1
|
Islam MS, Akter F, Rahman MM, Rafe MR, Aziz MA, Parvin S, Mosaddek ASM, Islam MS, Akter MW. Impact of ALDH1A1 and NQO1 gene polymorphisms on the response and toxicity of chemotherapy in Bangladeshi breast cancer patients. Cancer Chemother Pharmacol 2024; 94:507-516. [PMID: 39012380 DOI: 10.1007/s00280-024-04700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE Cyclophosphamide, Epirubicin/Doxorubicin, 5-fluorouracil (CEF or CAF) chemotherapy has long been a standard first-line treatment for breast cancer. The genetic variations of enzymes that are responsible for the metabolism of these drugs have been linked to altered treatment response and toxicity. Two drug-metabolizing enzymes ALDH1A1 and NQO1 are critically involved in the pathways of CEF/CAF metabolism. This study aimed to evaluate the effect of ALDH1A1 (rs13959) and NQO1 (rs1800566) polymorphisms on treatment response and toxicities caused by adjuvant (ACT) and neoadjuvant chemotherapy (NACT) where CEF/CAF combination was used to treat Bangladeshi breast cancer patients. METHODS A total of 330 patients were recruited from various hospitals, with 150 receiving neoadjuvant chemotherapy and 180 receiving adjuvant chemotherapy. To extract genomic DNA, a non-enzymatic simple salting out approach was adopted. The polymerase chain reaction-restriction fragment length polymorphism method was used to detect genetic polymorphisms. Unconditional logistic regression was used to derive odds ratios (ORs) with 95% confidence intervals (CIs) to study the association between genetic polymorphisms and clinical outcome and toxicity. RESULTS A statistically significant association was observed between ALDH1A1 (rs13959) polymorphism and treatment response (TT vs. CC: aOR = 6.40, p = 0.007; recessive model: aOR = 6.38, p = 0.002; allele model: p = 0.032). Patients with the genotypes TT and CT + TT of the NQO1 (rs1800566) polymorphism had a significantly higher risk of toxicities such as anemia (aOR = 0.34, p = 0.006 and aOR = 0.58, p = 0.021), neutropenia (aOR = 0.42, p = 0.044 and aOR = 0.57, p = 0.027), leukopenia (aOR = 0.33, p = 0.010 and aOR = 0.46, p = 0.005), and gastrointestinal toxicity (aOR = 0.30, p = 0.02 and aOR = 0.38, p = 0.006) when compared to the wild CC genotype, while patients with the genotype CT had a significant association with gastrointestinal toxicity (aOR = 0.42, p = 0.02) and leukopenia (aOR = 0.52, p = 0.010). The TT and CT + TT genotypes of rs13959 had a significantly higher risk of anemia (aOR = 2.00, p = 0.037 and aOR = 1.68, p = 0.029). There was no significant association between rs1800566 polymorphism and treatment response. CONCLUSION Polymorphisms in ALDH1A1 (rs13959) and NQO1 (rs1800566) may be useful in predicting the probability of treatment response and adverse effects from CEF or CAF-based chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Md Siddiqul Islam
- Department of Pharmacy, Southeast University, Dhaka, 1213, Bangladesh
| | - Ferdowsi Akter
- Department of Pharmacy, Southeast University, Dhaka, 1213, Bangladesh
| | - Md Mosiqur Rahman
- Department of Pharmacy, Southeast University, Dhaka, 1213, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Salma Parvin
- QUEST Bangladesh - Biomedical Research Centre, Dhaka, 1230, Bangladesh
| | - Abu Syed Md Mosaddek
- QUEST Bangladesh - Biomedical Research Centre, Dhaka, 1230, Bangladesh
- Uttara Adhunik Medical College, Dhaka, 1230, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh.
| | - Md Wahid Akter
- Department of Radiation Oncology, National Institute of Cancer Research & Hospital (NICRH), Dhaka, 1212, Bangladesh
| |
Collapse
|
2
|
Ostios-Garcia L, Pérez DM, Castelo B, Herradón NH, Zamora P, Feliu J, Espinosa E. Classification of anticancer drugs: an update with FDA- and EMA-approved drugs. Cancer Metastasis Rev 2024:10.1007/s10555-024-10188-5. [PMID: 38965194 DOI: 10.1007/s10555-024-10188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/03/2024] [Indexed: 07/06/2024]
Abstract
Anticancer systemic therapy comprises a complex and growing group of drugs. Some of the new agents with novel mechanisms of action that have appeared are difficult to fit in the groups of classical chemotherapy, hormones, tyrosine-kinase inhibitors, and monoclonal antibodies. We propose a classification based on two levels of information: the site of action and the mechanism of action. Regarding the former, drugs can exert their action in the tumor cell, the tumor vasculature, the immune system, or the endocrine system. The mechanism of action refers to the molecular target.
Collapse
Affiliation(s)
| | | | - Beatriz Castelo
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Pilar Zamora
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Jaime Feliu
- Universidad Autónoma de Madrid, School of Medicine - Department of Medical Oncology, Hospital Universitario La Paz, Madrid - CIBERONC, Madrid, Spain
| | - Enrique Espinosa
- Universidad Autónoma de Madrid, School of Medicine - Department of Medical Oncology, Hospital Universitario La Paz, Madrid - CIBERONC, Madrid, Spain.
| |
Collapse
|
3
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
4
|
Wan D, Wu Y, Liu Y, Liu Y, Pan J. Advances in 2,3-Dimethylmaleic Anhydride (DMMA)-Modified Nanocarriers in Drug Delivery Systems. Pharmaceutics 2024; 16:809. [PMID: 38931929 PMCID: PMC11207803 DOI: 10.3390/pharmaceutics16060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer represents a significant threat to human health. The cells and tissues within the microenvironment of solid tumors exhibit complex and abnormal properties in comparison to healthy tissues. The efficacy of nanomedicines is inhibited by the presence of substantial and complex physical barriers in the tumor tissue. The latest generation of intelligent drug delivery systems, particularly nanomedicines capable of charge reversal, have shown promise in addressing this issue. These systems can transform their charge from negative to positive upon reaching the tumor site, thereby enhancing tumor penetration via transcytosis and promoting cell internalization by interacting with the negatively charged cell membranes. The modification of nanocarriers with 2,3-dimethylmaleic anhydride (DMMA) and its derivatives, which are responsive to weak acid stimulation, represents a significant advance in the field of charge-reversal nanomedicines. This review provides a comprehensive examination of the recent insights into DMMA-modified nanocarriers in drug delivery systems, with a particular focus on their potential in targeted therapeutics. It also discusses the synthesis of DMMA derivatives and their role in charge reversal, shell detachment, size shift, and ligand reactivation mechanisms, offering the prospect of a tailored, next-generation therapeutic approach to overcome the diverse challenges associated with cancer therapy.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Yujun Liu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| |
Collapse
|
5
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Sobsey CA, Mady N, Richard VR, LeBlanc A, Zakharov T, Borchers CH, Jagoe RT. Measurement of CYP1A2 and CYP3A4 activity by a simplified Geneva cocktail approach in a cohort of free-living individuals: a pilot study. Front Pharmacol 2024; 15:1232595. [PMID: 38370474 PMCID: PMC10869543 DOI: 10.3389/fphar.2024.1232595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction: The cytochrome P450 enzyme subfamilies, including CYP3A4 and CYP1A2, have a major role in metabolism of a range of drugs including several anti-cancer treatments. Many factors including environmental exposures, diet, diseaserelated systemic inflammation and certain genetic polymorphisms can impact the activity level of these enzymes. As a result, the net activity of each enzyme subfamily can vary widely between individuals and in the same individual over time. This variability has potential major implications for treatment efficacy and risk of drug toxicity, but currently no assays are available for routine use to guide clinical decision-making. Methods: To address this, a mass spectrometry-based method to measure activities of CYP3A4, CYP1A2 was adapted and tested in free-living participants. The assay results were compared with the predicted activity of each enzyme, based on a self-report tool capturing diet, medication, chronic disease state, and tobacco usage. In addition, a feasibility test was performed using a low-volume dried blood spots (DBS) on two different filter-paper supports, to determine if the same assay could be deployed without the need for repeated standard blood tests. Results: The results confirmed the methodology is safe and feasible to perform in free-living participants using midazolam and caffeine as test substrates for CYP3A4 and CYP1A2 respectively. Furthermore, though similar methods were previously shown to be compatible with the DBS format, the assay can also be performed successfully while incorporating glucuronidase treatment into the DBS approach. The measured CYP3A4 activity score varied 2.6-fold across participants and correlated with predicted activity score obtained with the self-report tool. The measured CYP1A2 activity varied 3.5-fold between participants but no correlation with predicted activity from the self-report tool was found. Discussion: The results confirm the wide variation in CYP activity between individuals and the important role of diet and other exposures in determining CYP3A4 activity. This methodology shows great potential and future cross-sectional and longitudinal studies using DBS are warranted to determine how best to use the assay results to guide drug treatments.
Collapse
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Noor Mady
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Andre LeBlanc
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Thomas Zakharov
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - R. Thomas Jagoe
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
- Department of Medicine, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
7
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Lima EN, Lamichhane S, KC P, Ferreira ES, Koul S, Koul HK. Tetrandrine for Targeting Therapy Resistance in Cancer. Curr Top Med Chem 2024; 24:1035-1049. [PMID: 38445699 PMCID: PMC11259026 DOI: 10.2174/0115680266282360240222062032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.
Collapse
Affiliation(s)
- Ellen Nogueira Lima
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Santosh Lamichhane
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pramod KC
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Elisa Silva Ferreira
- Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas, SP, Brazil
| | - Sweaty Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Hari K Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Biochemistry & Molecular Biology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
9
|
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis 2024; 11:148-175. [PMID: 37588226 PMCID: PMC10425757 DOI: 10.1016/j.gendis.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.
Collapse
Affiliation(s)
- Divya Ajmeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| | - Rajanna Ajumeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| |
Collapse
|
10
|
Sarkar S, Deyoung T, Ressler H, Chandler W. Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach. Epigenetics 2023; 18:2237761. [PMID: 37499114 PMCID: PMC10376921 DOI: 10.1080/15592294.2023.2237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours. We further discuss epigenetic switches, comprising both histone modifications and DNA methylation, and how they can differentially regulate transcription and expression of oncogenes and tumour suppressor genes. Next, we summarize the currently available therapies for both types of brain tumours, explaining the merits and failures leading to drug resistance. We analyse different mechanisms of drug resistance and the role of epigenetics in this process. We then provide a rationale for combination therapy, which includes epigenetic drugs. In the end, we postulate a concept which describes how a combination therapy could be initiated. The timing, doses, and order of individual drug regimens will depend on the individual case. This type of combination therapy will be part of a personalized medicine which will differ from patient to patient.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Division of Biotechnology, Quincy College, Quincy, MA, USA
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
- Division of Biology, STEM, RC College Boston, Boston, MA, USA
| | - Tara Deyoung
- Division of Biotechnology, Quincy College, Quincy, MA, USA
| | - Hope Ressler
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
| | | |
Collapse
|
11
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
12
|
Targeting mitochondria as a potential therapeutic strategy against chemoresistance in cancer. Biomed Pharmacother 2023; 160:114398. [PMID: 36773523 DOI: 10.1016/j.biopha.2023.114398] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The importance of mitochondria is not only limited to energy generation but also in several physical and chemical processes critical for cell survival. Mitochondria play an essential role in cellular apoptosis, calcium ion transport and cellular metabolism. Mutation in the nuclear and mitochondrial genes, altered oncogenes/tumor suppressor genes, and deregulated signalling for cell viability are major reasons for cancer progression and chemoresistance. The development of drug resistance in cancer patients is a major challenge in cancer treatment as the resistant cells are often more aggressive. The drug resistant cells of numerous cancer types exhibit the deregulation of mitochondrial function. The increased biogenesis of mitochondria and its dynamic alteration contribute to developing resistance. Further, a small subpopulation of cancer stem cells in the heterogeneous tumor is primarily responsible for chemoresistance and has an attribute of mitochondrial dysfunction. This review highlights the critical role of mitochondrial dysfunction in chemoresistance in cancer cells through the processes of apoptosis, autophagy/mitophagy, and cancer stemness. Mitochondria-targeted therapeutic strategies might help reduce cancer progression and chemoresistance induced by various cancer drugs.
Collapse
|
13
|
Induction of Drug-Resistance and Production of a Culture Medium Able to Induce Drug-Resistance in Vinblastine Untreated Murine Myeloma Cells. Molecules 2023; 28:molecules28052051. [PMID: 36903299 PMCID: PMC10004247 DOI: 10.3390/molecules28052051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer therapies use different compounds of synthetic and natural origin. However, despite some positive results, relapses are common, as standard chemotherapy regimens are not fully capable of completely eradicating cancer stem cells. While vinblastine is a common chemotherapeutic agent in the treatment of blood cancers, the development of vinblastine resistance is often observed. Here, we performed cell biology and metabolomics studies to investigate the mechanisms of vinblastine resistance in P3X63Ag8.653 murine myeloma cells. Treatment with low doses of vinblastine in cell media led to the selection of vinblastine-resistant cells and the acquisition of such resistance in previously untreated, murine myeloma cells in culture. To determine the mechanistic basis of this observation, we performed metabolomic analyses of resistant cells and resistant drug-induced cells in a steady state, or incubation with stable isotope-labeled tracers, namely, 13C 15N-amino acids. Taken together, these results indicate that altered amino acid uptake and metabolism could contribute to the acquisition of vinblastine resistance in blood cancer cells. These results will be useful for further research on human cell models.
Collapse
|
14
|
Dovrou A, Bei E, Sfakianakis S, Marias K, Papanikolaou N, Zervakis M. Synergies of Radiomics and Transcriptomics in Lung Cancer Diagnosis: A Pilot Study. Diagnostics (Basel) 2023; 13:738. [PMID: 36832225 PMCID: PMC9955510 DOI: 10.3390/diagnostics13040738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Radiotranscriptomics is an emerging field that aims to investigate the relationships between the radiomic features extracted from medical images and gene expression profiles that contribute in the diagnosis, treatment planning, and prognosis of cancer. This study proposes a methodological framework for the investigation of these associations with application on non-small-cell lung cancer (NSCLC). Six publicly available NSCLC datasets with transcriptomics data were used to derive and validate a transcriptomic signature for its ability to differentiate between cancer and non-malignant lung tissue. A publicly available dataset of 24 NSCLC-diagnosed patients, with both transcriptomic and imaging data, was used for the joint radiotranscriptomic analysis. For each patient, 749 Computed Tomography (CT) radiomic features were extracted and the corresponding transcriptomics data were provided through DNA microarrays. The radiomic features were clustered using the iterative K-means algorithm resulting in 77 homogeneous clusters, represented by meta-radiomic features. The most significant differentially expressed genes (DEGs) were selected by performing Significance Analysis of Microarrays (SAM) and 2-fold change. The interactions among the CT imaging features and the selected DEGs were investigated using SAM and a Spearman rank correlation test with a False Discovery Rate (FDR) of 5%, leading to the extraction of 73 DEGs significantly correlated with radiomic features. These genes were used to produce predictive models of the meta-radiomics features, defined as p-metaomics features, by performing Lasso regression. Of the 77 meta-radiomic features, 51 can be modeled in terms of the transcriptomic signature. These significant radiotranscriptomics relationships form a reliable basis to biologically justify the radiomics features extracted from anatomic imaging modalities. Thus, the biological value of these radiomic features was justified via enrichment analysis on their transcriptomics-based regression models, revealing closely associated biological processes and pathways. Overall, the proposed methodological framework provides joint radiotranscriptomics markers and models to support the connection and complementarities between the transcriptome and the phenotype in cancer, as demonstrated in the case of NSCLC.
Collapse
Affiliation(s)
- Aikaterini Dovrou
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering (ECE), Technical University of Crete, GR-73100 Chania, Greece
| | - Ekaterini Bei
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering (ECE), Technical University of Crete, GR-73100 Chania, Greece
| | - Stelios Sfakianakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece
| | - Nickolas Papanikolaou
- Computational Clinical Imaging Group, Champalimaud Clinical Centre, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Michalis Zervakis
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering (ECE), Technical University of Crete, GR-73100 Chania, Greece
| |
Collapse
|
15
|
Zeng Z, Zheng W, Hou P. The role of drug-metabolizing enzymes in synthetic lethality of cancer. Pharmacol Ther 2022; 240:108219. [PMID: 35636517 DOI: 10.1016/j.pharmthera.2022.108219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-metabolizing enzymes (DMEs) have shown increasing importance in anticancer therapy. It is not only due to their effect on activation or deactivation of anticancer drugs, but also because of their extensive connections with pathological and biochemistry changes during tumorigenesis. Meanwhile, it has become more accessible to discovery anticancer drugs that selectively targeted cancer cells with the development of synthetic lethal screen technology. Synthetic lethal strategy makes use of unique genetic markers that different cancer cells from normal tissues to discovery anticancer agents. Dysregulation of DMEs has been found in various cancers, making them promising candidates for synthetic lethal strategy. In this review, we will systematically discuss about the role of DMEs in tumor progression, the application of synthetic lethality strategy in drug discovery, and a link between DMEs and synthetic lethal of cancer.
Collapse
Affiliation(s)
- Zekun Zeng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wenfang Zheng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
16
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
18
|
A Face-To-Face Comparison of Tumor Chicken Chorioallantoic Membrane (TCAM) In Ovo with Murine Models for Early Evaluation of Cancer Therapy and Early Drug Toxicity. Cancers (Basel) 2022; 14:cancers14143548. [PMID: 35884608 PMCID: PMC9325108 DOI: 10.3390/cancers14143548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022] Open
Abstract
Ethical considerations, cost, and time constraints have highlighted the need to develop alternatives to rodent in vivo models for evaluating drug candidates for cancer. The tumor chicken chorioallantoic membrane (TCAM) model provides an affordable and fast assay that permits direct visualization of tumor progression. Tumors from multiple species including rodents and human cell lines can be engrafted. In this study, we engrafted several tumor models onto the CAM and demonstrated that the TCAM model is an alternative to mouse models for preliminary cancer drug efficacy testing and toxicity analysis. Tumor cells were deposited onto CAM, and then grown for up to an additional 10 days before chronic treatments were administered. The drug response of anticancer therapies was screened in 12 tumor cell lines including glioblastoma, melanoma, breast, prostate, colorectal, liver, and lung cancer. Tumor-bearing eggs and tumor-bearing mice had a similar chemotherapy response (cisplatin and temozolomide) in four human and mouse tumor models. We also demonstrated that lethality observed in chicken embryos following chemotherapies such as cisplatin and cyclophosphamide were associated with corresponding side-effects in mice with body weight loss. According to our work, TCAM represents a relevant alternative model to mice in early preclinical oncology screening, providing insights for both the efficacy and the toxicity of anticancer drugs.
Collapse
|
19
|
Vasilogianni AM, Al-Majdoub ZM, Achour B, Annie Peters S, Barber J, Rostami-Hodjegan A. Quantitative Proteomics of Hepatic Drug-Metabolizing Enzymes and Transporters in Patients with Colorectal Cancer Metastasis. Clin Pharmacol Ther 2022; 112:699-710. [PMID: 35510337 PMCID: PMC9540503 DOI: 10.1002/cpt.2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
The impact of liver cancer metastasis on protein abundance of 22 drug‐metabolizing enzymes (DMEs) and 25 transporters was investigated using liquid chromatography‐tandem accurate mass spectrometry targeted proteomics. Microsomes were prepared from liver tissue taken from 15 healthy individuals and 18 patients with cancer (2 primary and 16 metastatic). Patient samples included tumors and matching histologically normal tissue. The levels of cytochrome P450 (CYPs 2B6, 2D6, 2E1, 3A4, and 3A5) and uridine 5′‐diphospho‐glucuronosyltransferases (UGTs 1A1, 1A6, 1A9, 2B15, 2B4, and 2B7) were lower in histologically normal tissue from patients relative to healthy controls (up to 6.6‐fold) and decreased further in tumors (up to 21‐fold for CYPs and 58‐fold for UGTs). BSEP and MRPs were also suppressed in histologically normal (up to 3.1‐fold) and tumorous tissue (up to 6.3‐fold) relative to healthy individuals. Abundance of OCT3, OAT2, OAT7, and OATPs followed similar trends (up to 2.9‐fold lower in histologically normal tissue and up to 16‐fold lower in tumors). Abundance of NTCP and OCT1 was also lower (up to 9‐fold). Interestingly, monocarboxylate transporter MCT1 was more abundant (3.3‐fold) in tumors, the only protein target to show this pattern. These perturbations could be attributed to inflammation. Interindividual variability was substantially higher in patients with cancer. Proteomics‐informed physiologically‐based pharmacokinetic (PBPK) models of 50 drugs with different attributes and hepatic extraction ratios (Simcyp) showed substantially lower drug clearance with cancer‐specific parameters compared with default parameters. In conclusion, this study provides values for decreased abundance of DMEs and transporters in liver cancer, which enables using population‐specific abundance for these patients in PBPK modeling.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Darmstadt, Germany
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK.,Certara Inc. (Simcyp Division), Sheffield, UK
| |
Collapse
|
20
|
Torres-Zárate C, Vences-Mejía A, Espinosa-Aguirre JJ, Díaz-Díaz E, Palacios-Acosta JM, Cárdenas-Cardós R, Hernández-Arrazola D, Shalkow-Klincovstein J, Jurado RR, Santes-Palacios R, Molina-Ortiz D. Expression of Cytochrome P450 Enzymes in Pediatric Non-Rhabdomyosarcoma Soft Tissue Sarcomas: Possible Role in Carcinogenesis and Treatment Response. Int J Toxicol 2022; 41:234-242. [PMID: 35437033 DOI: 10.1177/10915818221085909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 5-year relative survival rate estimate of treated patients with non-rhabdomyosarcoma soft tissue sarcomas (NRSTS) is ∼50% since they generally present with tumor progression, relapse, metastasis, and/or chemoresistance. The expression of cytochrome P450 (CYP) enzymes in malignancies can affect the pharmacology of drugs commonly used in chemotherapy or confer susceptibility to development of chemical carcinogenesis; in addition, their specific tumor expression can be used as a therapeutic target. Using qPCR and Western blot assays, the expression of CYP1B1, CYP2E1, CYP3A4, and CYP3A5 were analyzed in a cohort of tumor tissue paired with non-malignant adjacent tissue of patients with NRSTS. The mRNA and protein expression of CYP1B1, CYP2E1, and CYP3A4 were significantly increased in tumor tissue. We propose that the expression of these isoforms is related to carcinogenesis and chemoresistance frequently observed in these neoplasms.
Collapse
Affiliation(s)
- Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Araceli Vences-Mejía
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Eduardo Díaz-Díaz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | | | | | - Rodolfo R Jurado
- Departamento de Anatomía Patológica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Mexico City, Mexico
| |
Collapse
|
21
|
Vujatović TB, Vitorović-Todorović MD, Cvijetić I, Vasović T, Nikolić MR, Novaković I, Bjelogrlić S. Novel derivatives of aroylacrylic acid phenylamides as inducers of apoptosis through the ROS-mediated pathway in several cancer cell lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhang W, Liu Z, Yang Z, Feng C, Zhou X, Tu C, Li Z. MTHFR Polymorphism Is Associated With Severe Methotrexate-Induced Toxicity in Osteosarcoma Treatment. Front Oncol 2022; 11:781386. [PMID: 34976820 PMCID: PMC8714641 DOI: 10.3389/fonc.2021.781386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Background Previous studies have revealed the critical role of methylene tetrahydrofolate reductase (MTHFR) polymorphisms in response to high-dose methotrexate (MTX)-induced toxicity in osteosarcoma patients. However, the conclusions remain controversial. In this setting, we performed a meta-analysis to determine their association more precisely. Method Eligible studies were searched and screened in PubMed, Web of Science, Cochrane Library, Clinical-Trials.gov, Embase, and China National Knowledge Infrastructure (CNKI) following specific inclusion and exclusion criteria. The required information was retrieved and collected for subsequent meta-analysis. Association between MTHFR polymorphism and MTX toxicity was evaluated by odds ratios (ORs). Results Seven studies containing 585 patients were enrolled and analyzed in this meta-analysis. Overall, the MTX related grade 3-4 liver toxicity was significantly associated with MTHFR rs1801133 allele (T vs. C: OR=1.61, 95%CI=1.07-2.42, P=0.024), homozygote (TT vs. CC: OR=2.11, 95%CI=1.06-4.21, P=0.011), and dominant genetic model (TT/TC vs. CC: OR=3.15, 95%CI=1.30-7.60, P=0.035) in Asian population. Meanwhile, close associations between MTX mediated grade 3-4 mucositis and MTHFR rs1801133 polymorphism were identified in allele contrast (T vs. C: OR=2.28, 95%CI=1.49-3.50, P<0.001), homozygote comparison (TT vs. CC: OR=4.07, 95%CI=1.76-9.38, P=0.001), heterozygote comparison (TC vs. CC: OR=2.55, 95%CI=1.20-5.42, P=0.015), recessive genetic model (TT vs. TC/CC: OR=2.09, 95%CI=1.19-3.67, P=0.010), and dominant genetic model (TT/TC vs. CC: OR=2.97, 95%CI=1.48-5.96, P=0.002). Additionally, kidney toxicity was corelated with the heterozygote comparison (TC vs. CC: OR=2.63, 95%CI=1.31-5.29, P=0.007) of rs1801133 polymorphism. Conclusion The MTHFR rs1801133 polymorphism was significantly associated with severer liver toxicity induced by high-dose MTX treatment in the Asian population. In the meantime, patients with MTHFR rs1801133 polymorphism were predisposed to MTX- related mucositis.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhimin Yang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowen Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Craig DJ, Bailey MM, Noe OB, Williams KK, Stanbery L, Hamouda DM, Nemunaitis JJ. Subclonal landscape of cancer drives resistance to immune therapy. Cancer Treat Res Commun 2022; 30:100507. [PMID: 35007928 DOI: 10.1016/j.ctarc.2021.100507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Tumor mutation burden (TMB) is often used as a biomarker for immunogenicity and prerequisite for immune checkpoint inhibitor (ICI) therapy. However, it is becoming increasingly evident that not all tumors with high TMB respond to ICIs as expected. It has been shown that the ability of T-cells to infiltrate the tumor microenvironment and elicit a specific immune response is dependent not only on the TMB, but also on intra-tumor heterogeneity and the fraction of low-frequency subclonal mutations that make up the tumor. High intra-tumor heterogeneity leads to inefficient recognition of tumor neoantigens by T-cells due to their diluted frequency and spatial heterogeneity. Clinical studies have shown that tumors with a high degree of intra-tumor heterogeneity respond poorly to ICI therapy, and previous cytotoxic treatment may increase the intra-tumor heterogeneity and render second-line ICI therapy less effective. This paper reviews the role of ICI therapy when following chemotherapy or radiation to determine if they may be better suited as first-line therapy in patients with high TMB, low intra-tumor heterogeneity, and high PD-1, PD-L1, or CTLA-4 expression.
Collapse
Affiliation(s)
- Daniel J Craig
- University of Toledo Medical Center, Toledo, OH, 43614, USA
| | | | - Olivia B Noe
- University of Toledo Medical Center, Toledo, OH, 43614, USA
| | | | | | | | | |
Collapse
|
24
|
Liu S, Shen C, Qian C, Wang J, Wang Z, Tang X, Zhang Q, Pan C, Ye W. A Rapid Dual-Responsive Releasing Nano-Carrier by Decomposing the Copolymer and Reversing the Core Dissolution. Front Bioeng Biotechnol 2021; 9:784838. [PMID: 34805131 PMCID: PMC8599131 DOI: 10.3389/fbioe.2021.784838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The accumulation of nanotechnology-based drugs has been realized in various ways. However, the concentration of drugs encapsulated by nanomaterials is not equal to the concentration of effective drugs; often, the drugs become effective only when they are released from the nanomaterials as free drugs. This means only when the drugs are rapidly released after the accumulated drug-encapsulating nanomaterials can they truly achieve the purpose of increasing the concentration of drugs in the tumor. Therefore, we herein report a dual-response nano-carrier of glutathione and acid to achieve the rapid release of encapsulated drug and increase the effective drug concentration in the tumor. The nano-carrier was constructed using a dual-responsive amphiphilic copolymer, composed of polyethylene glycol and hydrophobic acetylated dextran and connected by a disulfide bond. In the tumor microenvironment, disulfide bonds could be biodegraded by glutathione that is overexpressed in the tumor, exposing the core of nano-carrier composed of acetylated dextran. Then the acidic environment would induce the deacetylation of acetylated dextran into water-soluble dextran. In this way, the nano-carrier will degrade quickly, realizing the purpose of rapid drug release. The results showed that the drug release rate of dual-responsive nano-carrier was much higher than that of glutathione or acid-responsive nano-carrier alone. Furthermore, both in vitro and in vivo experiments confirmed that dual-responsive nano-carrier possessed more efficient anti-tumor effects. Therefore, we believe that dual-responsive nano-carriers have better clinical application prospects.
Collapse
Affiliation(s)
- Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Can Shen
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Cheng Qian
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Jianquan Wang
- College of Engineering and Applied Sciences, Institute of Materials Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China
| | - Zhihao Wang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xuecong Tang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Qiuyang Zhang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Changjiang Pan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
25
|
Machado CB, de Pinho Pessoa FMC, da Silva EL, da Costa Pantoja L, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Montenegro RC, Burbano RMR, Khayat AS, Moreira-Nunes CA. Kinase Inhibition in Relapsed/Refractory Leukemia and Lymphoma Settings: Recent Prospects into Clinical Investigations. Pharmaceutics 2021; 13:1604. [PMID: 34683897 PMCID: PMC8540545 DOI: 10.3390/pharmaceutics13101604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is still a major barrier to life expectancy increase worldwide, and hematologic neoplasms represent a relevant percentage of cancer incidence rates. Tumor dependence of continuous proliferative signals mediated through protein kinases overexpression instigated increased strategies of kinase inhibition in the oncologic practice over the last couple decades, and in this review, we focused our discussion on relevant clinical trials of the past five years that investigated kinase inhibitor (KI) usage in patients afflicted with relapsed/refractory (R/R) hematologic malignancies as well as in the pharmacological characteristics of available KIs and the dissertation about traditional chemotherapy treatment approaches and its hindrances. A trend towards investigations on KI usage for the treatment of chronic lymphoid leukemia and acute myeloid leukemia in R/R settings was observed, and it likely reflects the existence of already established treatment protocols for chronic myeloid leukemia and acute lymphoid leukemia patient cohorts. Overall, regimens of KI treatment are clinically manageable, and results are especially effective when allied with tumor genetic profiles, giving rise to encouraging future prospects of an era where chemotherapy-free treatment regimens are a reality for many oncologic patients.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, Brazil;
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Rommel Mário Rodriguez Burbano
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - André Salim Khayat
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| |
Collapse
|
26
|
Roles of CYP3A4, CYP3A5 and CYP2C8 drug-metabolizing enzymes in cellular cytostatic resistance. Chem Biol Interact 2021; 340:109448. [PMID: 33775687 DOI: 10.1016/j.cbi.2021.109448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 11/24/2022]
Abstract
Metabolic deactivation by cytochrome P450 (CYP) is considered a potential mechanism of anticancer drug resistance. However, this hypothesis is predominantly based on indirect pieces of evidence and/or is influenced by interfering factors such as the use of multienzymatic models. Thus, an experimental approach for its verification is needed. In the present work, we employed HepG2 cells transduced with CYP enzymes involved in docetaxel, paclitaxel and vincristine metabolism to provide mechanistic evidence on their possible roles in resistance to these chemotherapeutic agents. Using MTT proliferation tests, we showed that overexpression of CYP3A4 resulted in decreased antiproliferative activity of 1 μM docetaxel (by 11.2, 23.2 and 22.9% at 24, 48 and 72 h intervals, respectively), while the sensitivity of CYP3A4-transduced cells was restored by co-administration of ketoconazole. Paclitaxel exhibited differential efficacy in CYP2C8- and empty vector-transduced cells (significant differences between 10.9 and 24.4% for 0.01, 0.1 and 1 μM concentrations), but neither montelukast nor clotrimazole was capable of affecting this asymmetry. Finally, the pharmacological activity of vincristine was not influenced by CYP3A4 or CYP3A5 overexpression. In the follow-up caspase activation assays, docetaxel was confirmed to be a victim of CYP3A4-mediated resistance, which is, at least partly, brought by impaired activation of caspases 3/7, 8 and 9. In summary, our data demonstrate that CYP3A4-mediated metabolic deactivation of docetaxel might represent a significant mechanism of pharmacokinetic resistance to this drug. In contrast, the possible role of CYPs in resistance to paclitaxel and vincristine has been disconfirmed. Importantly, the expression of CYP3A4 in HepG2_CYP3A4 cells is comparable to that in primary hepatocytes and HepaRG cells, which suggests that our results might be relevant for in vivo conditions, e.g., for hepatocellular carcinoma. Thus, our data may serve as a valuable in vitro background for future in vivo studies exploring the area of intratumoural metabolism-based drug resistance.
Collapse
|
27
|
Raju B, Choudhary S, Narendra G, Verma H, Silakari O. Molecular modeling approaches to address drug-metabolizing enzymes (DMEs) mediated chemoresistance: a review. Drug Metab Rev 2021; 53:45-75. [PMID: 33535824 DOI: 10.1080/03602532.2021.1874406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Resistance against clinically approved anticancer drugs is the main roadblock in cancer treatment. Drug metabolizing enzymes (DMEs) that are capable of metabolizing a variety of xenobiotic get overexpressed in malignant cells, therefore, catalyzing drug inactivation. As evident from the literature reports, the levels of DMEs increase in cancer cells that ultimately lead to drug inactivation followed by drug resistance. To puzzle out this issue, several strategies inclusive of analog designing, prodrug designing, and inhibitor designing have been forged. On that front, the implementation of computational tools can be considered a fascinating approach to address the problem of chemoresistance. Various research groups have adopted different molecular modeling tools for the investigation of DMEs mediated toxicity problems. However, the utilization of these in-silico tools in maneuvering the DME mediated chemoresistance is least considered and yet to be explored. These tools can be employed in the designing of such chemotherapeutic agents that are devoid of the resistance problem. The current review canvasses various molecular modeling approaches that can be implemented to address this issue. Special focus was laid on the development of specific inhibitors of DMEs. Additionally, the strategies to bypass the DMEs mediated drug metabolism were also contemplated in this report that includes analogs and pro-drugs designing. Different strategies discussed in the review will be beneficial in designing novel chemotherapeutic agents that depreciate the resistance problem.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
28
|
Liu J, Wang S, Wang C, Kong X, Sun P. Prognostic value of using glucosylceramide synthase and cytochrome P450 family 1 subfamily A1 expression levels for patients with triple-negative breast cancer following neoadjuvant chemotherapy. Exp Ther Med 2021; 21:247. [PMID: 33603855 DOI: 10.3892/etm.2021.9678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) has been considered to be the preferred treatment option for early operable triple-negative breast cancer (TNBC). However, resistance to drugs remains to be the barrier to the efficacy of NACT. Glucosylceramide synthase (GCS) and cytochrome P450 family 1 subfamily A1 (CYP1A1) have been previously associated with drug resistance in breast cancer. The present study aimed to explore whether the expression levels of GCS and/or CYP1A1 are associated with the prognosis of TNBC after NACT. Immunohistochemistry was used to detect and measure GCS and CYP1A1 expression. Associations between GCS or CYP1A1 expression and the clinicopathological characteristics, pathological complete response (pCR), clinical complete response (cCR) and disease-free survival (DFS) were analyzed. GCS expression was found to be associated with tumor size (P=0.021) and TNM staging (P=0.042), whilst CYP1A1 expression was associated with lymph node metastasis (P = 0.026) and TNM staging (P=0.034). The expression levels of GCS (P=0.024) and CYP1A1 (P=0.027) were upregulated after NACT. GCS and CYP1A1 expression were positively correlated (P=0.003; r=0.327). No difference was observed between the GCS+ (P=0.188) or CYP1A1+ group (P=0.073) and the GCS- or CYP1A1- group in terms of pCR. However, compared with that in the GCS+CYP1A1+ group, the pCR was markedly increased in the GCS-CYP1A1- group (P=0.031). The cCR was lower in the GCS+ (P=0.021) and CYP1A1+ groups (P=0.016) compared with in the GCS- or CYP1A1- group. The DFS rate (57.9 vs. 65.4%; P=0.049) was lower in the GCS+CYP1A1+ group compared with that in the GCS-CYP1A1- group. However, there was no statistical significance after P-value was adjusted for multiple comparisons using Bonferroni correction. In conclusion, co-expression of GCS and CYP1A1 was associated with pCR and DFS in TNBC, which may serve a role in the prediction of the prognosis of patients with TNBC following treatment with NACT.
Collapse
Affiliation(s)
- Jiannan Liu
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Shuhua Wang
- Department of Medical Record Information, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Congcong Wang
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiangshuo Kong
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
29
|
Kaipa JM, Starkuviene V, Erfle H, Eils R, Gladilin E. Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells. PeerJ 2020; 8:e10373. [PMID: 33362957 PMCID: PMC7749657 DOI: 10.7717/peerj.10373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
Collapse
Affiliation(s)
- Jagan Mohan Kaipa
- Helmholtz Center for Infection Research, Braunschweig, Germany.,BioQuant, University Heidelberg, Heidelberg, Germany.,Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, University Heidelberg, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Science Center, Vilnius, Lithuania
| | - Holger Erfle
- BioQuant, University Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Evgeny Gladilin
- BioQuant, University Heidelberg, Heidelberg, Germany.,Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany.,Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
30
|
Wu S, Tseng IC, Huang WC, Su CW, Lai YH, Lin C, Lee AYL, Kuo CY, Su LY, Lee MC, Hsu TC, Yu CH. Establishment of an Immunocompetent Metastasis Rat Model with Hepatocyte Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12123721. [PMID: 33322441 PMCID: PMC7764036 DOI: 10.3390/cancers12123721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality. Cancer stem cells (CSCs) are responsible for the maintenance, metastasis, and relapse of various tumors. The effects of CSCs on the tumorigenesis of HCC are still not fully understood, however. We have recently established two new rat HCC cell lines HTC and TW-1, which we isolated from diethylnitrosamine-induced rat liver cancer. Results showed that TW-1 expressed the genetic markers of CSCs, including CD133, GSTP1, CD44, CD90, and EpCAM. Moreover, TW-1 showed higher tolerance to sorafenib than HTC did. In addition, tumorigenesis and metastasis were observed in nude mice and wild-type rats with TW-1 xenografts. Finally, we combined highly expressed genes in TW-1/HTC with well-known biomarkers from recent HCC studies to predict HCC-related biomarkers and able to identify HCC with AUCs > 0.9 after machine learning. These results indicated that TW-1 was a novel rat CSC line, and the mice or rat models we established with TW-1 has great potential on HCC studies in the future.
Collapse
Affiliation(s)
- Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| | - I-Chieh Tseng
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Wen-Cheng Huang
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Cheng-Wen Su
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Che Lin
- Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Li-Yu Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taipei 30013, Taiwan;
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| |
Collapse
|
31
|
Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Chen W, Sun Z, Lu L. Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2020; 60:5626-5643. [PMID: 32096328 DOI: 10.1002/anie.201914511] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Severe side effects and poor therapeutic efficacy are the main drawbacks of current anticancer drugs. These problems can be mitigated by targeting, but the targeting efficacy of current drugs is poor and urgently needs improvement. Taking this into consideration, this Review first summarizes the current targeting strategies for cancer therapy in terms of cancer tissue and organelles. Then, we analyse the systematic targeting of anticancer drugs and conclude that a typical journey for a targeted drug administered by intravenous injection is a CTIO cascade of at least four steps. Furthermore, to ensure high overall targeting efficacy, the properties of a targeting drug needed in each step are further analysed, and some guidelines for structure optimization to obtain effective targeting drugs are offered. Finally, some viewpoints highlighting the crucial problems and potential challenges of future research on targeted cancer therapy are presented. This review could actively promote the development of precision medicine against cancer.
Collapse
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| |
Collapse
|
33
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
34
|
Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol 2020; 36:517-536. [PMID: 32875398 DOI: 10.1007/s10565-020-09553-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a complex phenomenon responsible for failure in response to chemotherapy agents and more than 90% of deaths in cancer patients. MicroRNAs (miRNAs), as a subgroup of non-coding RNAs with lengths between 21 and 25 nucleotides, are involved in various cancer processes like chemoresistance via interacting with their target mRNAs and suppressing their expression. Autophagy is a greatly conserved procedure involving the lysosomal degradation of cytoplasmic contents and organelles to deal with environmental stresses like hypoxia and starvation. Autophagy contributes to response to chemotherapy agents: autophagy can act as a protective mechanism for mediating the resistance in response to chemotherapy or can induce autophagic cell death and mediate the sensitivity to chemotherapy. On the other hand, one of the processes targeted by microRNAs in the regulation of chemoresistance is autophagy. Hence, we studied the literatures on chemoresistance mechanisms, the miRNAs' role in cancer, and the miRNAs' role in chemoresistance by modulating autophagy. Graphical Abstract.
Collapse
|
35
|
Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathol Res Pract 2020; 216:153158. [PMID: 32829107 DOI: 10.1016/j.prp.2020.153158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
Abstract
Ovarian cancer, as one of the most common types of gynecological malignancies, has an increasing rate of incidence worldwide. Despite huge amounts of recent efforts in designing novel therapeutic strategies for complete removal of tumors and increasing overall survival of patients, chemotherapy is still the preferred therapy for ovarian cancer. However, chemotherapy is also challenged by development of drug resistance. Therefore, elucidating the underlying mechanisms of drug reissuance is an urgent need in ovarian cancer. Numerous studies have shown the implication of the Notch signaling pathway in the development of various human malignancies. Therefore, this study will provide a brief overview of the published evidence in support of Notch targeting in reverting multidrug resistance as a safer and novel approach for the improvement of ovarian cancer treatment.
Collapse
|
36
|
Shah K, Rawal RM. Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities. Curr Drug Metab 2020; 20:1114-1131. [PMID: 31902353 DOI: 10.2174/1389200221666200103111539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a complex disease that has the ability to develop resistance to traditional therapies. The current chemotherapeutic treatment has become increasingly sophisticated, yet it is not 100% effective against disseminated tumours. Anticancer drugs resistance is an intricate process that ascends from modifications in the drug targets suggesting the need for better targeted therapies in the therapeutic arsenal. Advances in the modern techniques such as DNA microarray, proteomics along with the development of newer targeted drug therapies might provide better strategies to overcome drug resistance. This drug resistance in tumours can be attributed to an individual's genetic differences, especially in tumoral somatic cells but acquired drug resistance is due to different mechanisms, such as cell death inhibition (apoptosis suppression) altered expression of drug transporters, alteration in drug metabolism epigenetic and drug targets, enhancing DNA repair and gene amplification. This review also focusses on the epigenetic modifications and microRNAs, which induce drug resistance and contributes to the formation of tumour progenitor cells that are not destroyed by conventional cancer therapies. Lastly, this review highlights different means to prevent the formation of drug resistant tumours and provides future directions for better treatment of these resistant tumours.
Collapse
Affiliation(s)
- Kanisha Shah
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
37
|
Kan M, Imaoka H, Watanabe K, Sasaki M, Takahashi H, Hashimoto Y, Ohno I, Mitsunaga S, Umemoto K, Kimura G, Suzuki Y, Eguchi H, Otsuru T, Goda K, Ikeda M. Chemotherapy-induced neutropenia as a prognostic factor in patients with pancreatic cancer treated with gemcitabine plus nab-paclitaxel: a retrospective cohort study. Cancer Chemother Pharmacol 2020; 86:203-210. [PMID: 32632515 DOI: 10.1007/s00280-020-04110-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Chemotherapy-induced neutropenia (CIN) is a common adverse event of chemotherapy. Several reports have suggested that CIN could be an important prognostic factor in chemotherapy of various cancers. However, whether CIN is a prognostic factor in unresectable pancreatic cancer (PC) treated with gemcitabine plus nab-paclitaxel (GnP) is unknown. The primary endpoint of this study was to compare overall survival (OS) between patients with severe CIN (grade ≥ 3) and those with absent/mild CIN (grade ≤ 2) in unresectable PC cases treated with GnP as first-line chemotherapy. METHODS A retrospective, cohort study was conducted using data from a computerized database. A total of 290 patients with pathologically confirmed PC treated with GnP as first-line chemotherapy were analyzed (severe CIN: ≥ grade 3, n = 174; absent/mild CIN: ≤ grade 2, n = 116). RESULTS The median OS was longer in the severe CIN group than in the absent/mild CIN group (19.2 months vs 11.3 months, respectively; P < 0.001). After adjustment, severe CIN was an independent predictive factor for OS (hazard ratio [HR], 0.53; 95% confidence interval [CI], 0.38-0.74; P < 0.001). After adjustment by time-varying covariates, severe CIN was still a significant prognostic factor for OS (HR, 0.79; 95% CI 0.69-0.91, P = 0.001). CONCLUSION The present results show that severe CIN is an independent and useful prognostic factor in PC patients treated with GnP.
Collapse
Affiliation(s)
- Motoyasu Kan
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Hiroshi Imaoka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan.
| | - Kazuo Watanabe
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Mitsuhito Sasaki
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Hideaki Takahashi
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Yusuke Hashimoto
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Izumi Ohno
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Shuichi Mitsunaga
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Kumiko Umemoto
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Gen Kimura
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Yuko Suzuki
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Hiroki Eguchi
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Toru Otsuru
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Kyosuke Goda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan
| |
Collapse
|
38
|
Hattinger CM, Patrizio MP, Luppi S, Serra M. Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact. Int J Mol Sci 2020; 21:E4659. [PMID: 32629971 PMCID: PMC7369799 DOI: 10.3390/ijms21134659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.
Collapse
Affiliation(s)
| | | | | | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, 40136 Bologna, Italy; (C.M.H.); (M.P.P.); (S.L.)
| |
Collapse
|
39
|
Shafi S, Khan S, Hoda F, Fayaz F, Singh A, Khan MA, Ali R, Pottoo FH, Tariq S, Najmi AK. Decoding Novel Mechanisms and Emerging Therapeutic Strategies in Breast Cancer Resistance. Curr Drug Metab 2020; 21:199-210. [DOI: 10.2174/1389200221666200303124946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC), an intricate and highly heterogeneous disorder, has presently afflicted 2.09 million females globally. Chemoresistance remains a paramount challenge in the treatment of BC. Owing to its assorted nature, the chemoresistant mechanisms of BC still need intensive research. Accumulating evidence suggests that abnormalities related to the biogenesis of cancer stem cells (CSCs) and microRNAs (miRNAs) are associated with BC progression and chemoresistance. The presently available interventions are inadequate to target chemoresistance, therefore more efficient alternatives are urgently needed to improvise existing therapeutic regimens. A myriad of strategies is being explored, such as immunotherapy, gene therapy, and combination treatment to surmount chemoresistance. Additionally, nanoparticles as chemotherapeutic carriers put forward the options to encapsulate numerous drugs, alone as well as in combination for cancer theranostics. This review summarizes the chemoresistance mechanisms of miRNAs and CSCs as well as the most recently documented therapeutic approaches for the treatment of chemoresistance in BC. By unraveling the underpinning mechanism of BC chemoresistance, researchers could possibly develop more efficient treatment strategies towards BC.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sana Tariq
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
40
|
Xu S, Gong Y, Yin Y, Xing H, Zhang N. The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed Pharmacother 2020; 127:110141. [PMID: 32334375 DOI: 10.1016/j.biopha.2020.110141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a bone tumor prevalent in children and young adults. LncRNAs are a family of non-protein-coding transcripts longer than 200 nucleotides. The tumor-related pathological functions of lncRNAs include proliferation, migration, and chemotherapy resistance, all of which have been widely acknowledged in research on osteosarcoma. In addition, compelling evidence suggests that lncRNAs could serve as diagnostic indicators, prognostic biomarkers, and targets for disease treatment. In this review, we systematically summarize how lncRNAs regulate tumorigenesis, invasion and therapeutic resistance. By deepening our knowledge of the relationship between lncRNAs and osteosarcoma, we hope to translate research findings into clinical applications as soon as possible.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Yin
- Department of Gastroenterology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Hongyuan Xing
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ning Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
41
|
Keyvani-Ghamsari S, Khorsandi K, Gul A. Curcumin effect on cancer cells' multidrug resistance: An update. Phytother Res 2020; 34:2534-2556. [PMID: 32307747 DOI: 10.1002/ptr.6703] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy is one of the main methods for cancer treatment. However, despite many advances in the design of anticancer drugs, their efficiency is limited due to their high toxicity and resistance of cells to chemotherapeutic drugs. In order to improve the cancer therapy, it is essential to use the compounds that can overcome drug resistance and increase treatment efficiency. Researchers have studied the effects of natural compounds for the controlling various drug resistance mechanisms. Curcumin is a natural phenolic compound which shows potent anticancer activities in different tumors, alone or as an adjuvant with other antitumor drugs to prevent or inhibit the survival and cancer progression by various mechanisms. The role of curcumin in overcoming drug resistance was followed by reviewing different applications of curcumin in cancer therapy. Afterward, the clinical impacts of curcumin, role of curcumin in decreasing drug resistance in different cancer cells and its mechanisms were discussed. It has been demonstrated that curcumin regulates signaling pathways in cancer cells, reduces the expression of proteins related to drug resistance, and increases the performance of antitumor drugs at various levels. Curcumin reverses multidrug resistance mechanisms and increases sensitivity of resistance cells to chemotherapy. This review mainly focuses on different mechanisms of drug resistance and curcumin as a nontoxic natural substance to eliminate the effects of drug resistance through modulation and controlling cell resistance pathways and eventually suggests curcumin as a potent chemosensitizer in cancers.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
42
|
Dey A, Kanjilal S, Bhatt BN, Mohapatra S, Chakraborty T, Bhide R, Narwaria A, Katiyar CK. Evaluation of subacute toxicity and herb-drug interaction potential of an herbal Arishta formulation. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:/j/jcim.ahead-of-print/jcim-2019-0233/jcim-2019-0233.xml. [PMID: 32284449 DOI: 10.1515/jcim-2019-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/24/2019] [Indexed: 11/15/2022]
Abstract
Background Arishta technology is an age-old heritage and uses herbal decoctions to prepare self-generated alcoholic medicines. In Ayurveda, Arishta preparations are widely used as a remedy for metabolic disorders. However, their safety and influence on herb metabolism pathways were not yet explored. Aim: To study the subacute toxicity of a polyherbal Arishta formulation (coded as DB-07) in rats and to evaluate its potential for inhibition of the drug-metabolizing enzyme (Cytochrome P450 3A4). Methodology Experimentally naive rats were treated with graded oral doses of DB-07 (10 and 20 mL/kg/day) for 28 days. During the course of the experiment, all the animals were closely observed for apparent behavioural abnormalities and mortalities. Tissue histology was performed to assess any sign of toxicity. In addition, in vitro CYP3A4 inhibition assay was performed to study the effect on drug metabolism pathways. Results Animals did not show any change in body weight, organ toxicity and food consumption throughout the dosing period of 28 days. Pathophysiological, behavioural status and locomotor activity were not altered. DB-07 did not inhibit CYP3A4 enzyme and drug metabolism pathway in-vitro. Gallic acid and quercetin were identified as phytomarker from the formulation that may be responsible for its activity related safety issue. Conclusion These results indicate that use of DB-07 may be safe with no sign of toxicity for up to 28 days in rats. Further, CYP3A4 inhibition assay indicated that DB-07 is less likely to have herb-drug interactions when concomitantly administered with CYP3A4 inhibitors or inducer.
Collapse
Affiliation(s)
- Amitabha Dey
- Bioassay Laboratory-Medical Research, Healthcare Division, Research and Development Centre, Emami Limited, 13 BT Road, Belgharia, Kolkata 700107, India
| | - Satyajyoti Kanjilal
- Medical Research, Healthcare Division, Research and Development Centre, Emami Limited, Kolkata, India
| | - Bibhuti N Bhatt
- Medical Research, Healthcare Division, Research and Development Centre, Emami Limited, Kolkata, India
| | - Satyabrata Mohapatra
- Phytochemistry, Healthcare Division, Research and Development Centre, Emami Limited, Kolkata, India
| | - Tulika Chakraborty
- Medical Research, Healthcare Division, Research and Development Centre, Emami Limited, Kolkata, India
| | - Ranjit Bhide
- Indian Institute of Toxicology, Pune 411030, India
| | - Avinash Narwaria
- Formulation-Healthcare Division, Research and Development Centre, Emami Limited, Kolkata, India
| | - Chandra K Katiyar
- CEO, Healthcare Division, Research and Development Centre, Emami Limited, Kolkata, India
| |
Collapse
|
43
|
Ensartinib (X-396) Effectively Modulates Pharmacokinetic Resistance Mediated by ABCB1 and ABCG2 Drug Efflux Transporters and CYP3A4 Biotransformation Enzyme. Cancers (Basel) 2020; 12:cancers12040813. [PMID: 32231067 PMCID: PMC7226045 DOI: 10.3390/cancers12040813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022] Open
Abstract
Ensartinib (X-396) is a promising tyrosine kinase inhibitor currently undergoing advanced clinical evaluation for the treatment of non-small cell lung cancer. In this work, we investigate possible interactions of this promising drug candidate with ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation enzymes (CYPs), which play major roles in multidrug resistance (MDR) and pharmacokinetic drug-drug interactions (DDIs). Accumulation studies showed that ensartinib is a potent inhibitor of ABCB1 and ABCG2 transporters. Additionally, incubation experiments with recombinant CYPs showed that ensartinib significantly inhibits CYP3A4 and CYP2C9. Subsequent molecular docking studies confirmed these findings. Drug combination experiments demonstrated that ensartinib synergistically potentiates the antiproliferative effects of daunorubicin, mitoxantrone, and docetaxel in ABCB1, ABCG2, and CYP3A4-overexpressing cellular models, respectively. Advantageously, ensartinib’s antitumor efficiency was not compromised by the presence of MDR-associated ABC transporters, although it acted as a substrate of ABCB1 in Madin-Darby Canine Kidney II (MDCKII) monolayer transport assays. Finally, we demonstrated that ensartinib had no significant effect on the mRNA-level expression of examined transporters and enzymes in physiological and lung tumor cellular models. In conclusion, ensartinib may perpetrate clinically relevant pharmacokinetic DDIs and modulate ABCB1-, ABCG2-, and CYP3A4-mediated MDR. The in vitro findings presented here will provide a valuable foundation for future in vivo investigations.
Collapse
|
44
|
He Y, Li T, Liu J, Ou Q, Zhou J. Early onset neutropenia: a useful predictor of chemosensitivity and favorable prognosis in patients with serous ovarian cancer. BMC Cancer 2020; 20:116. [PMID: 32050944 PMCID: PMC7014607 DOI: 10.1186/s12885-020-6609-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 02/06/2020] [Indexed: 01/23/2023] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer-associated deaths and a majority of its histological type is manifested as serous ovarian cancer (SOC). In this study, we investigated whether the timing of onset of chemotherapy-induced neutropenia (CIN) is related to chemotherapeutic response and disease outcome of SOC. Methods One hundred sixty-nine primary SOC patients receiving six doses of carboplatin plus paclitaxel adjuvant chemotherapy following cytoreductive surgery were retrospectively included in this research. CIN was grouped as early onset and late onset neutropenia depending on the timing of development. Development of CIN prior to or with administration of 3rd cycle of chemotherapy was listed as early onset neutropenia, while those CIN due to later stage chemotherapy were grouped into non-early type. The relevance of time of CIN onset with the clinical characteristics, chemotherapeutic response, progression free survival (PFS) and overall survival (OS) were determined and analyzed by using Kaplan–Meier curves, Logistic regression method, Cox proportional hazards models, and Chi-square tests. Results The age distribution of the patients was between 27 to 77 years. Fifty years was the median. No statistical significances of difference in age, FIGO stage, histological grade, tumor residual and lymph node invasion, as well as CA125 level in each CIN group were found (all P>0.05). The patients from non-early onset group showed higher chemoresistance rates (78.33%) compared to those from early onset group (9.17%). Additionally, patients in early onset group showed improved median PFS (23 vs. 9 months; P<0.001) and median OS (55 vs.24 months; P<0.001). Conclusions Early onset neutropenia may be potentially used as a potential indicator for chemosensitivity and favorable prognosis of SOC in patients who underwent six cycles of carboplatin plus paclitaxel adjuvant chemotherapy following primary cytoreductive surgery.
Collapse
Affiliation(s)
- Yijing He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Ting Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jue Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Qiong Ou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Junlin Zhou
- Clinical Research Institute, The First Affiliated Hospital of University of South China, Hengyang, China.
| |
Collapse
|
45
|
Hipólito A, Mendes C, Serpa J. The Metabolic Remodelling in Lung Cancer and Its Putative Consequence in Therapy Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:311-333. [PMID: 32130706 DOI: 10.1007/978-3-030-34025-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women. Conventional chemotherapy has failed to provide long-term benefits for many patients and in the past decade, important advances were made to understand the underlying molecular/genetic mechanisms of lung cancer, allowing the unfolding of several other pathological entities. Considering these molecular subtypes, and the appearance of promising targeted therapies, an effective personalized control of the disease has emerged, nonetheless benefiting a small proportion of patients. Although immunotherapy has also appeared as a new hope, it is still not accessible to the majority of patients with lung cancer.The metabolism of energy and biomass is the basis of cellular survival. This is true for normal cells under physiological conditions and it is also true for pathophysiologically altered cells, such as cancer cells. Thus, knowledge of the metabolic remodelling that occurs in cancer cells in the sense of, on one hand, surviving in the microenvironment of the organ in which the tumour develops and, on the other hand, escaping from drugs conditioned microenvironment, is essential to understand the disease and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
46
|
Santoni G, Morelli MB, Marinelli O, Nabissi M, Santoni M, Amantini C. Calcium Signaling and the Regulation of Chemosensitivity in Cancer Cells: Role of the Transient Receptor Potential Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:505-517. [PMID: 31646523 DOI: 10.1007/978-3-030-12457-1_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells acquire the ability to modify the calcium signaling network by altering the expression and functions of cation channels, pumps or transporters. Calcium signaling pathways are involved in proliferation, angiogenesis, invasion, immune evasion, disruption of cell death pathways, ECM remodelling, epithelial-mesenchymal transition (EMT) and drug resistance. Among cation channels, a pivotal role is played by the Transient Receptor Potential non-selective cation-permeable receptors localized in plasma membrane, endoplasmic reticulum, mitochondria and lysosomes. Several findings indicate that the dysregulation in calcium signaling induced by TRP channels is responsible for cancer growth, metastasis and chemoresistance. Drug resistance represents a major limitation in the application of current therapeutic regimens and several efforts are spent to overcome it. Here we describe the ability of Transient Receptor Potential Channels to modify, by altering the intracellular calcium influx, the cancer cell sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, Immunopathology and Molecular Medicine Laboratory, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Clinic and Oncology Unit, Macerata Hospital, Macerata, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| |
Collapse
|
47
|
Adhikari P, Nagesh PKB, Alharthi F, Chauhan SC, Jaggi M, Yallapu MM, Pradhan P. Optical detection of the structural properties of tumor tissue generated by xenografting of drug-sensitive and drug-resistant cancer cells using partial wave spectroscopy (PWS). BIOMEDICAL OPTICS EXPRESS 2019; 10:6422-6431. [PMID: 31853408 PMCID: PMC6913405 DOI: 10.1364/boe.10.006422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
A mesoscopic physics-based optical imaging technique, partial wave spectroscopy (PWS), has been used for the detection of cancer by probing nanoscale structural alterations in cells/tissue. The development of drug-resistant cancer cells/tissues during chemotherapy is a major challenge in cancer treatment. In this paper, using a mouse model and PWS, the structural properties of tumor tissue grown in 3D structures by xenografting drug-resistant and drug-sensitive human prostate cancer cells having 2D structures, are studied. The results show that the 3D xenografted tissues maintain a similar hierarchy of the degree of structural disorder properties as that of the 2D original drug-sensitive and drug-resistant cells.
Collapse
Affiliation(s)
- Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA
| | - Prashanth K B Nagesh
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Fatemah Alharthi
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
48
|
Liao W, Wang J, Xu J, You F, Pan M, Xu X, Weng J, Han X, Li S, Li Y, Liang K, Peng Q, Gao Y. High-throughput three-dimensional spheroid tumor model using a novel stamp-like tool. J Tissue Eng 2019; 10:2041731419889184. [PMID: 31827757 PMCID: PMC6886283 DOI: 10.1177/2041731419889184] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Spheroid culture is a widely used three-dimensional culture technology that simulates the three-dimensional structure of tumors in vivo and has been considered a good model for tumor research. However, current commercialized spheroid culture tools have the shortcomings of high cost or relatively poor spheroid-forming results for some special cells. To solve such problems, we designed a 3D printed, reusable, stamp-like resin mold that could shape microstructures for spheroid culture of tumor cells on the surface of agarose substrate in a 96-well plate. We applied this homemade three-dimensional culture tool in spheroid formation for hepatocellular carcinoma cells. The experimental data show that the effect of spheroid culture on four hepatocellular carcinoma cell lines in our homemade spheroid culture plate is better than that of the commercialized ultralow attachment spheroid culture plate, and compared to two-dimensional culture, three-dimensional culture improves cell functions. In addition, the drug-sensitive test based on patient-derived hepatocellular carcinoma cells showed a different pattern between spheroid and two-dimensional cultures. In conclusion, our spheroid culture tool is characterized by its low cost, reusability, low cell consumption, convenience in medium exchange, and good effect of spheroid formation, suggesting that this technique could be widely used in individual treatment and high-throughput drug screening.
Collapse
Affiliation(s)
- Wei Liao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jieqing Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiecheng Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fuyu You
- Department of Hepatobiliary Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shao Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Hofman J, Sorf A, Vagiannis D, Sucha S, Kammerer S, Küpper JH, Chen S, Guo L, Ceckova M, Staud F. Brivanib Exhibits Potential for Pharmacokinetic Drug–Drug Interactions and the Modulation of Multidrug Resistance through the Inhibition of Human ABCG2 Drug Efflux Transporter and CYP450 Biotransformation Enzymes. Mol Pharm 2019; 16:4436-4450. [DOI: 10.1021/acs.molpharmaceut.9b00361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jakub Hofman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Ales Sorf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Dimitrios Vagiannis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Simona Sucha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Sarah Kammerer
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079, United States
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079, United States
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
50
|
Jeong KY. Cancer-specific metabolism: Promising approaches for colorectal cancer treatment. World J Gastrointest Oncol 2019. [PMID: 31662818 DOI: 10.4251/wjgo.v11.i10.768.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigation of cancer-specific metabolism has made it possible to establish the principle that atypically reconstituted metabolism is considered a hallmark of cancer due to changes in physiological property. Recently, a variety of targets depending on the prompted aerobic glycolysis process, starting from the abnormal uptake of glucose, and cancer-specific metabolism due to impaired mitochondrial function and abnormal expression of drug-metabolizing enzymes have been investigated and discovered. Given that most solid cancers rely on cancer-specific metabolism to support their growth, it is necessary to examine closely the specific processes of cancer metabolism and have a detailed understanding of how cellular metabolism is altered in colorectal cancer (CRC) related to CRC survival and proliferation. The development of key methods to regulate efficiently cancer-specific metabolism in CRC is still in the initial stage. Therefore, targeting cancer-specific metabolism will yield treatable methods that are critical as a new area of development strategies for CRC treatment.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- The Research Center, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| |
Collapse
|