 treatment. Cisplatin treatment increased RhoA activity accompanied by the reduced tyrosine phosphorylation of SHP2, which was reversed by LM11A-31. LM11A-31 also countered the effects of calpeptin, which activated RhoA by inhibiting SHP2 tyrosine phosphatase. Therefore, suppression of RhoA signaling by LM11A-31 that modulates p75(NTR) or activates SHP2 tyrosine phosphatase downstream of the NGF receptor enhances neuroprotection in experimental CIPN in mouse model.
Collapse
Affiliation(s)
- Amy Friesland
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Zhiying Weng
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Maria Duenas
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen M Massa
- Department of Neurology Veterans Administration Medical Center and University of California at San Francisco, San Francisco, CA 94121, USA
| | - Frank M Longo
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
44
|
Ma L, Ge K, Zhang R, Fu W, Li S, Wang S, Zhou G, Qin X, Zhang J. Synthesis, characterization, cytotoxicity of mixed ligand complexes of palladium(II) with dipyrido[3,2-d:2',3'-f]quinoxaline/dipyrido[3,2-a:2',3'-c](6,7,8,9-tetrahydro)phenazine and 4-toluensulfonyl-L-amino acid dianion. Eur J Med Chem 2014; 87:624-30. [PMID: 25299684 DOI: 10.1016/j.ejmech.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 01/30/2023]
Abstract
Ten novel palladium(II) complexes with dipyrido[3,2-d:2',3'-f]quinoxaline (Dpq)/dipyrido[3,2-a:2',3'-c](6,7,8,9-tetrahydro)phenazine (Dpqc) and 4-toluensulfonyl-L-amino acid dianion, [Pd(Dpq)(TsvalNO)]·H2O (1a), [Pd(Dpq)(TsileNO)]·H2O (1b), [Pd(Dpq)(TsserNO)] (1c), [Pd(Dpq)(TsthrNO)]·1.5H2O (1d), [Pd(Dpq)(TsleuNO)]·0.5H2O (1e), [Pd(Dpq)(TspheNO)] (1f), [Pd(Dpqc)(TsvalNO)] (2a), [Pd(Dpqc)(TsileNO)] (2b), [Pd(Dpqc)(TsserNO)]·H2O (2c) and [Pd(Dpqc)(TsthrNO)]·0.5H2O (2d) have been synthesized and characterized by elemental analysis, IR, UV, (1)H NMR and mass spectrometry techniques. Crystal structure of the complex 1f has been determined by X-ray diffraction. The cytotoxicity was tested by MTT assay. The results indicated that the complexes 1a and 2a showed better cytotoxicity than cisplatin against MCF-7. The complex 1e had higher cytotoxicity than cisplatin against K562. Both the N donating ligands and the amino acid have important effects on the cytotoxicity.
Collapse
Affiliation(s)
- Lili Ma
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Kun Ge
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Ran Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Wentao Fu
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Shenghui Li
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Shuxiang Wang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| | - Guoqiang Zhou
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Xinying Qin
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
45
|
Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014; 155:2461-2470. [PMID: 25261162 DOI: 10.1016/j.pain.2014.09.020] [Citation(s) in RCA: 985] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling pain condition resulting from chemotherapy for cancer. Severe acute CIPN may require chemotherapy dose reduction or cessation. There is no effective CIPN prevention strategy; treatment of established chronic CIPN is limited, and the prevalence of CIPN is not known. Here we used a systematic review to identify studies reporting the prevalence of CIPN. We searched Embase, Medline, CAB Abstracts, CINAHL, PubMed central, Cochrane Library, and Web of Knowledge for relevant references and used random-effects meta-regression to estimate overall prevalence. We assessed study quality using the CONSORT and STROBE guidelines, and we report findings according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance. We provide a qualitative summary of factors reported to alter the risk of CIPN. We included 31 studies with data from 4179 patients in our analysis. CIPN prevalence was 68.1% (57.7-78.4) when measured in the first month after chemotherapy, 60.0% (36.4-81.6) at 3months and 30.0% (6.4-53.5) at 6months or more. Different chemotherapy drugs were associated with differences in CIPN prevalence, and there was some evidence of publication bias. Genetic risk factors were reported in 4 studies. Clinical risk factors, identified in 4 of 31 studies, included neuropathy at baseline, smoking, abnormal creatinine clearance, and specific sensory changes during chemotherapy. Although CIPN prevalence decreases with time, at 6months 30% of patients continue to suffer from CIPN. Routine CIPN surveillance during post-chemotherapy follow-up is needed. A number of genetic and clinical risk factors were identified that require further study.
Collapse
|
46
|
Ekor M, Odewabi AO. Occupational exposure to municipal solid wastes and development of toxic neuropathies: Possible role of nutrient supplementation, complementary and alternative medicines in chemoprevention. Chin J Integr Med 2014; 20:643-53. [DOI: 10.1007/s11655-014-1779-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Indexed: 01/16/2023]
|
47
|
Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, Chauhan C, Gavin P, Lavino A, Lustberg MB, Paice J, Schneider B, Smith ML, Smith T, Terstriep S, Wagner-Johnston N, Bak K, Loprinzi CL. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2014; 32:1941-67. [PMID: 24733808 DOI: 10.1200/jco.2013.54.0914] [Citation(s) in RCA: 832] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To provide evidence-based guidance on the optimum prevention and treatment approaches in the management of chemotherapy-induced peripheral neuropathies (CIPN) in adult cancer survivors. METHODS A systematic literature search identified relevant, randomized controlled trials (RCTs) for the treatment of CIPN. Primary outcomes included incidence and severity of neuropathy as measured by neurophysiologic changes, patient-reported outcomes, and quality of life. RESULTS A total of 48 RCTs met eligibility criteria and comprise the evidentiary basis for the recommendations. Trials tended to be small and heterogeneous, many with insufficient sample sizes to detect clinically important differences in outcomes. Primary outcomes varied across the trials, and in most cases, studies were not directly comparable because of different outcomes, measurements, and instruments used at different time points. The strength of the recommendations is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. RECOMMENDATIONS On the basis of the paucity of high-quality, consistent evidence, there are no agents recommended for the prevention of CIPN. With regard to the treatment of existing CIPN, the best available data support a moderate recommendation for treatment with duloxetine. Although the CIPN trials are inconclusive regarding tricyclic antidepressants (such as nortriptyline), gabapentin, and a compounded topical gel containing baclofen, amitriptyline HCL, and ketamine, these agents may be offered on the basis of data supporting their utility in other neuropathic pain conditions given the limited other CIPN treatment options. Further research on these agents is warranted.
Collapse
Affiliation(s)
- Dawn L Hershman
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Christina Lacchetti
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Robert H Dworkin
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Ellen M Lavoie Smith
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Jonathan Bleeker
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Guido Cavaletti
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Cynthia Chauhan
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Patrick Gavin
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Antoinette Lavino
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Maryam B Lustberg
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Judith Paice
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Bryan Schneider
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Mary Lou Smith
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Tom Smith
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Shelby Terstriep
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Nina Wagner-Johnston
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Kate Bak
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Charles L Loprinzi
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
48
|
Albers JW, Chaudhry V, Cavaletti G, Donehower RC. Interventions for preventing neuropathy caused by cisplatin and related compounds. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2014. [PMID: 24687190 DOI: 10.1002/14651858.cd005228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cisplatin and several related antineoplastic drugs used to treat many types of solid tumours are neurotoxic, and most patients completing a full course of cisplatin chemotherapy develop a clinically detectable sensory neuropathy. Effective neuroprotective therapies have been sought. OBJECTIVES To examine the efficacy and safety of purported chemoprotective agents to prevent or limit the neurotoxicity of cisplatin and related drugs. SEARCH METHODS On 4 March 2013, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, and CINAHL Plus for randomised trials designed to evaluate neuroprotective agents used to prevent or limit neurotoxicity of cisplatin and related drugs among human patients. SELECTION CRITERIA We included randomised controlled trials (RCTs) or quasi-RCTs in which the participants received chemotherapy with cisplatin or related compounds, with a potential chemoprotectant (acetylcysteine, amifostine, adrenocorticotrophic hormone (ACTH), BNP7787, calcium and magnesium (Ca/Mg), diethyldithiocarbamate (DDTC), glutathione, Org 2766, oxcarbazepine, or vitamin E) compared to placebo, no treatment, or other treatments. We considered trials in which participants underwent evaluation zero to six months after completing chemotherapy using quantitative sensory testing (the primary outcome) or other measures including nerve conduction studies or neurological impairment rating using validated scales (secondary outcomes). DATA COLLECTION AND ANALYSIS Two review authors assessed each study, extracted the data and reached consensus, according to standard Cochrane methodology. MAIN RESULTS As of 2013, the review includes 29 studies describing nine possible chemoprotective agents, as well as description of two published meta-analyses. Among these trials, there were sufficient data in some instances to combine the results from different studies, most often using data from secondary non-quantitative measures. Nine of the studies were newly included at this update. Few of the included studies were at a high risk of bias overall, although often there was too little information to make an assessment. At least two review authors performed a formal review of an additional 44 articles but we did not include them in the final review for a variety of reasons.Of seven eligible amifostine trials (743 participants in total), one used quantitative sensory testing (vibration perception threshold) and demonstrated a favourable outcome in terms of amifostine neuroprotection, but the vibration perception threshold result was based on data from only 14 participants receiving amifostine who completed the post-treatment evaluation and should be regarded with caution. Furthermore the change measured was subclinical. None of the three eligible Ca/Mg trials (or four trials if a single retrospective study was included) described our primary outcome measures. The four Ca/Mg trials included a total of 886 participants. Of the seven eligible glutathione trials (387 participants), one used quantitative sensory testing but reported only qualitative analyses. Four eligible Org 2766 trials (311 participants) employed quantitative sensory testing but reported disparate results; meta-analyses of three of these trials using comparable measures showed no significant vibration perception threshold neuroprotection. The remaining trial reported only descriptive analyses. Similarly, none of the three eligible vitamin E trials (246 participants) reported quantitative sensory testing. The eligible single trials involving acetylcysteine (14 participants), diethyldithiocarbamate (195 participants), oxcarbazepine (32 participants), and retinoic acid (92 participants) did not perform quantitative sensory testing. In all, this review includes data from 2906 participants. However, only seven trials reported data for the primary outcome measure of this review, (quantitative sensory testing) and only nine trials reported our objective secondary measure, nerve conduction test results. Additionally, methodological heterogeneity precluded pooling of the results in most cases. Nonetheless, a larger number of trials reported the results of secondary (non-quantitative and subjective) measures such as the National Cancer Institute Common Toxicity Criteria (NCI-CTC) for neuropathy (15 trials), and these results we pooled and reported as meta-analysis. Amifostine showed a significantly reduced risk of developing neurotoxicity NCI-CTC (or equivalent) ≥ 2 compared to placebo (RR 0.26, 95% CI 0.11 to 0.61). Glutathione was also efficacious with an RR of 0.29 (95% CI 0.10 to 0.85). In three vitamin E studies subjective measures not suitable for combination in meta analysis each favoured vitamin E. For other interventions the qualitative toxicity measures were either negative (N-acetyl cysteine, Ca/Mg, DDTC and retinoic acid) or not evaluated (oxcarbazepine and Org 2766).Adverse events were infrequent or not reported for most interventions. Amifostine was associated with transient hypotension in 8% to 62% of participants, retinoic acid with hypocalcaemia in 11%, and approximately 20% of participantss withdrew from treatment with DDTC because of toxicity. AUTHORS' CONCLUSIONS At present, the data are insufficient to conclude that any of the purported chemoprotective agents (acetylcysteine, amifostine, calcium and magnesium, diethyldithiocarbamate, glutathione, Org 2766, oxcarbazepine, retinoic acid, or vitamin E) prevent or limit the neurotoxicity of platin drugs among human patients, as determined using quantitative, objective measures of neuropathy. Amifostine, calcium and magnesium, glutathione, and vitamin E showed modest but promising (borderline statistically significant) results favouring their ability to reduce the neurotoxicity of cisplatin and related chemotherapies, as measured using secondary, non-quantitative and subjective measures such as the NCI-CTC neuropathy grading scale. Among these interventions, the efficacy of only vitamin E was evaluated using quantitative nerve conduction studies; the results were negative and did not support the positive findings based on the qualitative measures. In summary, the present studies are limited by the small number of participants receiving any particular agent, a lack of objective measures of neuropathy, and differing results among similar trials, which make it impossible to conclude that any of the neuroprotective agents tested prevent or limit the neurotoxicity of platinum drugs.
Collapse
Affiliation(s)
- James W Albers
- Department of Neurology, University of Michigan, 1C325/0032 University Hospital, 1500 E. Medical Center Drive, Box 0316, Ann Arbor, USA, MI 48109-0032
| | | | | | | |
Collapse
|
49
|
Albers JW, Chaudhry V, Cavaletti G, Donehower RC. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 2014; 2014:CD005228. [PMID: 24687190 PMCID: PMC10891440 DOI: 10.1002/14651858.cd005228.pub4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cisplatin and several related antineoplastic drugs used to treat many types of solid tumours are neurotoxic, and most patients completing a full course of cisplatin chemotherapy develop a clinically detectable sensory neuropathy. Effective neuroprotective therapies have been sought. OBJECTIVES To examine the efficacy and safety of purported chemoprotective agents to prevent or limit the neurotoxicity of cisplatin and related drugs. SEARCH METHODS On 4 March 2013, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, and CINAHL Plus for randomised trials designed to evaluate neuroprotective agents used to prevent or limit neurotoxicity of cisplatin and related drugs among human patients. SELECTION CRITERIA We included randomised controlled trials (RCTs) or quasi-RCTs in which the participants received chemotherapy with cisplatin or related compounds, with a potential chemoprotectant (acetylcysteine, amifostine, adrenocorticotrophic hormone (ACTH), BNP7787, calcium and magnesium (Ca/Mg), diethyldithiocarbamate (DDTC), glutathione, Org 2766, oxcarbazepine, or vitamin E) compared to placebo, no treatment, or other treatments. We considered trials in which participants underwent evaluation zero to six months after completing chemotherapy using quantitative sensory testing (the primary outcome) or other measures including nerve conduction studies or neurological impairment rating using validated scales (secondary outcomes). DATA COLLECTION AND ANALYSIS Two review authors assessed each study, extracted the data and reached consensus, according to standard Cochrane methodology. MAIN RESULTS As of 2013, the review includes 29 studies describing nine possible chemoprotective agents, as well as description of two published meta-analyses. Among these trials, there were sufficient data in some instances to combine the results from different studies, most often using data from secondary non-quantitative measures. Nine of the studies were newly included at this update. Few of the included studies were at a high risk of bias overall, although often there was too little information to make an assessment. At least two review authors performed a formal review of an additional 44 articles but we did not include them in the final review for a variety of reasons.Of seven eligible amifostine trials (743 participants in total), one used quantitative sensory testing (vibration perception threshold) and demonstrated a favourable outcome in terms of amifostine neuroprotection, but the vibration perception threshold result was based on data from only 14 participants receiving amifostine who completed the post-treatment evaluation and should be regarded with caution. Furthermore the change measured was subclinical. None of the three eligible Ca/Mg trials (or four trials if a single retrospective study was included) described our primary outcome measures. The four Ca/Mg trials included a total of 886 participants. Of the seven eligible glutathione trials (387 participants), one used quantitative sensory testing but reported only qualitative analyses. Four eligible Org 2766 trials (311 participants) employed quantitative sensory testing but reported disparate results; meta-analyses of three of these trials using comparable measures showed no significant vibration perception threshold neuroprotection. The remaining trial reported only descriptive analyses. Similarly, none of the three eligible vitamin E trials (246 participants) reported quantitative sensory testing. The eligible single trials involving acetylcysteine (14 participants), diethyldithiocarbamate (195 participants), oxcarbazepine (32 participants), and retinoic acid (92 participants) did not perform quantitative sensory testing. In all, this review includes data from 2906 participants. However, only seven trials reported data for the primary outcome measure of this review, (quantitative sensory testing) and only nine trials reported our objective secondary measure, nerve conduction test results. Additionally, methodological heterogeneity precluded pooling of the results in most cases. Nonetheless, a larger number of trials reported the results of secondary (non-quantitative and subjective) measures such as the National Cancer Institute Common Toxicity Criteria (NCI-CTC) for neuropathy (15 trials), and these results we pooled and reported as meta-analysis. Amifostine showed a significantly reduced risk of developing neurotoxicity NCI-CTC (or equivalent) ≥ 2 compared to placebo (RR 0.26, 95% CI 0.11 to 0.61). Glutathione was also efficacious with an RR of 0.29 (95% CI 0.10 to 0.85). In three vitamin E studies subjective measures not suitable for combination in meta analysis each favoured vitamin E. For other interventions the qualitative toxicity measures were either negative (N-acetyl cysteine, Ca/Mg, DDTC and retinoic acid) or not evaluated (oxcarbazepine and Org 2766).Adverse events were infrequent or not reported for most interventions. Amifostine was associated with transient hypotension in 8% to 62% of participants, retinoic acid with hypocalcaemia in 11%, and approximately 20% of participantss withdrew from treatment with DDTC because of toxicity. AUTHORS' CONCLUSIONS At present, the data are insufficient to conclude that any of the purported chemoprotective agents (acetylcysteine, amifostine, calcium and magnesium, diethyldithiocarbamate, glutathione, Org 2766, oxcarbazepine, retinoic acid, or vitamin E) prevent or limit the neurotoxicity of platin drugs among human patients, as determined using quantitative, objective measures of neuropathy. Amifostine, calcium and magnesium, glutathione, and vitamin E showed modest but promising (borderline statistically significant) results favouring their ability to reduce the neurotoxicity of cisplatin and related chemotherapies, as measured using secondary, non-quantitative and subjective measures such as the NCI-CTC neuropathy grading scale. Among these interventions, the efficacy of only vitamin E was evaluated using quantitative nerve conduction studies; the results were negative and did not support the positive findings based on the qualitative measures. In summary, the present studies are limited by the small number of participants receiving any particular agent, a lack of objective measures of neuropathy, and differing results among similar trials, which make it impossible to conclude that any of the neuroprotective agents tested prevent or limit the neurotoxicity of platinum drugs.
Collapse
Affiliation(s)
- James W Albers
- Department of Neurology, University of Michigan, 1C325/0032 University Hospital, 1500 E. Medical Center Drive, Box 0316, Ann Arbor, USA, MI 48109-0032
| | | | | | | |
Collapse
|
50
|
Leal AD, Qin R, Atherton PJ, Haluska P, Behrens RJ, Tiber CH, Watanaboonyakhet P, Weiss M, Adams PT, Dockter TJ, Loprinzi CL. North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled study. Cancer 2014; 120:1890-7. [PMID: 24619793 DOI: 10.1002/cncr.28654] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a significant side effect of taxane and platinum-based chemotherapy. Several studies have supported the potential benefit of glutathione for the prevention of platinum-induced CIPN. The current trial was designed to determine whether glutathione would prevent CIPN as a result of carboplatin/paclitaxel therapy. METHODS In total, 185 patients who received treatment with paclitaxel and carboplatin were accrued between December 4, 2009 and December 19, 2011. Patients were randomized to receive either placebo (n = 91) or 1.5 g/m(2) glutathione (n = 94) over 15 minutes immediately before chemotherapy. CIPN was assessed using the European Organization for Research and Treatment of Cancer Quality-of-Life (EORTC-QLQ) 20-item, CIPN-specific (CIPN20) sensory subscale and the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 4.0. RESULTS There were no statistically significant differences between the 2 study arms with regard to: 1) peripheral neurotoxicity, as assessed using both the EORTC-QLQ-CIPN20 (P = .21) and the CTCAE scales (P = .449 for grade ≥2 neurotoxicity; P = .039 for time to development of grade ≥2 neuropathy, in favor of the placebo); 2) the degree of paclitaxel acute pain syndrome (P = .30 for patients who received paclitaxel every 3-4 weeks and P = .002, in favor of the placebo, for patients who received weekly paclitaxel); 3) the time to disease progression (P = .63); or 4) apparent toxicities. Subgroup analyses did not reveal any evidence of benefit in any particular subgroup. CONCLUSIONS The results from this study do not support the use of glutathione for the prevention of paclitaxel/carboplatin-induced CIPN.
Collapse
Affiliation(s)
- Alexis D Leal
- Department of Internal Medicine, Mayo Clinic Rochester, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|