1
|
Hakak R, Poopak B, Majd A. Increased IDO expression and regulatory T cells in acute myeloid leukemia: implications for immune escape and therapeutic targeting. Blood Res 2024; 59:42. [PMID: 39695001 DOI: 10.1007/s44313-024-00048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
PURPOSE This study aimed to determine the frequency of regulatory T cells (Tregs) (CD4+/FOXP3+) and indoleamine 2,3-dioxygenase (IDO) expression in patients with acute myeloid leukemia (AML). METHODS This cross-sectional case-control study was conducted between Jan 2022 and Dec 2023. Bone marrow samples were collected from 20 healthy individuals and 15 patients with AML. Flow cytometry, real-time polymerase chain reaction (PCR), and western blotting were used to evaluate the frequency of Treg and IDO expression levels. RESULTS The Treg percentage among total lymphocytes was lower in the AML group than that in the normal group. However, Treg percentage among T-helper (Th) lymphocytes was significantly higher in the AML group than that in the normal group (p < 0.05). The mean IDO expression in the AML group was significantly higher than that in the normal group (p = 0.004). A significant relationship was observed between IDO expression and Treg percentage among Th lymphocytes in the AML group (correlation = 0.637; p = 0.003). Moreover, western blot analysis showed a significant increase in IDO protein intensity in the AML group compared with that in the control group (p < 0.001). A significant difference was observed between the IDO concentrations in the AML group and that in the control group (p < 0.001). In addition, a significant difference between TGF-β levels in the AML group and those in the control group (p < 0.01) was observed. CONCLUSION IDO inhibition using novel IDO inhibitors along with chemotherapy is a promising approach to overcome the immune escape mechanisms in patients with AML, who exhibit increased levels of IDO expression and Tregs.
Collapse
Affiliation(s)
- Raziyeh Hakak
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Azad University, Tehran, Iran
| | - Behzad Poopak
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Azad University, Tehran, Iran.
- Payvand Clinical and Specialty Laboratory, Tehran, Iran.
| | - Ahmad Majd
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Azad University, Tehran, Iran
| |
Collapse
|
2
|
Kim YJ, Kwag D, Kim BR, Son H, Park S, Kim HJ, Cho BS. Characterization of the Bone Marrow Lymphoid Microenvironment and Discovery of Prognostic Immune-Related Factors in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:13039. [PMID: 39684749 DOI: 10.3390/ijms252313039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Given the limited comprehensive data on the bone marrow (BM) immune environment in acute myeloid leukemia (AML), we analyzed the distribution and phenotype of T cell subsets, including γδ T cells, and their immune checkpoint (IC) ligands on blasts. We performed multiparametric flow cytometry with BM samples taken from 89 AML patients at the time of diagnosis, remission, and relapse/refractory status after chemotherapy and 13 healthy controls (HCs) to identify immune-related risk factors. Compared to the HCs, the T cells of the AML patients exhibited exhausted features including higher TIGIT levels and similar levels of PD-1 and TIM-3. The γδ T cells were exhausted by the upregulation of TIGIT and/or TIM-3 and downregulation of NKG2D and NKp30, with different patterns in the Vδ1 and Vδ2 subtypes. A successful chemotherapeutic response partially restored the exhausted phenotypes of the T cell subsets. The simultaneous analysis of IC receptors on the T cell subsets and their ligands on blasts showed the prognostic value of a specific IC receptor-ligand pair and the feasibility of risk stratification based on their diverse patterns. Our findings clarified the BM T cell landscape in AML, unveiling the prognostic value of γδ T cells in both diagnosis and remission predictions.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Male
- Female
- Middle Aged
- Adult
- Bone Marrow/pathology
- Bone Marrow/metabolism
- Bone Marrow/immunology
- Aged
- Prognosis
- Tumor Microenvironment/immunology
- Hepatitis A Virus Cellular Receptor 2/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Young Adult
- Adolescent
- Aged, 80 and over
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Yoon-Ju Kim
- Department of Biomedicine & Health Sciences, Graduate Program for Future Medical Research Leaders, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Bo-Reum Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyunsong Son
- Department of Biomedicine & Health Sciences, Graduate Program for Future Medical Research Leaders, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Zha C, Yang X, Yang J, Zhang Y, Huang R. Immunosuppressive microenvironment in acute myeloid leukemia: overview, therapeutic targets and corresponding strategies. Ann Hematol 2024:10.1007/s00277-024-06117-9. [PMID: 39607487 DOI: 10.1007/s00277-024-06117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Similar to other malignancies, immune dysregulation is a key feature of acute myeloid leukemia (AML), manifesting as suppressed anti-leukemia immune cells, immune evasion by leukemia blasts, and disease progression. Various immunosuppressive factors within the AML microenvironment contribute to the weakening of host immune responses and the efficacy of cellular immunotherapy. To address these challenges, strategies targeting immunosuppressive elements within the AML microenvironment aim to bolster host or adoptive immune effector cells, ultimately enhancing leukemia treatment. Additionally, the off-target effects of certain targeted drugs (venetoclax, sorafenib, ivosidenib, etc.) may also positively impact anti-AML immunity and immunotherapy. This review provides an overview of the immunosuppressive factors present in AML microenvironment and the strategies developed to rescue immune cells from immunosuppression. We also outline how targeted agents can alter the immune landscape in AML patients, and discuss the potential of targeted drugs to benefit host anti-leukemia immunity and immunotherapy for AML.
Collapse
Affiliation(s)
- Chenyu Zha
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujie Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Naji NS, Sathish M, Karantanos T. Inflammation and Related Signaling Pathways in Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3974. [PMID: 39682161 DOI: 10.3390/cancers16233974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, and inflammatory signaling is involved in its pathogenesis. Cytokines exert a robust effect on the progression of AML and affect survival outcomes. The dysregulation in the cytokine network may foster a pro-tumorigenic microenvironment, increasing leukemic cell proliferation, decreasing survival and driving drug resistance. The dominance of pro-inflammatory mediators such as IL-11β, TNF-α and IL-6 over anti-inflammatory mediators such as TGF-β and IL-10 has been implicated in tumor progression. Additionally, inflammatory cytokines have favored certain populations of hematopoietic stem and progenitor cells with mutated clonal hematopoiesis genes. This article summarizes current knowledge about inflammatory cytokines and signaling pathways in AML, their modes of action and the implications for immune tolerance and clonal hematopoiesis, with the aim of finding potential therapeutic interventions to improve clinical outcomes in AML patients.
Collapse
Affiliation(s)
- Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mrudula Sathish
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Theodoros Karantanos
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Park H, Miyano S. Network-Constrained Eigen-Single-Cell Profile Estimation for Uncovering Crucial Immunogene Regulatory Systems in Human Bone Marrow. J Comput Biol 2024; 31:1158-1178. [PMID: 39239711 DOI: 10.1089/cmb.2024.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
We focus on characterizing cell lines from young and aged-healthy and -AML (acute myeloid leukemia) cell lines, and our goal is to identify the key markers associated with the progression of AML. To characterize the age-related phenotypes in AML cell lines, we consider eigenCell analysis that effectively encapsulates the primary expression level patterns across the cell lines. However, earlier investigations utilizing eigenGenes and eigenCells analysis were based on linear combination of all features, leading to the disturbance from noise features. Moreover, the analysis based on a fully dense loading matrix makes it challenging to interpret the results of eigenCells analysis. In order to address these challenges, we develop a novel computational approach termed network-constrained eigenCells profile estimation, which employs a sparse learning strategy. The proposed method estimates eigenCell based on not only the lasso but also network constrained penalization. The use of the network-constrained penalization enables us to simultaneously select neighborhood genes. Furthermore, the hub genes and their regulator/target genes are easily selected as crucial markers for eigenCells estimation. That is, our method can incorporate insights from network biology into the process of sparse loading estimation. Through our methodology, we estimate sparse eigenCells profiles, where only critical markers exhibit expression levels. This allows us to identify the key markers associated with a specific phenotype. Monte Carlo simulations demonstrate the efficacy of our method in reconstructing the sparse structure of eigenCells profiles. We employed our approach to unveil the regulatory system of immunogenes in both young/aged-healthy and -AML cell lines. The markers we have identified for the age-related phenotype in both healthy and AML cell lines have garnered strong support from previous studies. Specifically, our findings, in conjunction with the existing literature, indicate that the activities within this subnetwork of CD79A could be pivotal in elucidating the mechanism driving AML progression, particularly noting the significant role played by the diminished activities in the CD79A subnetwork. We expect that the proposed method will be a useful tool for characterizing disease-related subsets of cell lines, encompassing phenotypes and clones.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, Republic of Korea
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- The Institute of Medical Science, Human Genome Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Testa U, Castelli G, Pelosi E. Membrane Antigen Targeting in Acute Myeloid Leukemia Using Antibodies or CAR-T Cells. Cancers (Basel) 2024; 16:3627. [PMID: 39518068 PMCID: PMC11545207 DOI: 10.3390/cancers16213627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the emerging area of the therapeutic use of antibodies and chimeric antigen receptor (CAR)-T cells for the treatment of acute myeloid leukemia (AML). Through a detailed analysis of the existing literature, this paper highlights the different categories of AML antigens for immunotherapeutic targeting, the most recent applications on antibodies, including bispecific immune cell engagers and CAR-T cells, to the therapy of patients with refractory/relapsing AML The studies performed in AML patients using BisAbs and CAR-T cells have shown that only a limited number of AML patients show sustained responses to these therapies, thus underlying AML heterogeneity as a major challenge. Several studies have addressed the potential mechanisms underlying the resistance of AMLs to antibody-directed immunotherapies. A better understanding of the barriers hampering the successful development of AML immunotherapy is required. However, in spite of the limitations, the studies recently carried out have shown the peculiar sensitivity of some AML subtypes to immunotherapy and have provided the basis for future studies, such as multiplex antigen targeting, which hold the promise of successful development.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
7
|
Farokhi-Fard A, Rahmati S, Hashemi Aval NS, Barkhordari F, Bayat E, Komijani S, Aghamirza Moghim Aliabadi H, Davami F. Anti-IL-1RAP scFv-mSA-S19-TAT fusion carrier as a multifunctional platform for versatile delivery of biotinylated payloads to myeloid leukemia cells. Sci Rep 2024; 14:25080. [PMID: 39443595 PMCID: PMC11500005 DOI: 10.1038/s41598-024-76851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with frequently poor clinical outcomes. This heterogeneous malignancy encompasses genetically, molecularly, and even clinically different subgroups. This makes it difficult to develop therapeutic agents that are effective for all subtypes of the disease. Therefore, a selective, universal, and adaptable delivery platform capable of carrying various types of anti-neoplastic agents is an unmet requirement in this area. Two multifunctional fusion proteins were designed for the delivery of biotinylated cargoes to human myeloid leukemia cells by fusing an anti-IL-1RAP single-chain antibody with streptavidin (tetramer or monomer), a cell-penetrating peptide (CPP), and an endosomolytic peptide in a single biomacromolecule. The designed fusions were analyzed primarily in silico, and the biofunctionality of the selected fusion was fully characterized via several binding assays, hemolysis assay, confocal microscopy and cell cytotoxicity assay after production via the Escherichia coli (E. coli) system. The refolded protein exhibited desirable binding activity to leukemic cells, pure antigen and biotinylated BSA. Further analyses revealed efficient cellular uptake, endosomolytic activity, and nuclear penetration without any detectable cytotoxicity toward normal epithelial cells. The described platform seems to have great potential for targeted delivery of different therapeutics to malignant myeloid cells.
Collapse
MESH Headings
- Humans
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Recombinant Fusion Proteins/genetics
- Biotinylation
- Cell-Penetrating Peptides/chemistry
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Cell Line, Tumor
- Drug Delivery Systems
- Streptavidin/chemistry
- Drug Carriers/chemistry
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/therapy
Collapse
Affiliation(s)
- Aref Farokhi-Fard
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Komijani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
- Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran.
| |
Collapse
|
8
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
9
|
Ravandi F, Subklewe M, Walter RB, Vachhani P, Ossenkoppele G, Buecklein V, Döhner H, Jongen-Lavrencic M, Baldus CD, Fransecky L, Pardee TS, Kantarjian H, Yen PK, Mukundan L, Panwar B, Yago MR, Agarwal S, Khaldoyanidi SK, Stein A. Safety and tolerability of AMG 330 in adults with relapsed/refractory AML: a phase 1a dose-escalation study. Leuk Lymphoma 2024; 65:1281-1291. [PMID: 38712673 DOI: 10.1080/10428194.2024.2346755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
AMG 330, a bispecific T-cell engager (BiTE®) that binds CD33 and CD3 on T cells facilitates T-cell-mediated cytotoxicity against CD33+ cells. This first-in-human, open-label, dose-escalation study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of AMG 330 in adults with relapsed/refractory acute myeloid leukemia (R/R AML). Amongst 77 patients treated with AMG 330 (0.5 µg/day-1.6 mg/day) on 14-day or 28-day cycles, maximum tolerated dose was not reached; median duration of treatment was 29 days. The most frequent treatment-related adverse events were cytokine release syndrome (CRS; 78%) and rash (30%); 10% of patients experienced grade 3/4 CRS. CRS was mitigated with stepwise dosing of AMG 330, prophylactic dexamethasone, and early treatment with tocilizumab. Among 60 evaluable patients, eight achieved complete remission or morphologic leukemia-free state; of the 52 non-responders, 37% had ≥50% reduction in AML bone marrow blasts. AMG 330 is a promising CD33-targeted therapeutic strategy for R/R AML.
Collapse
MESH Headings
- Humans
- Male
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Female
- Middle Aged
- Adult
- Aged
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/therapeutic use
- Treatment Outcome
- Young Adult
- Maximum Tolerated Dose
- Drug Resistance, Neoplasm/drug effects
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Recurrence
- Aged, 80 and over
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Dose-Response Relationship, Drug
- Cytokine Release Syndrome/etiology
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Research, Gene Center, LMU Munich, Munich, Germany
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Pankit Vachhani
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Veit Buecklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Research, Gene Center, LMU Munich, Munich, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Claudia D Baldus
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Fransecky
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Timothy S Pardee
- Department of Internal Medicine, Section on Hematology and Oncology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | - Anthony Stein
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
10
|
Chang YH, Yamamoto K, Fujino T, Wang TW, Sugimoto E, Zhang W, Yabushita T, Suzaki K, Pietsch EC, Weir BA, Crescenzo R, Cowley GS, Attar R, Philippar U, Wunderlich M, Mizukawa B, Zheng Y, Enomoto Y, Imai Y, Kitamura T, Goyama S. SETDB1 suppresses NK cell-mediated immunosurveillance in acute myeloid leukemia with granulo-monocytic differentiation. Cell Rep 2024; 43:114536. [PMID: 39096901 DOI: 10.1016/j.celrep.2024.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
Monocytic acute myeloid leukemia (AML) responds poorly to current treatments, including venetoclax-based therapy. We conducted in vivo and in vitro CRISPR-Cas9 library screenings using a mouse monocytic AML model and identified SETDB1 and its binding partners (ATF7IP and TRIM33) as crucial tumor promoters in vivo. The growth-inhibitory effect of Setdb1 depletion in vivo is dependent mainly on natural killer (NK) cell-mediated cytotoxicity. Mechanistically, SETDB1 depletion upregulates interferon-stimulated genes and NKG2D ligands through the demethylation of histone H3 Lys9 at the enhancer regions, thereby enhancing their immunogenicity to NK cells and intrinsic apoptosis. Importantly, these effects are not observed in non-monocytic leukemia cells. We also identified the expression of myeloid cell nuclear differentiation antigen (MNDA) and its murine counterpart Ifi203 as biomarkers to predict the sensitivity of AML to SETDB1 depletion. Our study highlights the critical and selective role of SETDB1 in AML with granulo-monocytic differentiation and underscores its potential as a therapeutic target for current unmet needs.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Animals
- Cell Differentiation
- Mice
- Histone-Lysine N-Methyltransferase/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Mice, Inbred C57BL
- Cell Line, Tumor
- Immunologic Surveillance
- Monocytes/metabolism
- Monocytes/immunology
- Apoptosis
Collapse
Affiliation(s)
- Yu-Hsuan Chang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan; Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takeshi Fujino
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Emi Sugimoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomohiro Yabushita
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ken Suzaki
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | | | - Barbara A Weir
- Janssen Research and Development, Cambridge, MA 02141, USA
| | | | - Glenn S Cowley
- Janssen Research and Development, Spring House, PA 19002, USA
| | - Ricardo Attar
- Janssen Research and Development, Spring House, PA 19002, USA
| | | | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Mizukawa
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yutaka Enomoto
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshio Kitamura
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan; Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
11
|
Tran D, Beeler JS, Liu J, Wiley B, Chan IC, Xin Z, Kramer MH, Batchi-Bouyou AL, Zong X, Walter MJ, Petrone GE, Chlamydas S, Ferraro F, Oh ST, Link DC, Busby B, Cao Y, Bolton KL. Plasma Proteomic Signature Predicts Myeloid Neoplasm Risk. Clin Cancer Res 2024; 30:3220-3228. [PMID: 38446993 PMCID: PMC11292192 DOI: 10.1158/1078-0432.ccr-23-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Clonal hematopoiesis (CH) is thought to be the origin of myeloid neoplasms (MN). Yet, our understanding of the mechanisms driving CH progression to MN and clinical risk prediction of MN remains limited. The human proteome reflects complex interactions between genetic and epigenetic regulation of biological systems. We hypothesized that the plasma proteome might predict MN risk and inform our understanding of the mechanisms promoting MN development. EXPERIMENTAL DESIGN We jointly characterized CH and plasma proteomic profiles of 46,237 individuals in the UK Biobank at baseline study entry. During 500,036 person-years of follow-up, 115 individuals developed MN. Cox proportional hazard regression was used to test for an association between plasma protein levels and MN risk. RESULTS We identified 115 proteins associated with MN risk, of which 30% (N = 34) were also associated with CH. These were enriched for known regulators of the innate and adaptive immune system. Plasma proteomics improved the prediction of MN risk (AUC = 0.85; P = 5×10-9) beyond clinical factors and CH (AUC = 0.80). In an independent group (N = 381,485), we used inherited polygenic risk scores (PRS) for plasma protein levels to validate the relevance of these proteins toMNdevelopment. PRS analyses suggest that most MN-associated proteins we identified are not directly causally linked toMN risk, but rather represent downstream markers of pathways regulating the progression of CH to MN. CONCLUSIONS These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095.
Collapse
Affiliation(s)
- Duc Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - J. Scott Beeler
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Jie Liu
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Brian Wiley
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Irenaeus C.C. Chan
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Zilan Xin
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Michael H. Kramer
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Armel L. Batchi-Bouyou
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Xiaoyu Zong
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| | - Matthew J. Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Giulia E.M. Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | | | - Francesca Ferraro
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, WUSM, St. Louis, Missouri.
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Ben Busby
- DNAnexus, Mountain View, California.
| | - Yin Cao
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| | - Kelly L. Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| |
Collapse
|
12
|
Li XP, Song JT, Dai YT, Zhang WN, Zhao BT, Mao JY, Gao Y, Jiang L, Liang Y. Integrative single-cell analysis of longitudinal t(8;21) AML reveals heterogeneous immune cell infiltration and prognostic signatures. Front Immunol 2024; 15:1424933. [PMID: 39086485 PMCID: PMC11288856 DOI: 10.3389/fimmu.2024.1424933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Immunotherapies targeting T cells in solid cancers are revolutionizing clinical treatment. Novel immunotherapies have had extremely limited benefit for acute myeloid leukemia (AML). Here, we characterized the immune microenvironment of t(8;21) AML patients to determine how immune cell infiltration status influenced prognosis. Methods Through multi-omics studies of primary and longitudinal t(8;21) AML samples, we characterized the heterogeneous immune cell infiltration in the tumor microenvironment and their immune checkpoint gene expression. Further external cohorts were also included in this research. Results CD8+ T cells were enriched and HAVCR2 and TIGIT were upregulated in the CD34+CD117dim%-High group; these features are known to be associated with immune exhaustion. Data integration analysis of single-cell dynamics revealed that a subset of T cells (cluster_2) (highly expressing GZMB, NKG7, PRF1 and GNLY) evolved and expanded markedly in the drug-resistant stage after relapse. External cohort analysis confirmed that the cluster_2 T-cell signature could be utilized to stratify patients by overall survival outcome. Discussion In conclusion, we discovered a distinct T-cell signature by scRNA-seq that was correlated with disease progression and drug resistance. Our research provides a novel system for classifying patients based on their immune microenvironment.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Single-Cell Analysis/methods
- Prognosis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Chromosomes, Human, Pair 8/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Female
- Translocation, Genetic
- Chromosomes, Human, Pair 21/genetics
- CD8-Positive T-Lymphocytes/immunology
- Adult
- Middle Aged
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Xue-Ping Li
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Tao Song
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Na Zhang
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Bai-Tian Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Ying Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Restelli C, Ruella M, Paruzzo L, Tarella C, Pelicci PG, Colombo E. Recent Advances in Immune-Based Therapies for Acute Myeloid Leukemia. Blood Cancer Discov 2024; 5:234-248. [PMID: 38904305 PMCID: PMC11215380 DOI: 10.1158/2643-3230.bcd-23-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite advancements, acute myeloid leukemia (AML) remains unconquered by current therapies. Evidence of immune evasion during AML progression, such as HLA loss and T-cell exhaustion, suggests that antileukemic immune responses contribute to disease control and could be harnessed by immunotherapy. In this review, we discuss a spectrum of AML immunotherapy targets, encompassing cancer cell-intrinsic and surface antigens as well as targeting in the leukemic milieu, and how they can be tailored for personalized approaches. These targets are overviewed across major immunotherapy modalities applied to AML: immune checkpoint inhibitors, antibody-drug conjugates, therapeutic vaccines, bispecific/trispecific antibodies, and chimeric antigen receptor (CAR)-T and CAR-NK cells. Significance: Immune therapies in AML treatment show evolving promise. Ongoing research aims to customize approaches for varied patient profiles and clinical scenarios. This review covers immune surveillance mechanisms, therapy options like checkpoint inhibitors, antibodies, CAR-T/NK cells, and vaccines, as well as resistance mechanisms and microenvironment considerations.
Collapse
Affiliation(s)
- Cecilia Restelli
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Marco Ruella
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Luca Paruzzo
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Corrado Tarella
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Vadakekolathu J, Rutella S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood 2024; 143:2689-2700. [PMID: 37467496 PMCID: PMC11251208 DOI: 10.1182/blood.2023019961] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
ABSTRACT Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T-cell-targeting approaches, including checkpoint inhibitors (CPIs). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and postchemotherapy or posttransplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon gamma (IFN-γ) signaling were shown to derive clinical benefit from CD123×CD3-bispecific dual-affinity retargeting molecules and CPIs, while being less likely to respond to standard-of-care cytotoxic chemotherapy. In this review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T-cell-mediated killing, and the dichotomous roles of type I and II IFN in antitumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPIs and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
15
|
Corradi G, Forte D, Cristiano G, Polimeno A, Ciciarello M, Salvestrini V, Bandini L, Robustelli V, Ottaviani E, Cavo M, Ocadlikova D, Curti A. Ex vivo characterization of acute myeloid leukemia patients undergoing hypomethylating agents and venetoclax regimen reveals a venetoclax-specific effect on non-suppressive regulatory T cells and bona fide PD-1 +TIM3 + exhausted CD8 + T cells. Front Immunol 2024; 15:1386517. [PMID: 38812504 PMCID: PMC11133521 DOI: 10.3389/fimmu.2024.1386517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors' expression on CD4+ and CD8+ T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8+ T cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8+ T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.
Collapse
Affiliation(s)
- Giulia Corradi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Dorian Forte
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianluca Cristiano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Andrea Polimeno
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Marilena Ciciarello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Valentina Salvestrini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Lorenza Bandini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Valentina Robustelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Emanuela Ottaviani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Michele Cavo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Darina Ocadlikova
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Antonio Curti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
16
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Subklewe M. Novel immunotherapies in the treatment of AML: is there hope? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:691-701. [PMID: 38066884 PMCID: PMC10727092 DOI: 10.1182/hematology.2023000455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The success of allogeneic stem cell transplantation has demonstrated the potential for immunotherapy to treat acute myeloid leukemia (AML). Although alternative T-cell-based immunotherapies have shown efficacy, they also pose the risk of on-target off-leukemia hematotoxicity. So far, adoptive autologous or allogeneic chimeric antigen receptor (CAR) T/natural killer cell therapy is almost exclusively employed as a bridge-to-transplant strategy in the context of clinical trials. For now, clinical trials predominantly target lineage-restricted antigens, but emerging approaches focus on leukemia-associated/specific intracellular target antigens, including dual and split targeting strategies. Adapter CAR T cells and T-cell-recruiting bispecific antibodies offer transient exposure with enhanced safety and multitargeting potential against antigen-escape variants. However, these have yet to demonstrate sustained responses and should be used earlier to treat low leukemia burden, preferably if measurable residual disease is present. To address immune dysregulation and enhance T-cell fitness, novel CAR T and bispecific designs, along with combinatorial strategies, might prove essential. Furthermore, genetic associations with inflammatory bone marrow signatures suggest the need for tailored platforms in defined AML subtypes. The eagerly anticipated results of trials investigating magrolimab, an anti-CD47 antibody targeting the "do not eat me" signal in p53-mutated AML, should shed further light on the potential of these evolving immunotherapeutic approaches.
Collapse
Affiliation(s)
- Marion Subklewe
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
18
|
Mohammadian Gol T, Kim M, Sinn R, Ureña-Bailén G, Stegmeyer S, Gratz PG, Zahedipour F, Roig-Merino A, Antony JS, Mezger M. CRISPR-Cas9-Based Gene Knockout of Immune Checkpoints in Expanded NK Cells. Int J Mol Sci 2023; 24:16065. [PMID: 38003255 PMCID: PMC10671270 DOI: 10.3390/ijms242216065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Natural killer (NK) cell immunotherapy has emerged as a novel treatment modality for various cancer types, including leukemia. The modulation of inhibitory signaling pathways in T cells and NK cells has been the subject of extensive investigation in both preclinical and clinical settings in recent years. Nonetheless, further research is imperative to optimize antileukemic activities, especially regarding NK-cell-based immunotherapies. The central scientific question of this study pertains to the potential for boosting cytotoxicity in expanded and activated NK cells through the inhibition of inhibitory receptors. To address this question, we employed the CRISPR-Cas9 system to target three distinct inhibitory signaling pathways in NK cells. Specifically, we examined the roles of A2AR within the metabolic purinergic signaling pathway, CBLB as an intracellular regulator in NK cells, and the surface receptors NKG2A and CD96 in enhancing the antileukemic efficacy of NK cells. Following the successful expansion of NK cells, they were transfected with Cas9+sgRNA RNP to knockout A2AR, CBLB, NKG2A, and CD96. The analysis of indel frequencies for all four targets revealed good knockout efficiencies in expanded NK cells, resulting in diminished protein expression as confirmed by flow cytometry and Western blot analysis. Our in vitro killing assays demonstrated that NKG2A and CBLB knockout led to only a marginal improvement in the cytotoxicity of NK cells against AML and B-ALL cells. Furthermore, the antileukemic activity of CD96 knockout NK cells did not yield significant enhancements, and the blockade of A2AR did not result in significant improvement in killing efficiency. In conclusion, our findings suggest that CRISPR-Cas9-based knockout strategies for immune checkpoints might not be sufficient to efficiently boost the antileukemic functions of expanded (and activated) NK cells and, at the same time, point to the need for strong cellular activating signals, as this can be achieved, for example, via transgenic chimeric antigen receptor expression.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Miso Kim
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Ralph Sinn
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Guillermo Ureña-Bailén
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Sarah Stegmeyer
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Paul Gerhard Gratz
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Fatemeh Zahedipour
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | | | - Justin S. Antony
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Markus Mezger
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| |
Collapse
|
19
|
Koedijk JB, van Beek TB, Vermeulen MA, Kester LA, Schweighart EK, Nierkens S, Belderbos ME, Zwaan CM, Heitink-Pollé KMJ, Heidenreich O. Case Report: Immune dysregulation associated with long-lasting regression of a (pre)leukemic clone. Front Immunol 2023; 14:1280885. [PMID: 37908360 PMCID: PMC10613973 DOI: 10.3389/fimmu.2023.1280885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Regression of leukemia in the absence of disease-modifying therapy remains poorly understood, although immunological mechanisms are thought to play a role. Here, we present a unique case of a 17-year-old boy with immune dysregulation and long-lasting regression of a (pre)leukemic clone in the absence of disease-modifying therapy. Using molecular and immunological analyses, we identified bone marrow features associated with disease control and loss thereof. In addition, our case reveals that detection of certain fusion genes with hardly any blasts in the bone marrow may be indicative of an accompanying oncogenic fusion gene, with implications for disease surveillance- and management in future patients.
Collapse
Affiliation(s)
- Joost B. Koedijk
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatric Oncology, Erasmus Medical Center (MC)/Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Thomas B. van Beek
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marijn A. Vermeulen
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Lennart A. Kester
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elizabeth K. Schweighart
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mirjam E. Belderbos
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - C. Michel Zwaan
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatric Oncology, Erasmus Medical Center (MC)/Sophia Children’s Hospital, Rotterdam, Netherlands
| | | | - Olaf Heidenreich
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Magnani CF, Myburgh R, Brunn S, Chambovey M, Ponzo M, Volta L, Manfredi F, Pellegrino C, Pascolo S, Miskey C, Ivics Z, Shizuru JA, Neri D, Manz MG. Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells. Mol Ther Oncolytics 2023; 30:56-71. [PMID: 37583386 PMCID: PMC10424000 DOI: 10.1016/j.omto.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Chiara F. Magnani
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Silvan Brunn
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Morgane Chambovey
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Marianna Ponzo
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy
| | - Laura Volta
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Francesco Manfredi
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Judith A. Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 ETH Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), 8091 Zurich, Switzerland
| |
Collapse
|
21
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
22
|
Lee H, Han JH, Kim JK, Yoo J, Yoon JH, Cho BS, Kim HJ, Lim J, Jekarl DW, Kim Y. Machine Learning Predicts 30-Day Outcome among Acute Myeloid Leukemia Patients: A Single-Center, Retrospective, Cohort Study. J Clin Med 2023; 12:5940. [PMID: 37762881 PMCID: PMC10531920 DOI: 10.3390/jcm12185940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clinical emergency requiring treatment and results in high 30-day (D30) mortality. In this study, the prediction of D30 survival was studied using a machine learning (ML) method. The total cohort consisted of 1700 survivors and 130 non-survivors at D30. Eight clinical and 42 laboratory variables were collected at the time of diagnosis by pathology. Among them, six variables were selected by a feature selection method: induction chemotherapy (CTx), hemorrhage, infection, C-reactive protein, blood urea nitrogen, and lactate dehydrogenase. Clinical and laboratory data were entered into the training model for D30 survival prediction, followed by testing. Among the tested ML algorithms, the decision tree (DT) algorithm showed higher accuracy, the highest sensitivity, and specificity values (95% CI) of 90.6% (0.918-0.951), 70.4% (0.885-0.924), and 92.1% (0.885-0.924), respectively. DT classified patients into eight specific groups with distinct features. Group 1 with CTx showed a favorable outcome with a survival rate of 97.8% (1469/1502). Group 6, with hemorrhage and the lowest fibrinogen level at diagnosis, showed the worst survival rate of 45.5% (25/55) and 20.5 days. Prediction of D30 survival among AML patients by classification of patients with DT showed distinct features that might support clinical decision-making.
Collapse
Affiliation(s)
- Howon Lee
- Department of Laboratory Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea
| | - Jay Ho Han
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Kwon Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea;
| | - Jae-Ho Yoon
- Division of Hematology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung Sik Cho
- Division of Hematology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Je Kim
- Division of Hematology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jihyang Lim
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Dong Wook Jekarl
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
23
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Ma Q, Zhao M, Long B, Li H. Super-enhancer-associated gene CAPG promotes AML progression. Commun Biol 2023; 6:622. [PMID: 37296281 PMCID: PMC10256737 DOI: 10.1038/s42003-023-04973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene expression and epigenetic changes play an important role in pathogenesis and treatment. A super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance by activating oncogene transcription. Multi-omics integrative analysis identifies the super-enhancer-associated gene CAPG and its high expression level was correlated with poor prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can contributes to AML progression through NF-κB.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
25
|
Identification of tumor antigens and immune subtypes of acute myeloid leukemia for mRNA vaccine development. Clin Transl Oncol 2023:10.1007/s12094-023-03108-6. [PMID: 36781600 PMCID: PMC9924891 DOI: 10.1007/s12094-023-03108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy, and there has not been any significant improvement in therapy of AML over the past several decades. The mRNA vaccines have become a promising strategy against multiple cancers, however, its application on AML remains undefined. In this study, we aimed to identify novel antigens for developing mRNA vaccines against AML and explore the immune landscape of AML to select appropriate patients for vaccination. METHODS Genomic data and gene mutation data were retrieved from TCGA, GEO and cBioPortal, respectively. GEPIA2 was used to analyze differentially expressed genes. The single cell RNA-seq database Tumor Immune Single-cell Hub (TISCH) was used to explore the association between the potential tumor antigens and the infiltrating immune cells in the bone marrow. Consensus clustering analysis was applied to identify distinct immune subtypes. The correlation between the abundance of antigen presenting cells and the expression level of antigens was evaluated using Spearman correlation analysis. The characteristics of the tumor immune microenvironment in each subtype were investigated based on single-sample gene set enrichment analysis. RESULTS Five potential tumor antigens were identified for mRNA vaccine from the pool of overexpressed and mutated genes, including CDH23, LRP1, MEFV, MYOF and SLC9A9, which were associated with infiltration of antigen-presenting immune cells (APCs). AML patients were stratified into two immune subtypes Cluster1 (C1) and Cluster2 (C2), which were characterized by distinct molecular and clinical features. C1 subtype demonstrated an immune-hot and immunosuppressive phenotype, while the C1 subtype had an immune-cold phenotype. Furthermore, the two immune subtype showed remarkably different expression of immune checkpoints, immunogenic cell death modulators and human leukocyte antigens. CONCLUSION CDH23, LRP1, MEFV, MYOF and SLC9A9 were potential antigens for developing AML mRNA vaccine, and AML patients in immune subtype 1 were suitable for vaccination.
Collapse
|
26
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
27
|
Zhou H, Wang F, Niu T. Prediction of prognosis and immunotherapy response of amino acid metabolism genes in acute myeloid leukemia. Front Nutr 2022; 9:1056648. [PMID: 36618700 PMCID: PMC9815546 DOI: 10.3389/fnut.2022.1056648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Amino acid (AA) metabolism plays a crucial role in cancer. However, its role in acute myeloid leukemia (AML) is still unavailable. We screened out AA metabolic genes, which related to prognosis, and analyzed their correlation with tumor immune microenvironment in AML. Methods We evaluated 472 amino acid metabolism-related genes in 132 AML patients. The predictive risk model was developed according to differentially expressed genes, univariate Cox and LASSO analyses. We validated the risk signature by survival analysis and independence tests. Single-sample gene set enrichment analysis (ssGSEA), tumor immune microenvironment (TME), tumor mutation burden (TMB), functional enrichment, and the IC50 of drugs were assessed to explore the correlations among the risk model, immunity, and drug sensitivity of AML. Results Six amino acid metabolism-related genes were confirmed to develop the risk model, including TRH, HNMT, TFEB, SDSL, SLC43A2, and SFXN3. The high-risk subgroup had an immune "hot" phenotype and was related to a poor prognosis. The high-risk group was also associated with more activity of immune cells, such as Tregs, had higher expression of some immune checkpoints, including PD1 and CTLA4, and might be more susceptible to immunotherapy. Xenobiotic metabolism, the reactive oxygen species (ROS) pathway, fatty acid metabolism, JAK/STAT3, and the inflammatory response were active in the high-risk subgroup. Furthermore, the high-risk subgroup was sensitive to sorafenib, selumetinib, and entospletinib. ssGSEA discovered that the processes of glutamine, arginine, tryptophan, cysteine, histidine, L-serine, isoleucine, threonine, tyrosine, and L-phenylalanine metabolism were more active in the high-risk subgroup. Conclusion This study revealed that AA metabolism-related genes were correlated with the immune microenvironment of AML patients and could predict the prognosis and immunotherapy response of AML patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengjuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Niu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Ting Niu,
| |
Collapse
|
28
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
29
|
Riether C. Regulation of hematopoietic and leukemia stem cells by regulatory T cells. Front Immunol 2022; 13:1049301. [PMID: 36405718 PMCID: PMC9666425 DOI: 10.3389/fimmu.2022.1049301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Adult bone marrow (BM) hematopoietic stem cells (HSCs) are maintained in a quiescent state and sustain the continuous production of all types of blood cells. HSCs reside in a specialized microenvironment the so-called HSC niche, which equally promotes HSC self-renewal and differentiation to ensure the integrity of the HSC pool throughout life and to replenish hematopoietic cells after acute injury, infection or anemia. The processes of HSC self-renewal and differentiation are tightly controlled and are in great part regulated through cellular interactions with classical (e.g. mesenchymal stromal cells) and non-classical niche cells (e.g. immune cells). In myeloid leukemia, some of these regulatory mechanisms that evolved to maintain HSCs, to protect them from exhaustion and immune destruction and to minimize the risk of malignant transformation are hijacked/disrupted by leukemia stem cells (LSCs), the malignant counterpart of HSCs, to promote disease progression as well as resistance to therapy and immune control. CD4+ regulatory T cells (Tregs) are substantially enriched in the BM compared to other secondary lymphoid organs and are crucially involved in the establishment of an immune privileged niche to maintain HSC quiescence and to protect HSC integrity. In leukemia, Tregs frequencies in the BM even increase. Studies in mice and humans identified the accumulation of Tregs as a major immune-regulatory mechanism. As cure of leukemia implies the elimination of LSCs, the understanding of these immune-regulatory processes may be of particular importance for the development of future treatments of leukemia as targeting major immune escape mechanisms which revolutionized the treatment of solid tumors such as the blockade of the inhibitory checkpoint receptor programmed cell death protein 1 (PD-1) seems less efficacious in the treatment of leukemia. This review will summarize recent findings on the mechanisms by which Tregs regulate stem cells and adaptive immune cells in the BM during homeostasis and in leukemia.
Collapse
Affiliation(s)
- Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland,*Correspondence: Carsten Riether,
| |
Collapse
|
30
|
Su X, Ma G, Bai X, Zhang J, Li M, Zhang F, Sun T, Ma D, Lu F, Ji C. The prognostic marker FLVCR2 associated with tumor progression and immune infiltration for acute myeloid leukemia. Front Cell Dev Biol 2022; 10:978786. [PMID: 36313565 PMCID: PMC9597318 DOI: 10.3389/fcell.2022.978786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies in adults. The tumor microenvironment (TME) has a critical effect on AML occurrence, recurrence, and progression. The gene feline leukemia virus subgroup C cellular receptor family member 2 (FLVCR2) belongs to the major facilitator superfamily of transporter protein members, which is primarily involved in transporting small molecules. The potential role of FLVCR2 in the TME in AML has not been investigated. To clarify the expression and role of FLVCR2 in AML, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas databases and found that FLVCR2 mRNA expression significantly increased among patients with AML. Furthermore, based on an analysis of the Gene Expression Profiling Interactive Analysis database, FLVCR2 upregulation predicted dismal overall survival of patients with AML. Our validation analysis revealed the significant upregulation of FLVCR2 within the bone marrow of AML relative to healthy controls by western blotting and qPCR assays. Gene set enrichment analysis was conducted to explore FLVCR2's related mechanism in AML. We found that high FLVCR2 expression was related to infiltration degrees of immune cells and immune scores among AML cases, indicating that FLVCR2 possibly had a crucial effect on AML progression through the immune response. Specifically, FLVCR2 upregulation was negatively related to the immune infiltration degrees of activated natural killer cells, activated memory CD4+ T cells, activated dendritic cells, and CD8+ T cells using CIBERSORT analysis. According to the in vitro research, FLVCR2 silencing suppressed AML cell growth and promoted their apoptosis. This study provides insights into FLVCR2's effect on tumor immunity, indicating that it might serve as an independent prognostic biomarker and was related to immune infiltration within AML.
Collapse
Affiliation(s)
- Xiuhua Su
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoran Bai
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
31
|
Klokov D, Applegate K, Badie C, Brede DA, Dekkers F, Karabulutoglu M, Le Y, Rutten EA, Lumniczky K, Gomolka M. International expert group collaboration for developing an adverse outcome pathway for radiation induced leukaemia. Int J Radiat Biol 2022; 98:1802-1815. [PMID: 36040845 DOI: 10.1080/09553002.2022.2117873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukaemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome. Further knowledge review to generate a weight of evidence support for the Key Event Relationships (KERs) was undertaken using a systematic review approach. CONCLUSIONS An AOP for IR-induced acute myeloid leukaemia was proposed and submitted for review to the OECD-curated AOP-wiki (aopwiki.org). The systematic review identified over 500 studies that link IR, as a stressor, to leukaemia, as an adverse outcome. Knowledge gap identification, although requiring a substantial effort via systematic review of literature, appears to be one of the major added values of the AOP concept. Further work, both within this leukaemia AOP working group and other similar working groups, is warranted and is anticipated to produce highly demanded products for the radiation protection research community.
Collapse
Affiliation(s)
- Dmitry Klokov
- Laboratory of Experimental Radiotoxicology and Radiobiology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Kimberly Applegate
- Department of Radiology, University of Kentucky College of Medicine (retired), Lexington, KY, USA
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Norway
| | - Fieke Dekkers
- Mathematical Institute, Utrecht University, Utrecht, The Netherlands.,Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Melis Karabulutoglu
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | | | - Eric Andreas Rutten
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Katalin Lumniczky
- Radiation Biology, Federal Office for Radiation Protection BfS, Oberschleißheim, Germany
| | - Maria Gomolka
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
32
|
Barakos GP, Hatzimichael E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022; 10:diseases10020033. [PMID: 35735633 PMCID: PMC9221594 DOI: 10.3390/diseases10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow, besides the known functions of hematopoiesis, is an active organ of the immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases, which show a dysregulated immune microenvironment. The bone marrow microenvironment in myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with features that augment immune evasion and suppression. In this review, we will outline some of the functions of the bone marrow with immunological significance and describe the alterations in the immune landscape of MDS and AML that drive disease progression.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
- Correspondence:
| |
Collapse
|
33
|
Leukemic Stem Cells as a Target for Eliminating Acute Myeloid Leukemia: Gaps in Translational Research. Crit Rev Oncol Hematol 2022; 175:103710. [DOI: 10.1016/j.critrevonc.2022.103710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
|
34
|
Engineered cellular immunotherapies in cancer and beyond. Nat Med 2022; 28:678-689. [PMID: 35440724 DOI: 10.1038/s41591-022-01765-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
This year marks the tenth anniversary of cell therapy with chimeric antigen receptor (CAR)-modified T cells for refractory leukemia. The widespread commercial approval of genetically engineered T cells for a variety of blood cancers offers hope for patients with other types of cancer, and the convergence of human genome engineering and cell therapy technology holds great potential for generation of a new class of cellular therapeutics. In this Review, we discuss the goals of cellular immunotherapy in cancer, key challenges facing the field and exciting strategies that are emerging to overcome these obstacles. Finally, we outline how developments in the cancer field are paving the way for cellular immunotherapeutics in other diseases.
Collapse
|
35
|
Deeg HJ. Not all patients with AML over 60 years of age should be offered early allogeneic stem cell transplantation. Blood Adv 2022; 6:1623-1627. [PMID: 34607346 PMCID: PMC8905709 DOI: 10.1182/bloodadvances.2021004799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- H. Joachim Deeg
- Fred Hutchinson Cancer Research Center and the University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
36
|
Shaik FA, Lewuillon C, Guillemette A, Ahmadian B, Brinster C, Quesnel B, Collard D, Touil Y, Lemonnier L, Tarhan MC. Pairing cells of different sizes in a microfluidic device for immunological synapse monitoring. LAB ON A CHIP 2022; 22:908-920. [PMID: 35098952 DOI: 10.1039/d1lc01156a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Analyzing cell-cell interaction is essential to investigate how immune cells function. Elegant designs have been demonstrated to study lymphocytes and their interaction partners. However, these devices have been targeting cells of similar dimensions. T lymphocytes are smaller, more deformable, and more sensitive to pressure than many cells. This work aims to fill the gap of a method for pairing cells with different dimensions. The developed method uses hydrodynamic flow focusing in the z-direction for on-site modulation of effective channel height to capture smaller cells as single cells. Due to immune cells' sensitivity to pressure, the proposed method provides a stable system without any change in flow conditions at the analysis area throughout experiments. Paired live cells have their activities analyzed with calcium imaging at the immunological synapse formed under a controlled environment. The method is demonstrated with primary human T lymphocytes, acute myeloid leukemia (AML) cell lines, and primary AML blasts.
Collapse
Affiliation(s)
- Faruk Azam Shaik
- University of Lille, Lille, France
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
| | - Clara Lewuillon
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Aurélie Guillemette
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Bahram Ahmadian
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520 -IEMN -Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| | - Carine Brinster
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Bruno Quesnel
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Dominique Collard
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
| | - Yasmine Touil
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Mehmet Cagatay Tarhan
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520 -IEMN -Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Jiang D, Wu X, Sun X, Tan W, Dai X, Xie Y, Du A, Zhao Q. Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J Nanobiotechnology 2022; 20:29. [PMID: 35012554 PMCID: PMC8744354 DOI: 10.1186/s12951-021-01206-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a malignant clonal disease of hematopoietic stem- and progenitor-cell origin. AML features massive proliferation of abnormal blasts and leukemia cells in the bone marrow and the inhibition of normal hematopoiesis at onset. Exosomes containing proteins or nucleic acids are secreted by cells; they participate in intercellular communication and serve as key modulators of hematopoiesis. The purpose of this study was to investigate the effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on the regulation of AML and the underlying mechanisms mediated by microRNA (miRNA). METHODS Dysregulated miR-7-5p in AML patients was identified using qRT-PCR and its clinical significance was explored. Bioinformatic analysis revealed the target gene OSBPL11 that could be regulated by miR-7-5p. The findings were validated using a dual-luciferase reporter assay and western blotting. The functional genes of the PI3K/AKT/mTOR signaling pathway were identified, and the functional significance of miR-7-5p in AML cells was determined using a functional recovery assay. AML cells were co-cultured with exosomes originating from BMSCs overexpressing miR-7-5p to determine cell-cell regulation by Exo-miR-7-5p, as well as in vitro and in vivo functional validation via gain- and loss-of-function methods. RESULTS Expression of miR-7-5p was decreased in AML patients and cells. Overexpression of miR-7-5p curbed cellular proliferation and promoted apoptosis. Overexpression of OSBPL11 reversed the tumorigenic properties of miR-7-5p in AML cells in vitro. Exo-miR-7-5p derived from BMSCs induced formation of AML cells prone to apoptosis and a low survival rate, with OSBPL11 expression inhibited through the PI3K/AKT/mTOR signaling pathway. Exo-miR-7-5p derived from BMSCs exhibited tumor homing effects in vitro and in vivo, and inhibited AML development. CONCLUSIONS Exo-miR-7-5p derived from BMSCs negatively regulates OSBPL11 by suppressing the phosphorylation of the PI3K/AKT/mTOR signaling pathway, thereby inhibiting AML proliferation and promoting apoptosis. The data will inform the development of AML therapies based on BMSC-derived exosomes.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, 570311, People's Republic of China.,Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xin Wu
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xiaoying Sun
- Nursing School, Soochow University, Suzhou, 215000, People's Republic of China.,Department of Emergency, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Wei Tan
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xin Dai
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Youbang Xie
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, People's Republic of China.
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China. .,Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
38
|
The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer J 2022; 28:78-84. [DOI: 10.1097/ppo.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Chang YJ, Zhao XY, Huang XJ. Haploidentical Stem Cell Transplantation for Acute Myeloid Leukemia: Current Therapies, Challenges and Future Prospective. Front Oncol 2021; 11:758512. [PMID: 34778077 PMCID: PMC8581046 DOI: 10.3389/fonc.2021.758512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023] Open
Abstract
Haploidentical stem cell transplantation (haplo-SCT), an alternative donor source, offers a curative therapy for patients with acute myeloid leukemia (AML) who are transplant candidates. Advances in transplantation techniques, such as donor selection, conditioning regimen modification, and graft-versus-host disease prophylaxis, have successfully improved the outcomes of AML patients receiving haplo-SCT and extended the haploidentical transplant indictions for AML. Presently, treating de novo AML, secondary AML, therapy-related AML and refractory and relapsed AML with haplo-SCT can achieve comparable outcomes to those of human leukocyte antigen (HLA)-matched sibling donor transplantation (MSDT), unrelated donor transplantation or umbilical cord blood transplantation. For some subgroups of AML subjects, such as patients with positive pretransplantation minimal/measurable residual disease, recent studies suggest that haplo-SCT might be superior to MSDT in decreasing relapse and improving survival. Unfortunately, for patients with AML after haplo-SCT, relapse and infections remain the causes of death that restrict further improvement in clinical outcomes. In this review, we discuss the recent advances and challenges in haplo-SCT for AML treatment, mainly focusing on unmanipulated haplo-SCT protocols. We provide an outlook on future prospects and suggest that relapse prophylaxis, intervention, and treatment, as well as infection prevention and therapy, are areas of active research in AML patients who receive haploidentical allografts.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
40
|
Kaleka G, Schiller G. Immunotherapy for Acute Myeloid Leukemia: Allogeneic hematopoietic cell transplantation is here to stay. Leuk Res 2021; 112:106732. [PMID: 34864447 DOI: 10.1016/j.leukres.2021.106732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 01/20/2023]
Abstract
Acute Myeloid Leukemia (AML) represents 1 % of all new cancer diagnosis made annually in the US and has a five-year survival of 30 %. Traditional treatment includes aggressive induction therapy followed by consolidation therapy that may include a hematopoietic stem cell transplant (HSCT). Thus far, HSCT remains the only potentially curative therapy for many patients with AML owing to the graft-versus-leukemia effect elicited by this treatment. The use of novel therapies, specifically immunotherapy, in the treatment of AML has been limited by the lack of appropriate target antigens, therapy associated toxicities and variable success with treatment. Antigenic variability on leukemia cells and the sharing of antigens by malignant and non-malignant cells makes the identification of appropriate antigens problematic. While studies with immunotherapeutic agents are underway, prior investigations have demonstrated a mixed response with some studies prematurely discontinued due to associated toxicities. This review presents a discussion of the envisioned role of immunotherapy in the treatment of AML in the setting of mixed therapeutic success and potentially lethal toxicities.
Collapse
Affiliation(s)
- Guneet Kaleka
- UCLA-Olive View Medical Center, Department of Medicine, Room 2B-182, 14445 Olive View Drive, Sylmar, CA, 91342, United States.
| | - Gary Schiller
- Department of Medicine, Hematology & Oncology at UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
41
|
Paving the Way for Immunotherapy in Pediatric Acute Myeloid Leukemia: Current Knowledge and the Way Forward. Cancers (Basel) 2021; 13:cancers13174364. [PMID: 34503174 PMCID: PMC8431730 DOI: 10.3390/cancers13174364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Immunotherapy may be an attractive treatment option to increase survival, and to reduce treatment-related side effects, for children with acute myeloid leukemia (AML). While immunotherapies have shown successes in many cancer types, the development and subsequent clinical implementation have proven difficult in pediatric AML. To expedite the development of immunotherapy, it will be crucial to understand which pediatric AML patients are likely to respond to immunotherapies. Emerging research in solid malignancies has shown that the number and phenotype of immune cells in the tumor microenvironment is predictive of response to several types of immunotherapies. Such a predictive model may also be applicable for AML and, thus, knowledge on the immune cells infiltrating the bone marrow environment is needed. Here, we discuss the current state of knowledge on these infiltrating immune cells in pediatric AML, as well as ongoing immunotherapy trials, and provide suggestions concerning the way forward. Abstract Immunotherapeutic agents may be an attractive option to further improve outcomes and to reduce treatment-related toxicity for pediatric AML. While improvements in outcome have been observed with immunotherapy in many cancer types, immunotherapy development and implementation into patient care for both adult and pediatric AML has been hampered by an incomplete understanding of the bone marrow environment and a paucity of tumor-specific antigens. Since only a minority of patients respond in most immunotherapy trials across different cancer types, it will be crucial to understand which children with AML are likely to respond to or may benefit from immunotherapies. Immune cell profiling efforts hold promise to answer this question, as illustrated by the development of predictive scores in solid cancers. Such information on the number and phenotype of immune cells during current treatment regimens will be pivotal to generate hypotheses on how and when to intervene with immunotherapy in pediatric AML. In this review, we discuss the current understanding of the number and phenotype of immune cells in the bone marrow in pediatric AML, ongoing immunotherapy trials and how comprehensive immune profiling efforts may pave the way for successful clinical trials (and, ultimately, implementation into patient care).
Collapse
|
42
|
Neoantigen-Specific T-Cell Immune Responses: The Paradigm of NPM1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22179159. [PMID: 34502069 PMCID: PMC8431540 DOI: 10.3390/ijms22179159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.
Collapse
|
43
|
Daver N, Alotaibi AS, Bücklein V, Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 2021; 35:1843-1863. [PMID: 33953290 PMCID: PMC8257483 DOI: 10.1038/s41375-021-01253-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease linked to a broad spectrum of molecular alterations, and as such, long-term disease control requires multiple therapeutic approaches. Driven largely by an improved understanding and targeting of these molecular aberrations, AML treatment has rapidly evolved over the last 3-5 years. The stellar successes of immunotherapies that harness the power of T cells to treat solid tumors and an improved understanding of the immune systems of patients with hematologic malignancies have led to major efforts to develop immunotherapies for the treatment of patients with AML. Several immunotherapies that harness T cells against AML are in various stages of preclinical and clinical development. These include bispecific and dual antigen receptor-targeting antibodies (targeted to CD33, CD123, CLL-1, and others), chimeric antigen receptor (CAR) T-cell therapies, and T-cell immune checkpoint inhibitors (including those targeting PD-1, PD-L1, CTLA-4, and newer targets such as TIM3 and STING). The current and future directions of these T-cell-based immunotherapies in the treatment landscape of AML are discussed in this review.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmad S Alotaibi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
44
|
Affiliation(s)
- Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital Edgbaston, Birmingham, United Kingdom.,CRCTU Clinical Trial Unit, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|