1
|
Gupta A, O'Cearbhaill RE, Block MS, Hamilton E, Konner JA, Knutson KL, Potts J, Garrett G, Kenney RT, Wenham RM. Vaccination with folate receptor-alpha peptides in patients with ovarian cancer following response to platinum-based therapy: A randomized, multicenter clinical trial. Gynecol Oncol 2024; 189:90-97. [PMID: 39068739 DOI: 10.1016/j.ygyno.2024.07.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Folate receptor alpha (FRα) is overexpressed on >90% of high-grade epithelial ovarian cancers (EOC). Targeting FRα with antibody-drug conjugates has proven utility in the platinum-resistant setting. It is also a potential therapeutic target for immuno-oncologic agents, such as peptide vaccines that work primarily via adaptive and humoral immunity. We tested the hypothesis that FRα peptide immunization could improve outcomes in patients with EOC following response to platinum-based therapy. METHODS We conducted a randomized, double-blind, multicenter, phase II study to evaluate the safety and efficacy of TPIV200 (a multi-epitope FRα peptide vaccine admixed with GM-CSF) versus GM-CSF alone in 120 women who did not have disease progression after at least 4 cycles of first-line platinum-based therapy. Patients were vaccinated intradermally once every 4 weeks up to 6 times, followed by a boosting period of 6 vaccinations at 12-week intervals. Primary endpoints included safety, tolerability, and progression free survival (PFS). RESULTS At study termination with a median follow-up of 15.2 months (range 1.2-28.4 months), 68 of 119 intention-to-treat patients had disease progression (55% in TPIV200 + GM-CSF arm and 59% in GM-CSF alone arm). The median PFS was 11.1 months (95% CI 8.3-16.6 months) with no significant difference between the treatment groups (10.9 months with TPIV200 + GM-CSF versus 11.1 months with GM-CSF, HR, 0.85; upper 90% CI 1.17]. No patient experienced a ≥ grade 3 drug-related adverse event. CONCLUSION TPIV200 was well tolerated but was not associated with improved PFS. Additional studies are required to uncover potential synergies using multiepitope vaccines targeting FRα. Trial Registration NLM/NCBI Registry, NCT02978222, https://clinicaltrials.gov/search?term=NCT02978222.
Collapse
Affiliation(s)
- Aditi Gupta
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Roisin E O'Cearbhaill
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | | | - Erika Hamilton
- Sarah Cannon Research Institute, Nashville, TN, United States of America
| | - Jason A Konner
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | | | - James Potts
- Veristat LLC, Southborough, MA, United States of America
| | - Gerald Garrett
- Marker Therapeutics, Inc., Houston, TX, United States of America
| | - Richard T Kenney
- Marker Therapeutics, Inc., Houston, TX, United States of America
| | - Robert M Wenham
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America.
| |
Collapse
|
2
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
3
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
5
|
Luangwattananun P, Chiraphapphaiboon W, Thuwajit C, Junking M, Yenchitsomanus PT. Activation of cytotoxic T lymphocytes by self-differentiated myeloid-derived dendritic cells for killing breast cancer cells expressing folate receptor alpha protein. Bioengineered 2022; 13:14188-14203. [PMID: 35734827 PMCID: PMC9342379 DOI: 10.1080/21655979.2022.2084262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach for cancer treatment. Activation of T lymphocytes by self-differentiated myeloid-derived antigen-presenting-cells reactive against tumor (SmartDC) resulted in specific anti-cancer function. Folate receptor alpha (FRα) is highly expressed in breast cancer (BC) cells and thus potential to be a target antigen for ACT. To explore the SmartDC technology for treatment of BC, we create SmartDC expressing FRα antigen (SmartDC-FRα) for activation of FRα-specific T lymphocytes. Human primary monocytes were transduced with lentiviruses containing tri-cistronic complementary DNA sequences encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-4 (IL-4), and FRα to generate SmartDC-FRα. Autologous T lymphocytes were activated by SmartDC-FRα by coculture. The activated T lymphocytes exhibited enhanced cytotoxicity against FRα-expressing BC cell cultures. Up to 84.9 ± 6.2% of MDA-MB-231 and 89.7 ± 1.9% of MCF-7 BC cell lines were specifically lysed at an effector-to-target ratio of 20:1. The cytotoxicity of T lymphocytes activated by SmartDC-FRα was also demonstrated in three-dimensional (3D) spheroid culture of FRα-expressing BC cells marked by size reduction and spheroid disruption. This study thus portray the potential development of T lymphocytes activated by SmartDC-FRα as ACT in FRα-expressing BC treatment.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| |
Collapse
|
6
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
7
|
Luangwattananun P, Junking M, Sujjitjoon J, Wutti-In Y, Poungvarin N, Thuwajit C, Yenchitsomanus PT. Fourth-generation chimeric antigen receptor T cells targeting folate receptor alpha antigen expressed on breast cancer cells for adoptive T cell therapy. Breast Cancer Res Treat 2021; 186:25-36. [PMID: 33389403 DOI: 10.1007/s10549-020-06032-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Treatment of breast cancer (BC) by standard methods is effective in the early stage, but ineffective in the advanced stage of disease. To develop an adoptive T cell therapy for advanced and severe BC, we generated fourth-generation chimeric antigen receptor (CAR) T cells targeting folate receptor alpha antigen (FRα) expressed on BC cells, and preclinically evaluated their anti-BC activities. METHODS The fourth-generation FRα-CAR T cells containing extracellular FRα-specific single-chain variable fragment (scFv) and three intracellular costimulatory domains (CD28, 4-1BB, and CD27) linked to CD3ζ were generated using a lentiviral system, and then were evaluated for their anti-BC activities in two-dimensional and three-dimensional (spheroid) cultures. RESULTS When our fourth-generation FRα-CAR T cells were cocultured with FRα-expressing MDA-MB-231 BC cell line at an effector to target ratio of 20:1, these CAR T cells specifically lysed 88.7 ± 10.6% of the target cells. Interestingly, the cytotoxic lysis of FRα-CAR T cells was more pronounced in target cells with higher surface FRα expression. This specific cytotoxicity of the CAR T cells was not observed when cocultured with FRα-negative MCF10A normal breast-like cell line at the same ratio (34.3 ± 4.7%). When they were cocultured with MDA-MD-231 spheroid, the FRα-CAR T cells exhibited antitumor activity marked with spheroid size reduction and breakage. CONCLUSION This proof-of-concept study thus shows the feasibility of using these fourth-generation FRα-CAR T cells for adoptive T cell therapy in BC.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand.
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand
| | - Yupanun Wutti-In
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Banville AC, Wouters MCA, Oberg AL, Goergen KM, Maurer MJ, Milne K, Ashkani J, Field E, Ghesquiere C, Jones SJM, Block MS, Nelson BH. Co-expression patterns of chimeric antigen receptor (CAR)-T cell target antigens in primary and recurrent ovarian cancer. Gynecol Oncol 2020; 160:520-529. [PMID: 33342620 DOI: 10.1016/j.ygyno.2020.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/06/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Chimeric antigen receptor (CAR)-T cell strategies ideally target a surface antigen that is exclusively and uniformly expressed by tumors; however, no such antigen is known for high-grade serous ovarian carcinoma (HGSC). A potential solution involves combinatorial antigen targeting with AND or OR logic-gating. Therefore, we investigated co-expression of CA125, Mesothelin (MSLN) and Folate Receptor alpha (FOLRA) on individual tumor cells in HGSC. METHODS RNA expression of CA125, MSLN, and FOLR1 was assessed using TCGA (HGSC) and GTEx (healthy tissues) databases. Antigen expression profiles and CD3+, CD8+ and CD20+ tumor-infiltrating lymphocyte (TIL) patterns were assessed in primary and recurrent HGSC by multiplex immunofluorescence and immunohistochemistry. RESULTS At the transcriptional level, each antigen was overexpressed in >90% of cases; however, MSLN and FOLR1 showed substantial expression in healthy tissues. At the protein level, CA125 was expressed by the highest proportion of cases and tumor cells per case, followed by MSLN and FOLRA. The most promising pairwise combination was CA125 and/or MSLN (OR gate), with 51.9% of cases containing ≥90% of tumor cells expressing one or both antigens. In contrast, only 5.8% of cases contained ≥90% of tumor cells co-expressing CA125 and MSLN (AND gate). Antigen expression patterns showed modest correlations with TIL. Recurrent tumors retained expression of all three antigens and showed increased TIL densities. CONCLUSIONS An OR-gated CAR-T cell strategy against CA125 and MSLN would target the majority of tumor cells in most cases. Antigen expression and T-cell infiltration patterns are favorable for this strategy in primary and recurrent disease.
Collapse
Affiliation(s)
- Allyson C Banville
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Ann L Oberg
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Krista M Goergen
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew J Maurer
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Jahanshah Ashkani
- Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Emma Field
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | | | - Steven J M Jones
- Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Matthew S Block
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Inflammation and immunity in ovarian cancer. EJC Suppl 2020; 15:56-66. [PMID: 33240443 PMCID: PMC7569134 DOI: 10.1016/j.ejcsup.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/15/2019] [Accepted: 12/27/2019] [Indexed: 12/30/2022] Open
Abstract
The standard first-line therapy for ovarian cancer is a combination of surgery and carboplatin/paclitaxel-based chemotherapy. Patients with longer survival and improved response to chemotherapy usually present T-cell inflamed tumours. The presence of tumour-infiltrating T cells (TILs) notably varies among the different subtypes of ovarian tumours, being highest in high-grade serous ovarian carcinoma, intermediate in endometrioid tumours, and lowest in low-grade serous, mucinous and clear cell tumours. Interestingly, the presence of TILs is often accompanied by a strong immunosuppressive tumour environment. A better understanding of the immune response against ovarian cancer and the tumour immune evasion mechanisms will enable improved prognostication, response prediction and immunotherapy of this disease. This article provides an overview of some ovarian cancer cell features relevant for antitumour response, such as tumour-associated antigens, including neoantigens, expression of inhibitory molecules, and other mechanisms of immune evasion. Moreover, we describe relevant immune cell types found in epithelial ovarian tumours, including T and B lymphocytes, regulatory T cells, natural killer cells, tumour-associated macrophages, myeloid-derived suppressor cells and neutrophils. We focus on how these components influence the burden of the tumour and the clinical outcome. The presence of spontaneous tumour-specific T lymphocytes and the existence of multiple immune evasion mechanisms in epithelial ovarian cancer (EOC) support the immunogenicity of this tumour. Tumour-infiltrating T lymphocytes (TILs) have been associated with disease outcome in EOC, indicating their clinical significance. The subtypes of EOC, mutations in TP53 and breast and ovarian cancer susceptibility protein 1/2 and the immune expression signature are factors associated to TIL density in EOC. The tumour microenvironment in EOC consists of a dynamic and complex network of soluble factors, inhibitory receptors and immunosuppressive cells.
Collapse
|
10
|
Th17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat Commun 2020; 11:5173. [PMID: 33057068 PMCID: PMC7560895 DOI: 10.1038/s41467-020-18962-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
In ovarian cancer (OC), IL-17-producing T cells (Th17s) predict improved survival, whereas regulatory T cells predict poorer survival. We previously developed a vaccine whereby patient-derived dendritic cells (DCs) are programmed to induce Th17 responses to the OC antigen folate receptor alpha (FRα). Here we report the results of a single-arm open-label phase I clinical trial designed to determine vaccine safety and tolerability (primary outcomes) and recurrence-free survival (secondary outcome). Immunogenicity is also evaluated. Recruitment is complete with a total of 19 Stage IIIC-IV OC patients in first remission after conventional therapy. DCs are generated using our Th17-inducing protocol and are pulsed with HLA class II epitopes from FRα. Mature antigen-loaded DCs are injected intradermally. All patients have completed study-related interventions. No grade 3 or higher adverse events are seen. Vaccination results in the development of Th1, Th17, and antibody responses to FRα in the majority of patients. Th1 and antibody responses are associated with prolonged recurrence-free survival. Antibody-dependent cell-mediated cytotoxic activity against FRα is also associated with prolonged RFS. Of 18 patients evaluable for efficacy, 39% (7/18) remain recurrence-free at the time of data censoring, with a median follow-up of 49.2 months. Thus, vaccination with Th17-inducing FRα-loaded DCs is safe, induces antigen-specific immunity, and is associated with prolonged remission.
Collapse
|
11
|
Tsolou A, Angelou E, Didaskalou S, Bikiaris D, Avgoustakis K, Agianian B, Koffa MD. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Int J Nanomedicine 2020; 15:4899-4918. [PMID: 32764924 PMCID: PMC7369311 DOI: 10.2147/ijn.s244712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/09/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. Methods Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. Results Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. Conclusion Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.
Collapse
Affiliation(s)
- Avgi Tsolou
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Eftychia Angelou
- Biomolecular Structure and Function Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Stylianos Didaskalou
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Dimitrios Bikiaris
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | | | - Bogos Agianian
- Biomolecular Structure and Function Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Maria D Koffa
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| |
Collapse
|
12
|
Zamarin D, Walderich S, Holland A, Zhou Q, Iasonos AE, Torrisi JM, Merghoub T, Chesebrough LF, Mcdonnell AS, Gallagher JM, Li Y, Hollmann TJ, Grisham RN, Erskine CL, Block MS, Knutson KL, O'Cearbhaill RE, Aghajanian C, Konner JA. Safety, immunogenicity, and clinical efficacy of durvalumab in combination with folate receptor alpha vaccine TPIV200 in patients with advanced ovarian cancer: a phase II trial. J Immunother Cancer 2020; 8:e000829. [PMID: 32503949 PMCID: PMC7279674 DOI: 10.1136/jitc-2020-000829] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) to date have demonstrated limited activity in advanced ovarian cancer (OC). Folate receptor alpha (FRα) is overexpressed in the majority of OCs and presents an attractive target for a combination immunotherapy to potentially overcome resistance to ICI in OCs. The current study sought to examine clinical and immunologic responses to TPIV200, a multiepitope FRα vaccine administered with programmed death ligand 1 (PD-L1) inhibitor durvalumab in patients with advanced platinum-resistant OC. METHODS Following Simon two-stage phase II trial design, 27 patients were enrolled. Treatment was administered in 28-day cycles (intradermal TPIV200 and granulocyte-macrophage colony-stimulating factor (GM-CSF) for 6 cycles and intravenous durvalumab for 12 cycles). Primary endpoints included overall response rate and progression-free survival at 24 weeks. Translational parameters focused on tumor microenvironment, PD-L1 and FRα expression, and peripheral vaccine-specific immune responses. RESULTS Treatment was well tolerated, with related grade 3 toxicity rate of 18.5%. Increased T cell responses to the majority of peptides were observed in all patients at 6 weeks (p<0.0001). There was one unconfirmed partial response (3.7%) and nine patients had stable disease (33.3%). Clinical benefit was not associated with baseline FRα or PD-L1 expression. One patient with prolonged clinical benefit demonstrated loss of FRα expression and upregulation of PD-L1 in a progressing lesion. Despite the low overall response rate, the median overall survival was 21 months (13.5-∞), with evidence of benefit from postimmunotherapy regimens. CONCLUSIONS Combination of TPIV200 and durvalumab was safe and elicited robust FRα-specific T cell responses in all patients. Unexpectedly durable survival in this heavily pretreated population highlights the need to investigate the impact of FRα vaccination on the OC biology post-treatment.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/immunology
- Adenocarcinoma, Clear Cell/pathology
- Adult
- Aged
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/immunology
- Cancer Vaccines/therapeutic use
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/pathology
- Drug Therapy, Combination
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/immunology
- Endometrial Neoplasms/pathology
- Female
- Folate Receptor 1/immunology
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Non-Randomized Controlled Trials as Topic
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Prognosis
- Survival Rate
- Treatment Outcome
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sven Walderich
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aliya Holland
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Qin Zhou
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alexia E Iasonos
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jean M Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lewis F Chesebrough
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Autumn S Mcdonnell
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jacqueline M Gallagher
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Travis J Hollmann
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rachel N Grisham
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| | | | - Mathew S Block
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Roisin E O'Cearbhaill
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| | - Carol Aghajanian
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| | - Jason A Konner
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill-Cornell Medical College, New York, NY, United States
| |
Collapse
|
13
|
Abstract
Vaccines have had a profound impact on the management and prevention of infectious disease. In addition, the development of vaccines against chronic diseases has attracted considerable interest as an approach to prevent, rather than treat, conditions such as cancer, Alzheimer's disease, and others. Subunit vaccines consist of nongenetic components of the infectious agent or disease-related epitope. In this Review, we discuss peptide-based vaccines and their potential in three therapeutic areas: infectious disease, Alzheimer's disease, and cancer. We discuss factors that contribute to vaccine efficacy and how these parameters may potentially be modulated by design. We examine both clinically tested vaccines as well as nascent approaches and explore current challenges and potential remedies. While peptide vaccines hold substantial promise in the prevention of human disease, many obstacles remain that have hampered their clinical use; thus, continued research efforts to address these challenges are warranted.
Collapse
Affiliation(s)
- Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
14
|
Kalli KR, Block MS, Kasi PM, Erskine CL, Hobday TJ, Dietz A, Padley D, Gustafson MP, Shreeder B, Puglisi-Knutson D, Visscher DW, Mangskau TK, Wilson G, Knutson KL. Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clin Cancer Res 2018. [PMID: 29545464 DOI: 10.1158/1078-0432.ccr-17-2499] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Folate receptor alpha (FR) is overexpressed in several cancers. Endogenous immunity to the FR has been demonstrated in patients and suggests the feasibility of targeting FR with vaccine or other immune therapies. CD4 helper T cells are central to the development of coordinated immunity, and prior work shows their importance in protecting against relapse. Our previous identification of degenerate HLA-class II epitopes from human FR led to the development of a broad coverage epitope pool potentially useful in augmenting antigen-specific immune responses in most patients.Patients and Methods: We conducted a phase I clinical trial testing safety and immunogenicity of this vaccine, enrolling patients with ovarian cancer or breast cancer who completed conventional treatment and who showed no evidence of disease. Patients were initially treated with low-dose cyclophosphamide and then vaccinated 6 times, monthly. Immunity and safety were examined during the vaccine period and up to 1 year later.Results: Vaccination was well tolerated in all patients. Vaccine elicited or augmented immunity in more than 90% of patients examined. Unlike recall immunity to tetanus toxoid (TT), FR T-cell responses developed slowly over the course of vaccination with a median time to maximal immunity in 5 months. Despite slow development of immunity, responsiveness appeared to persist for at least 12 months.Conclusions: The results demonstrate that it is safe to augment immunity to the FR tumor antigen, and the developed vaccine is testable for therapeutic activity in most patients whose tumors express FR, regardless of HLA genotype. Clin Cancer Res; 24(13); 3014-25. ©2018 AACR.
Collapse
Affiliation(s)
| | - Matthew S Block
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.,Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Allan Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Douglas Padley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael P Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Dan W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Toni K Mangskau
- Mayo Clinic Cancer Education Program, Mayo Clinic, Rochester, Minnesota
| | | | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
15
|
Kalli KR, Block MS, Kasi PM, Erskine CL, Hobday TJ, Dietz A, Padley D, Gustafson MP, Shreeder B, Puglisi-Knutson D, Visscher DW, Mangskau TK, Wilson G, Knutson KL. Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clin Cancer Res 2018; 24:3014-3025. [PMID: 29545464 PMCID: PMC6030477 DOI: 10.1158/1078-0432.ccr-17-2499] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Purpose: Folate receptor alpha (FR) is overexpressed in several cancers. Endogenous immunity to the FR has been demonstrated in patients and suggests the feasibility of targeting FR with vaccine or other immune therapies. CD4 helper T cells are central to the development of coordinated immunity, and prior work shows their importance in protecting against relapse. Our previous identification of degenerate HLA-class II epitopes from human FR led to the development of a broad coverage epitope pool potentially useful in augmenting antigen-specific immune responses in most patients.Patients and Methods: We conducted a phase I clinical trial testing safety and immunogenicity of this vaccine, enrolling patients with ovarian cancer or breast cancer who completed conventional treatment and who showed no evidence of disease. Patients were initially treated with low-dose cyclophosphamide and then vaccinated 6 times, monthly. Immunity and safety were examined during the vaccine period and up to 1 year later.Results: Vaccination was well tolerated in all patients. Vaccine elicited or augmented immunity in more than 90% of patients examined. Unlike recall immunity to tetanus toxoid (TT), FR T-cell responses developed slowly over the course of vaccination with a median time to maximal immunity in 5 months. Despite slow development of immunity, responsiveness appeared to persist for at least 12 months.Conclusions: The results demonstrate that it is safe to augment immunity to the FR tumor antigen, and the developed vaccine is testable for therapeutic activity in most patients whose tumors express FR, regardless of HLA genotype. Clin Cancer Res; 24(13); 3014-25. ©2018 AACR.
Collapse
Affiliation(s)
| | - Matthew S Block
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Allan Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Douglas Padley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael P Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Dan W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Toni K Mangskau
- Mayo Clinic Cancer Education Program, Mayo Clinic, Rochester, Minnesota
| | | | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
16
|
Zhang M, Zhang DB, Shi H. Application of chimeric antigen receptor-engineered T cells in ovarian cancer therapy. Immunotherapy 2018; 9:851-861. [PMID: 28877629 DOI: 10.2217/imt-2017-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Due to the critical role of T cells in the immune surveillance of ovarian cancer, adoptive T-cell therapies are receiving increased attention as an immunotherapeutic approach for ovarian cancer. Chimeric antigen receptors (CARs), constructed by incorporating the single-chain Fv fragment to a T-cell signaling domain such as CD3 ζ or Fc receptor γ chain, endow T cell with nonmajor histocompatibility complex-restricted specificity. Dual specificity, trans-signaling CARs and affinity-tuned single-chain Fv fragment have broadened the applicability of CAR-engineered T-cell therapy and may be considered preferential to T cell receptor T-cell therapy in clinical care. As new insights into the CAR-engineered T cells have emerged over the last decade, we review the development of CAR T-cell therapy and discuss the progress and safety concerns regarding its translation from basic research into clinical care of ovarian cancer.
Collapse
Affiliation(s)
- Minghui Zhang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dr Bin Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University,1 Jianshe Road, Erqi, Zhengzhou, Henan 450052, P.R. China.,Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Huirong Shi
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Dong Y, Wang L, Lei Y, Yang N, Cabrera RM, Finnell RH, Ren A. Gene variants in the folate pathway are associated with increased levels of folate receptor autoantibodies. Birth Defects Res 2018; 110:973-981. [PMID: 29732742 DOI: 10.1002/bdr2.1334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Folate receptors (FRs) facilitate embryonic uptake of folates and are important for proper early embryonic development. There is accumulating evidence that blocking FR autoantibodies contribute to developmental diseases. However, genetic factors associated with the expression of FR autoantibodies remain unknown. OBJECTIVE We investigated the effects of genetic polymorphisms in folate pathway genes on FR autoantibody titers in women. METHODS We recruited 302 pregnant women in China. The FR antigen-down immunoassay was used to measure levels of FR autoantibodies including human immunoglobulin G (IgG) and immunoglobulin M (IgM) in maternal plasma. Genotypes were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry and polymerase chain reaction methods. General linear model was used to analyze the effects of genetic variants on FR autoantibody levels. RESULTS Significant associations were observed between genotypic variations and levels of FR autoantibodies. Plasma levels of FR autoantibodies in women with the TT genotype at MTHFR rs1801133 were significantly higher than those of women with the CC genotype (IgG: β = 0.62, 95% CI 0.21-1.04; IgM: β = 0.42, 95% CI 0.12-0.72). For DNMT3A rs7560488, the level of FR autoantibody IgG significantly increased in the TT genotype compared with CC genotype (β = 0.90, 95% CI 0.20-1.59). For MTHFD2 rs828903, genotype GG was associated with elevated levels of FR autoantibody IgM compared to the AA genotype (β = 0.60, 95% CI 0.10-1.10). No association was detected between genetic variants of the DHFR gene with FR autoantibodies levels. CONCLUSION Genetic variations in MTHFR, DNMT3A, and MTHFD2 genes were associated with elevated plasma levels of FR autoantibodies.
Collapse
Affiliation(s)
- Yuqi Dong
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yunping Lei
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Yang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Robert M Cabrera
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Kloudová K, Hromádková H, Partlová S, Brtnický T, Rob L, Bartůňková J, Hensler M, Halaška MJ, Špíšek R, Fialová A. Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines. Oncotarget 2018; 7:46120-46126. [PMID: 27323861 PMCID: PMC5216785 DOI: 10.18632/oncotarget.10028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/26/2016] [Indexed: 01/07/2023] Open
Abstract
In order to select a suitable combination of cancer cell lines as an appropriate source of antigens for dendritic cell-based immunotherapy of ovarian cancer, we analyzed the expression level of 21 tumor associated antigens (BIRC5, CA125, CEA, DDX43, EPCAM, FOLR1, Her-2/neu, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MUC-1, NY-ESO-1, PRAME, p53, TPBG, TRT, WT1) in 4 established ovarian cancer cell lines and in primary tumor cells isolated from the high-grade serous epithelial ovarian cancer tissue. More than 90% of tumor samples expressed very high levels of CA125, FOLR1, EPCAM and MUC-1 and elevated levels of Her-2/neu, similarly to OVCAR-3 cell line. The combination of OV-90 and OVCAR-3 cell lines showed the highest overlap with patients' samples in the TAA expression profile.
Collapse
Affiliation(s)
- Kamila Kloudová
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.,Research Department, Sotio, Prague, Czech Republic
| | - Hana Hromádková
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Simona Partlová
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.,Research Department, Sotio, Prague, Czech Republic
| | - Tomáš Brtnický
- Department of Obstetrics and Gynaecology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Lukáš Rob
- Department of Obstetrics and Gynaecology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Jiřina Bartůňková
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | | | - Michael J Halaška
- Department of Obstetrics and Gynaecology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.,Research Department, Sotio, Prague, Czech Republic
| | - Anna Fialová
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.,Research Department, Sotio, Prague, Czech Republic
| |
Collapse
|
19
|
Terminal protection-mediated autocatalytic cascade amplification coupled with graphene oxide fluorescence switch for sensitive and rapid detection of folate receptor. Talanta 2017; 174:684-688. [DOI: 10.1016/j.talanta.2017.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
|
20
|
Bax HJ, Josephs DH, Pellizzari G, Spicer JF, Montes A, Karagiannis SN. Therapeutic targets and new directions for antibodies developed for ovarian cancer. MAbs 2016; 8:1437-1455. [PMID: 27494775 PMCID: PMC5098446 DOI: 10.1080/19420862.2016.1219005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Heather J Bax
- a St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Center at Guy's and St. Thomas' Hospital and King's College London, Guy's Hospital, King's College London , London , UK.,b Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital , London , UK
| | - Debra H Josephs
- a St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Center at Guy's and St. Thomas' Hospital and King's College London, Guy's Hospital, King's College London , London , UK.,b Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital , London , UK
| | - Giulia Pellizzari
- a St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Center at Guy's and St. Thomas' Hospital and King's College London, Guy's Hospital, King's College London , London , UK.,b Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital , London , UK
| | - James F Spicer
- b Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital , London , UK
| | - Ana Montes
- c Department of Medical Oncology , Guy's and St Thomas' NHS Foundation Trust , London , UK
| | - Sophia N Karagiannis
- a St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Center at Guy's and St. Thomas' Hospital and King's College London, Guy's Hospital, King's College London , London , UK
| |
Collapse
|
21
|
Song DG, Ye Q, Poussin M, Chacon JA, Figini M, Powell DJ. Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. J Hematol Oncol 2016; 9:56. [PMID: 27439908 PMCID: PMC4955216 DOI: 10.1186/s13045-016-0285-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The poor prognosis and the limited efficacy of targeted therapy in patients with triple-negative breast cancer (TNBC) have raised the need for alternative therapies. Recent studies have demonstrated that folate receptor-alpha (FRα) may represent an ideal tumor-associated marker for immunotherapy for TNBC. METHODS The aim of the present study was to apply a chimeric antigen receptor (CAR) approach for the targeting of FRα expressed on TNBC cells and evaluate the antitumor activity of CAR-engineered T cells in vitro and in vivo. RESULTS We found that human T cells expressing a FRα-specific CAR were potent and specific killers of TNBC cells that express moderate levels of FRα in vitro and significantly inhibited tumor outgrowth following infusion into immunodeficient mice bearing an MDA-MB-231 tumor xenograft. However, the antitumor activity of the FRα CAR T cells was modest when compared to the same CAR T cells applied in an ovarian tumor xenograft model where FRα expression is more abundant. Notably, FRα CAR T cells induced superior tumor regression in vivo against MDA-MB-231 that was engineered for overexpression of FRα. CONCLUSIONS Taken together, our results show that FRα CAR T cells can mediate antitumor activity against established TNBC tumor, particularly when FRα is expressed at higher levels. These results have significant implications for the pre-selection of patients with high antigen expression levels when utilizing CAR-based adoptive T cell therapies of cancer in future clinical trials.
Collapse
Affiliation(s)
- De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA
- Current address: Intrexon Corporation, 20358 Seneca Meadows Pkwy, Germantown, MD, 20876, USA
| | - Qunrui Ye
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA
| | - Mathilde Poussin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA
| | - Jessica A Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA
| | - Mariangela Figini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Song DG, Ye Q, Poussin M, Liu L, Figini M, Powell DJ. A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity. Oncotarget 2016; 6:21533-46. [PMID: 26101914 PMCID: PMC4673284 DOI: 10.18632/oncotarget.4071] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors in an HLA-independent manner. To date, various CARs have been constructed using mouse single chain antibody variable fragments (scFvs) of high affinity that are immunogenic in humans and have the potential to mediate “on-target” toxicity. Here, we developed and evaluated a fully human CAR comprised of the human C4 folate receptor-alpha (αFR)-specific scFv coupled to intracellular T cell signaling domains. Human T cells transduced to express the C4 CAR specifically secreted proinflammatory cytokine and exerted cytolytic functions when cultured with αFR-expressing tumors in vitro. Adoptive transfer of C4 CAR T cells mediated the regression of large, established human ovarian cancer in a xenogeneic mouse model. Relative to a murine MOv19 scFv-based αFR CAR, C4 CAR T cells mediated comparable cytotoxic tumor activity in vitro and in vivo but had lower affinity for αFR protein and exhibited reduced recognition of normal cells expressing low levels of αFR. Thus, T cells expressing a fully human CAR of intermediate affinity can efficiently kill antigen-expressing tumors in vitro and in vivo and may overcome issues of transgene immunogenicity and “on-target off-tumor” toxicity that plague trials utilizing CARs containing mouse-derived, high affinity scFvs.
Collapse
Affiliation(s)
- De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qunrui Ye
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Poussin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Liu
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariangela Figini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Yang N, Wang L, Finnell RH, Li Z, Jin L, Zhang L, Cabrera RM, Ye R, Ren A. Levels of folate receptor autoantibodies in maternal and cord blood and risk of neural tube defects in a Chinese population. ACTA ACUST UNITED AC 2016; 106:685-95. [PMID: 27166990 DOI: 10.1002/bdra.23517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND After years of periconceptional folic acid supplementation, the prevalence of neural tube defects (NTDs) remains stable following the remarkable reduction observed immediately after the fortification practice. There is accumulating evidence that folate receptor (FR) autoimmunity may play a role in the etiology of folate-sensitive NTDs. METHODS From 2011 to 2013, 118 NTD cases and 242 healthy controls were recruited from a population-based birth defects surveillance system in Northern China. Enzyme-linked immunosorbent assay was used to measure FR autoantibodies in maternal and cord blood. Logistic regression models were used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS Plasma FR autoantibodies levels were significantly elevated in mothers of infants with NTDs compared with mothers of healthy controls. Using the lowest tertile as the referent group, 2.20-fold (95% CI, 0.71-6.80) and 5.53-fold increased odds (95% CI, 1.90-16.08) of NTDs were observed for the second and third tertile of immunoglobulin G (IgG), respectively, and the odds of NTDs for each successive tertile of IgM was 0.98 (95% CI, 0.35-2.75) and 3.49 (95% CI, 1.45-8.39), respectively. A dose-response relationship was found between FR autoantibodies levels and risk of NTDs (P < 0.001 for IgG, P = 0.002 for IgM). The same pattern was observed in both subtypes of spina bifida and anencephaly. No significant difference in levels of cord blood FR autoantibodies was observed. CONCLUSION Higher levels of FR autoimmunity in maternal plasma are associated with elevated risk of NTDs in a dose-response manner. Birth Defects Research (Part A) 106:685-695, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Na Yang
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| | - Richard H Finnell
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Zhiwen Li
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| | - Le Zhang
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| | - Robert M Cabrera
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Rongwei Ye
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| |
Collapse
|
24
|
Menderes G, Schwab CL, Black J, Santin AD. The Role of the Immune System in Ovarian Cancer and Implications on Therapy. Expert Rev Clin Immunol 2016; 12:681-95. [PMID: 26821930 DOI: 10.1586/1744666x.2016.1147957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States. While the treatment options have improved with conventional cytotoxic chemotherapy and advanced surgical techniques, disease recurrence is common and fatal in nearly all cases. Current evidence suggests that the immune system and its ability to recognize and eliminate microscopic disease is paramount in preventing recurrence. The goal of immunotherapy is to balance the activation of the immune system against cancer while preventing the potential for tremendous toxicity elicited by immune modulation. In this paper we will review the role of immune system in disease pathogenesis and different immunotherapies available for the treatment of ovarian cancer as well as current ongoing studies and potential future directions.
Collapse
Affiliation(s)
- Gulden Menderes
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Carlton L Schwab
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
25
|
Jansen G, Peters GJ. Novel insights in folate receptors and transporters: implications for disease and treatment of immune diseases and cancer. Pteridines 2015; 26:41-53. [DOI: 10.1515/pterid-2015-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Abstract
Folate receptors and transporters as well as folate enzymes play an essential role in human disease and form important targets for the treatment of immune diseases and cancer. To discuss new developments in this area, every 2 years a multidisciplinary meeting is held, which aims to be an informal forum for fundamental scientists and clinicians. During this meeting, the regulation of folate transporters and folate enzymes is discussed at the level of expression, transcription, translation, post-translational modification, and splicing and enzyme regulation. Importantly, this knowledge is applied and translated into exciting clinical applications by clinicians with various backgrounds, such as surgeons, nephrologists, rheumatologists and oncologists. Moreover, the meeting provides an excellent forum for a scientific interaction between academia and industry.
Collapse
Affiliation(s)
- Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Cancer Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
26
|
Abstract
Clinical outcomes, such as recurrence-free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathological network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Keith L Knutson
- Cancer Vaccines and Immune Therapies Program, The Vaccine and Gene Therapy Institute of Florida, 9801 SW Discovery Way, Port St. Lucie, FL, 34949, USA,
| | | | | | | |
Collapse
|
27
|
Köbel M, Madore J, Ramus SJ, Clarke BA, Pharoah PDP, Deen S, Bowtell DD, Odunsi K, Menon U, Morrison C, Lele S, Bshara W, Sucheston L, Beckmann MW, Hein A, Thiel FC, Hartmann A, Wachter DL, Anglesio MS, Høgdall E, Jensen A, Høgdall C, Kalli KR, Fridley BL, Keeney GL, Fogarty ZC, Vierkant RA, Liu S, Cho S, Nelson G, Ghatage P, Gentry-Maharaj A, Gayther SA, Benjamin E, Widschwendter M, Intermaggio MP, Rosen B, Bernardini MQ, Mackay H, Oza A, Shaw P, Jimenez-Linan M, Driver KE, Alsop J, Mack M, Koziak JM, Steed H, Ewanowich C, DeFazio A, Chenevix-Trench G, Fereday S, Gao B, Johnatty SE, George J, Galletta L, Goode EL, Kjær SK, Huntsman DG, Fasching PA, Moysich KB, Brenton JD, Kelemen LE. Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study. Br J Cancer 2014; 111:2297-307. [PMID: 25349970 PMCID: PMC4264456 DOI: 10.1038/bjc.2014.567] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Folate receptor 1 (FOLR1) is expressed in the majority of ovarian carcinomas (OvCa), making it an attractive target for therapy. However, clinical trials testing anti-FOLR1 therapies in OvCa show mixed results and require better understanding of the prognostic relevance of FOLR1 expression. We conducted a large study evaluating FOLR1 expression with survival in different histological types of OvCa. METHODS Tissue microarrays composed of tumour samples from 2801 patients in the Ovarian Tumour Tissue Analysis (OTTA) consortium were assessed for FOLR1 expression by centralised immunohistochemistry. We estimated associations for overall (OS) and progression-free (PFS) survival using adjusted Cox regression models. High-grade serous ovarian carcinomas (HGSC) from The Cancer Genome Atlas (TCGA) were evaluated independently for association between FOLR1 mRNA upregulation and survival. RESULTS FOLR1 expression ranged from 76% in HGSC to 11% in mucinous carcinomas in OTTA. For HGSC, the association between FOLR1 expression and OS changed significantly during the years following diagnosis in OTTA (Pinteraction=0.01, N=1422) and TCGA (Pinteraction=0.01, N=485). In OTTA, particularly for FIGO stage I/II tumours, patients with FOLR1-positive HGSC showed increased OS during the first 2 years only (hazard ratio=0.44, 95% confidence interval=0.20-0.96) and patients with FOLR1-positive clear cell carcinomas (CCC) showed decreased PFS independent of follow-up time (HR=1.89, 95% CI=1.10-3.25, N=259). In TCGA, FOLR1 mRNA upregulation in HGSC was also associated with increased OS during the first 2 years following diagnosis irrespective of tumour stage (HR: 0.48, 95% CI: 0.25-0.94). CONCLUSIONS FOLR1-positive HGSC tumours were associated with an increased OS in the first 2 years following diagnosis. Patients with FOLR1-negative, poor prognosis HGSC would be unlikely to benefit from anti-FOLR1 therapies. In contrast, a decreased PFS interval was observed for FOLR1-positive CCC. The clinical efficacy of FOLR1-targeted interventions should therefore be evaluated according to histology, stage and time following diagnosis.
Collapse
Affiliation(s)
- M Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - J Madore
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5E 4E6, Canada
- Melanoma Institute Australia, University of Sydney, Royal Prince Alfred Hospital, Gloucester House–level 3, Missenden Road, Camperdown, NSW 2050, Australia
| | - S J Ramus
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, Harlyne Norris Research Tower, 1450 Biggy Street, Office 2517G, Los Angeles, CA 90033, USA
| | - B A Clarke
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, University of Toronto, 610 Univeristy Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - P D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - S Deen
- Department of Histopathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - D D Bowtell
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, 30 Flemington Road, Melbourne, VIC 3010, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, 30 Flemington Road, Melbourne, VIC 3010, Australia
| | - K Odunsi
- Department of Gynecological Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - U Menon
- Gynaecological Cancer Research Centre, Department of Women's Cancer, Institute for Women's Health, University College London, Maple House 1st Floor, 149 Tottenham Court Road, London W1T 7DN, UK
| | - C Morrison
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - S Lele
- Department of Gynecological Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - W Bshara
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - L Sucheston
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - M W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
| | - A Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
| | - F C Thiel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
| | - A Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - D L Wachter
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - M S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5E 4E6, Canada
| | - E Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Ø, Denmark
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2370 Herlev, Denmark
| | - A Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Ø, Denmark
| | - C Høgdall
- The Juliane Marie Center, Department of Obstetrics and Gynecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Ø, Denmark
| | - K R Kalli
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Charlton 6, Rochester, MN 55905, USA
| | - B L Fridley
- Department of Biostatistics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - G L Keeney
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, 200 First Street SW, Stabile 13, Rochester, MN 55905, USA
| | - Z C Fogarty
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Charlton 6, Rochester, MN 55905, USA
| | - R A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Charlton 6, Rochester, MN 55905, USA
| | - S Liu
- Anatomic Pathology Research Laboratory, Calgary Laboratory Services, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - S Cho
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - G Nelson
- Department of Obstetrics and Gynecology, Division of Oncology, Tom Baker Cancer Centre, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - P Ghatage
- Department of Obstetrics and Gynecology, Division of Oncology, Tom Baker Cancer Centre, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - A Gentry-Maharaj
- Gynaecological Cancer Research Centre, Department of Women's Cancer, Institute for Women's Health, University College London, Maple House 1st Floor, 149 Tottenham Court Road, London W1T 7DN, UK
| | - S A Gayther
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, Harlyne Norris Research Tower, 1450 Biggy Street, Office 2517G, Los Angeles, CA 90033, USA
| | - E Benjamin
- Department of Pathology, Cancer Institute, University College London, Maple House, 149 Tottenham Court Road, London WC1E 6JJ, UK
| | - M Widschwendter
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, 74 Huntley Street, London WC1E 6AU, UK
| | - M P Intermaggio
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, Harlyne Norris Research Tower, 1450 Biggy Street, Office 2517G, Los Angeles, CA 90033, USA
| | - B Rosen
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - M Q Bernardini
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - H Mackay
- Department of Medicine, Division of Medical Oncology, University of Toronto, Princess Margaret Hospital, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - A Oza
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - P Shaw
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - M Jimenez-Linan
- Department of Pathology, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
| | - K E Driver
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - J Alsop
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - M Mack
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - J M Koziak
- Department of Population Health Research, Alberta Health Services-Cancer Care, 2210 2nd Street SW, Calgary, AB, T2S 3C3, Canada
| | - H Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Royal Alexandra Hospital, 10240 Kingsway Ave, Edmonton, AB T5H 3V9, Canada
| | - C Ewanowich
- Department of Laboratory Medicine and Pathology, Royal Alexandra Hospital, 10240 Kingsway Ave, Edmonton, AB T5H 3V9, Canada
| | - A DeFazio
- Department of Gynaecological Oncology and Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia
| | - G Chenevix-Trench
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD,4006, Australia
| | - S Fereday
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
| | - B Gao
- Department of Gynaecological Oncology and Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia
| | - S E Johnatty
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD,4006, Australia
| | - J George
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
| | - L Galletta
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
| | - AOCS Study Group
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
| | - E L Goode
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, 200 First Street SW Charlton 6, Rochester, MN 55905, USA
| | - S K Kjær
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Ø, Denmark
- The Juliane Marie Center, Department of Obstetrics and Gynecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Ø, Denmark
| | - D G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5E 4E6, Canada
- Centre For Translational and Applied Genomics, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - P A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - K B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - J D Brenton
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK
| | - L E Kelemen
- Department of Public Health Sciences, Medical University of South Carolina and Hollings Cancer Center, 135 Cannon Street, Charleston, SC 29425, USA
| |
Collapse
|
28
|
Köbel M, Madore J, Ramus SJ, Clarke BA, Pharoah PDP, Deen S, Bowtell DD, Odunsi K, Menon U, Morrison C, Lele S, Bshara W, Sucheston L, Beckmann MW, Hein A, Thiel FC, Hartmann A, Wachter DL, Anglesio MS, Høgdall E, Jensen A, Høgdall C, Kalli KR, Fridley BL, Keeney GL, Fogarty ZC, Vierkant RA, Liu S, Cho S, Nelson G, Ghatage P, Gentry-Maharaj A, Gayther SA, Benjamin E, Widschwendter M, Intermaggio MP, Rosen B, Bernardini MQ, Mackay H, Oza A, Shaw P, Jimenez-Linan M, Driver KE, Alsop J, Mack M, Koziak JM, Steed H, Ewanowich C, DeFazio A, Chenevix-Trench G, Fereday S, Gao B, Johnatty SE, George J, Galletta L, Goode EL, Kjær SK, Huntsman DG, Fasching PA, Moysich KB, Brenton JD, Kelemen LE. Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study. Br J Cancer 2014. [PMID: 25349970 DOI: 10.1038/bjc.2014.567] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Folate receptor 1 (FOLR1) is expressed in the majority of ovarian carcinomas (OvCa), making it an attractive target for therapy. However, clinical trials testing anti-FOLR1 therapies in OvCa show mixed results and require better understanding of the prognostic relevance of FOLR1 expression. We conducted a large study evaluating FOLR1 expression with survival in different histological types of OvCa. METHODS Tissue microarrays composed of tumour samples from 2801 patients in the Ovarian Tumour Tissue Analysis (OTTA) consortium were assessed for FOLR1 expression by centralised immunohistochemistry. We estimated associations for overall (OS) and progression-free (PFS) survival using adjusted Cox regression models. High-grade serous ovarian carcinomas (HGSC) from The Cancer Genome Atlas (TCGA) were evaluated independently for association between FOLR1 mRNA upregulation and survival. RESULTS FOLR1 expression ranged from 76% in HGSC to 11% in mucinous carcinomas in OTTA. For HGSC, the association between FOLR1 expression and OS changed significantly during the years following diagnosis in OTTA (Pinteraction=0.01, N=1422) and TCGA (Pinteraction=0.01, N=485). In OTTA, particularly for FIGO stage I/II tumours, patients with FOLR1-positive HGSC showed increased OS during the first 2 years only (hazard ratio=0.44, 95% confidence interval=0.20-0.96) and patients with FOLR1-positive clear cell carcinomas (CCC) showed decreased PFS independent of follow-up time (HR=1.89, 95% CI=1.10-3.25, N=259). In TCGA, FOLR1 mRNA upregulation in HGSC was also associated with increased OS during the first 2 years following diagnosis irrespective of tumour stage (HR: 0.48, 95% CI: 0.25-0.94). CONCLUSIONS FOLR1-positive HGSC tumours were associated with an increased OS in the first 2 years following diagnosis. Patients with FOLR1-negative, poor prognosis HGSC would be unlikely to benefit from anti-FOLR1 therapies. In contrast, a decreased PFS interval was observed for FOLR1-positive CCC. The clinical efficacy of FOLR1-targeted interventions should therefore be evaluated according to histology, stage and time following diagnosis.
Collapse
Affiliation(s)
- M Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - J Madore
- 1] Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5E 4E6, Canada [2] Melanoma Institute Australia, University of Sydney, Royal Prince Alfred Hospital, Gloucester House-level 3, Missenden Road, Camperdown, NSW 2050, Australia
| | - S J Ramus
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, Harlyne Norris Research Tower, 1450 Biggy Street, Office 2517G, Los Angeles, CA 90033, USA
| | - B A Clarke
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, University of Toronto, 610 Univeristy Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - P D P Pharoah
- 1] Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK [2] Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - S Deen
- Department of Histopathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - D D Bowtell
- 1] Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia [2] Department of Biochemistry and Molecular Biology, University of Melbourne, 30 Flemington Road, Melbourne, VIC 3010, Australia [3] Sir Peter MacCallum Department of Oncology, University of Melbourne, 30 Flemington Road, Melbourne, VIC 3010, Australia
| | - K Odunsi
- Department of Gynecological Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - U Menon
- Gynaecological Cancer Research Centre, Department of Women's Cancer, Institute for Women's Health, University College London, Maple House 1st Floor, 149 Tottenham Court Road, London W1T 7DN, UK
| | - C Morrison
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - S Lele
- 1] Department of Gynecological Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA [2] Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - W Bshara
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - L Sucheston
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - M W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
| | - A Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
| | - F C Thiel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
| | - A Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - D L Wachter
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - M S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5E 4E6, Canada
| | - E Høgdall
- 1] Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Ø, Denmark [2] Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2370 Herlev, Denmark
| | - A Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Ø, Denmark
| | - C Høgdall
- The Juliane Marie Center, Department of Obstetrics and Gynecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Ø, Denmark
| | - K R Kalli
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Charlton 6, Rochester, MN 55905, USA
| | - B L Fridley
- Department of Biostatistics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - G L Keeney
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, 200 First Street SW, Stabile 13, Rochester, MN 55905, USA
| | - Z C Fogarty
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Charlton 6, Rochester, MN 55905, USA
| | - R A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Charlton 6, Rochester, MN 55905, USA
| | - S Liu
- Anatomic Pathology Research Laboratory, Calgary Laboratory Services, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - S Cho
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - G Nelson
- Department of Obstetrics and Gynecology, Division of Oncology, Tom Baker Cancer Centre, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - P Ghatage
- Department of Obstetrics and Gynecology, Division of Oncology, Tom Baker Cancer Centre, University of Calgary, Foothills Medical Center, 1403 29 ST NW, Calgary, AB T2N 2T9, Canada
| | - A Gentry-Maharaj
- Gynaecological Cancer Research Centre, Department of Women's Cancer, Institute for Women's Health, University College London, Maple House 1st Floor, 149 Tottenham Court Road, London W1T 7DN, UK
| | - S A Gayther
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, Harlyne Norris Research Tower, 1450 Biggy Street, Office 2517G, Los Angeles, CA 90033, USA
| | - E Benjamin
- Department of Pathology, Cancer Institute, University College London, Maple House, 149 Tottenham Court Road, London WC1E 6JJ, UK
| | - M Widschwendter
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, 74 Huntley Street, London WC1E 6AU, UK
| | - M P Intermaggio
- Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, Harlyne Norris Research Tower, 1450 Biggy Street, Office 2517G, Los Angeles, CA 90033, USA
| | - B Rosen
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - M Q Bernardini
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - H Mackay
- Department of Medicine, Division of Medical Oncology, University of Toronto, Princess Margaret Hospital, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - A Oza
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - P Shaw
- Department of Obstetrics and Gynecology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, M-700, Toronto, ON M5T 2M9, Canada
| | - M Jimenez-Linan
- 1] Department of Pathology, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK [2] National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
| | - K E Driver
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - J Alsop
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - M Mack
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - J M Koziak
- Department of Population Health Research, Alberta Health Services-Cancer Care, 2210 2nd Street SW, Calgary, AB, T2S 3C3, Canada
| | - H Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Royal Alexandra Hospital, 10240 Kingsway Ave, Edmonton, AB T5H 3V9, Canada
| | - C Ewanowich
- Department of Laboratory Medicine and Pathology, Royal Alexandra Hospital, 10240 Kingsway Ave, Edmonton, AB T5H 3V9, Canada
| | - A DeFazio
- Department of Gynaecological Oncology and Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia
| | - G Chenevix-Trench
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD,4006, Australia
| | - S Fereday
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
| | - B Gao
- Department of Gynaecological Oncology and Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia
| | - S E Johnatty
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD,4006, Australia
| | - J George
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
| | - L Galletta
- Department of Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Locked Bag I, A'Beckett Street, East Melbourne, VIC 8006, Australia
| | | | - E L Goode
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, 200 First Street SW Charlton 6, Rochester, MN 55905, USA
| | - S K Kjær
- 1] Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Ø, Denmark [2] The Juliane Marie Center, Department of Obstetrics and Gynecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Ø, Denmark
| | - D G Huntsman
- 1] Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5E 4E6, Canada [2] Centre For Translational and Applied Genomics, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - P A Fasching
- 1] Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany [2] Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - K B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - J D Brenton
- 1] National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK [2] Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK [3] Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK [4] Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK
| | - L E Kelemen
- Department of Public Health Sciences, Medical University of South Carolina and Hollings Cancer Center, 135 Cannon Street, Charleston, SC 29425, USA
| |
Collapse
|
29
|
Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, Haluska P, Long HJ, Oberg A, Aderca I, Block MS, Bakkum-Gamez J, Federspiel MJ, Russell SJ, Kalli KR, Keeney G, Peng KW, Hartmann LC. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res 2014; 75:22-30. [PMID: 25398436 DOI: 10.1158/0008-5472.can-14-2533] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Edmonston vaccine strains of measles virus (MV) have significant antitumor activity in mouse xenograft models of ovarian cancer. MV engineered to express the sodium iodide symporter gene (MV-NIS) facilitates localization of viral gene expression and offers a tool for tumor radiovirotherapy. Here, we report results from a clinical evaluation of MV-NIS in patients with taxol- and platinum-resistant ovarian cancer. MV-NIS was given intraperitoneally every 4 weeks for up to 6 cycles. Treatment was well tolerated and associated with promising median overall survival in these patients with heavily pretreated ovarian cancer; no dose-limiting toxicity was observed in 16 patients treated at high-dose levels (10(8)-10(9) TCID50), and their median overall survival of 26.5 months compared favorably with other contemporary series. MV receptor CD46 and nectin-4 expression was confirmed by immunohistochemistry in patient tumors. Sodium iodide symporter expression in patient tumors after treatment was confirmed in three patients by (123)I uptake on SPECT/CTs and was associated with long progression-free survival. Immune monitoring posttreatment showed an increase in effector T cells recognizing the tumor antigens IGFBP2 and FRα, indicating that MV-NIS treatment triggered cellular immunity against the patients' tumor and suggesting that an immune mechanism mediating the observed antitumor effect. Our findings support further clinical evaluation of MV-NIS as an effective immunovirotherapy.
Collapse
Affiliation(s)
- Evanthia Galanis
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
| | | | | | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota. Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida
| | - Sean C Dowdy
- Division of Gynecological Surgery, Mayo Clinic, Rochester, Minnesota
| | - William A Cliby
- Division of Gynecological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Harry J Long
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Ann Oberg
- Department of Statistics, Mayo Clinic, Rochester, Minnesota
| | - Ileana Aderca
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Matthew S Block
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Gary Keeney
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lynn C Hartmann
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
30
|
Bronte G, Cicero G, Sortino G, Pernice G, Catarella MT, D'Alia P, Cusenza S, Lo Dico S, Bronte E, Sprini D, Midiri M, Firenze A, Fiorentino E, Bazan V, Rolfo C, Russo A. Immunotherapy for recurrent ovarian cancer: a further piece of the puzzle or a striking strategy? Expert Opin Biol Ther 2013; 14:103-14. [DOI: 10.1517/14712598.2014.859671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Charbonneau B, Goode EL, Kalli KR, Knutson KL, Derycke MS. The immune system in the pathogenesis of ovarian cancer. Crit Rev Immunol 2013; 33:137-64. [PMID: 23582060 DOI: 10.1615/critrevimmunol.2013006813] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer. While several studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease, recent genetic and protein analyses also suggest a role in disease incidence. Recent studies also show that anti-tumor immunity is often negated by immune suppressive cells present in the tumor microenvironment. These suppressive immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, future research into immunotherapy targeting ovarian cancer will likely become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression or by disrupting critical cytokine networks.
Collapse
Affiliation(s)
- Bridget Charbonneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
32
|
Goode EL, DeRycke M, Kalli KR, Oberg AL, Cunningham JM, Maurer MJ, Fridley BL, Armasu SM, Serie DJ, Ramar P, Goergen K, Vierkant RA, Rider DN, Sicotte H, Wang C, Winterhoff B, Phelan CM, Schildkraut JM, Weber RP, Iversen E, Berchuck A, Sutphen R, Birrer MJ, Hampras S, Preus L, Gayther SA, Ramus SJ, Wentzensen N, Yang HP, Garcia-Closas M, Song H, Tyrer J, Pharoah PPD, Konecny G, Sellers TA, Ness RB, Sucheston LE, Odunsi K, Hartmann LC, Moysich KB, Knutson KL. Inherited variants in regulatory T cell genes and outcome of ovarian cancer. PLoS One 2013; 8:e53903. [PMID: 23382860 PMCID: PMC3559692 DOI: 10.1371/journal.pone.0053903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs) has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL) and sequence-based tagging single nucleotide polymorphisms (tagSNPs) for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p=2.7×10(-5)), LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p=4.5×10(-4), and rs3753348, p=9.0×10(-4), respectively), and CD80 (endometrioid, rs13071247, p=8.0×10(-4)). Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p=0.006). An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p=8.1×10(-4)) among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies.
Collapse
Affiliation(s)
- Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Shannessy DJ, Somers EB, Albone E, Cheng X, Park YC, Tomkowicz BE, Hamuro Y, Kohl TO, Forsyth TM, Smale R, Fu YS, Nicolaides NC. Characterization of the human folate receptor alpha via novel antibody-based probes. Oncotarget 2012; 2:1227-43. [PMID: 22204844 PMCID: PMC3282080 DOI: 10.18632/oncotarget.412] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Folate receptor alpha (FRA) is a cell surface protein whose aberrant expression in malignant cells has resulted in its pursuit as a therapeutic target and marker for diagnosis of cancer. The development of immune-based reagents that can reproducibly detect FRA from patient tissue processed by varying methods has been difficult due to the complex post-translational structure of the protein whereby most reagents developed to date are highly structure-sensitive and have resulted in equivocal expression results across independent studies. The aim of the present study was to generate novel monoclonal antibodies (mAbs) using modified full length FRA protein as immunogen in order to develop a panel of mAbs to various, non-overlapping epitopes that may serve as diagnostic reagents able to robustly detect FRA-positive disease. Here we report the development of a panel of FRA-specific mAbs that are able to specifically detect FRA using an array of diagnostic platforms and methods. In addition, the methods used to develop these mAbs and their diverse binding properties provide additional information on the three dimensional structure of FRA in its native cell surface configuration.
Collapse
|
34
|
Johnson LE, McNeel DG. Identification of prostatic acid phosphatase (PAP) specific HLA-DR1-restricted T-cell epitopes. Prostate 2012; 72:730-40. [PMID: 22529020 DOI: 10.1002/pros.21477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/18/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostatic acid phosphatase (PAP) is a prostate cancer tumor antigen and is an immunological target in several active immunotherapy clinical trials for the treatment of prostate cancer. We and others have demonstrated that PAP-specific T-cell responses can be elicited and augmented following antigen-specific immunization in both humans and animal models. We have previously reported that prostate cancer patients immunized with a DNA vaccine encoding PAP (pTVG-HP) developed both CD4+ and CD8+ T-cell responses. PAP-specific, CD4+ T-cell proliferative responses were generated in three out of four HLA-DRB1*0101 patients suggesting the possibility that DR1-restricted epitopes exist. METHODS To identify PAP-specific HLA-DRB1*0101 restricted epitopes, we immunized HLA-A2.01/HLA-DRB1*0101 (A2/DR1) transgenic mice with the pTVG-HP DNA vaccine. To map DRB1*0101-restricted epitopes, splenocytes from immunized mice were screened against a library of overlapping 15-residue, PAP-derived peptides using an IFNγ ELISPOT assay. RESULTS We identified four HLA-DRB1*0101 epitopes for PAP in A2/DR1 mice (PAP(161-175) , PAP(181-195) , PAP(191-205) , and PAP (351-365) ). T cells specific for one epitope (PAP(181-195) ) were found to be augmented after immunization in a HLA-DRB1*0101+ prostate cancer patient. CONCLUSIONS The identification of MHC class II epitopes may provide tools to directly monitor immune responses after vaccination and may be important for the design of future prostate cancer vaccines.
Collapse
Affiliation(s)
- Laura E Johnson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
35
|
Chen YL, Chang MC, Huang CY, Chiang YC, Lin HW, Chen CA, Hsieh CY, Cheng WF. Serous ovarian carcinoma patients with high alpha-folate receptor had reducing survival and cytotoxic chemo-response. Mol Oncol 2012. [PMID: 22265591 DOI: 10.1016/j.molonc.2011.11.010] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
The alpha-folate receptor (α-FR) is highly-expressed in various non-mucinous tumors of epithelial origin, including ovarian carcinoma. The aim of this study was to investigate the relationship between alpha-folate receptor (α-FR) and the clinico-pathologic features and outcomes of serous ovarian carcinoma patients and the possible mechanism of α-FR to chemo-resistance. Therefore, semi-quantitative reverse-transcription polymerase chain reactions for α-FR expression were performed in the 91 specimens of serous ovarian carcinomas. The expression of α-FR in each ovarian cancer tissue specimen was defined as the ratio of density of α-FR to density of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In vitro apoptotic experiments were tested in the original OVCAR-3 tumor cells and various OVCAR-3 α-FR-transfectants. Patients with an increased α-FR expression level had poorer responses to chemotherapy (per α-FR expression level increase: odds ratio (OR): 8.97 (95% confidence interval (CI): 1.40-57.36), p = 0.021). An increased α-FR expression level was an independently poor prognostic factor for disease free interval (DFI) (per α-FR expression level increase: hazard ratio (HR): 2.45 (95% CI: 1.16-5.18), p = 0.02) and had a negative impact on overall survival (OS) of these serous ovarian cancer patients (per α-FR expression level increase: HR: 3.6 (95% CI: 0.93-13.29), p = 0.03) by multivariate analyses. α-FR inhibited cytotoxic drug-induced apoptosis in our in vitro apoptotic assays. α-FR could induce chemo-resistance via regulating the expression of apoptosis-related molecules, Bcl-2 and Bax. Therefore, α-FR can be a potential biomarker for the prediction of chemotherapeutic responses and clinical prognosis. It also could be the target of ovarian cancer treatment.
Collapse
Affiliation(s)
- Yu-Li Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, 7, Chung-Shan South Road, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen YL, Chang MC, Huang CY, Chiang YC, Lin HW, Chen CA, Hsieh CY, Cheng WF. Serous ovarian carcinoma patients with high alpha-folate receptor had reducing survival and cytotoxic chemo-response. Mol Oncol 2012. [PMID: 22265591 DOI: 10.1016/j.molonc.2011.11.010]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The alpha-folate receptor (α-FR) is highly-expressed in various non-mucinous tumors of epithelial origin, including ovarian carcinoma. The aim of this study was to investigate the relationship between alpha-folate receptor (α-FR) and the clinico-pathologic features and outcomes of serous ovarian carcinoma patients and the possible mechanism of α-FR to chemo-resistance. Therefore, semi-quantitative reverse-transcription polymerase chain reactions for α-FR expression were performed in the 91 specimens of serous ovarian carcinomas. The expression of α-FR in each ovarian cancer tissue specimen was defined as the ratio of density of α-FR to density of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In vitro apoptotic experiments were tested in the original OVCAR-3 tumor cells and various OVCAR-3 α-FR-transfectants. Patients with an increased α-FR expression level had poorer responses to chemotherapy (per α-FR expression level increase: odds ratio (OR): 8.97 (95% confidence interval (CI): 1.40-57.36), p = 0.021). An increased α-FR expression level was an independently poor prognostic factor for disease free interval (DFI) (per α-FR expression level increase: hazard ratio (HR): 2.45 (95% CI: 1.16-5.18), p = 0.02) and had a negative impact on overall survival (OS) of these serous ovarian cancer patients (per α-FR expression level increase: HR: 3.6 (95% CI: 0.93-13.29), p = 0.03) by multivariate analyses. α-FR inhibited cytotoxic drug-induced apoptosis in our in vitro apoptotic assays. α-FR could induce chemo-resistance via regulating the expression of apoptosis-related molecules, Bcl-2 and Bax. Therefore, α-FR can be a potential biomarker for the prediction of chemotherapeutic responses and clinical prognosis. It also could be the target of ovarian cancer treatment.
Collapse
Affiliation(s)
- Yu-Li Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, 7, Chung-Shan South Road, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen YL, Chang MC, Huang CY, Chiang YC, Lin HW, Chen CA, Hsieh CY, Cheng WF. Serous ovarian carcinoma patients with high alpha-folate receptor had reducing survival and cytotoxic chemo-response. Mol Oncol 2011; 6:360-9. [PMID: 22265591 DOI: 10.1016/j.molonc.2011.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022] Open
Abstract
The alpha-folate receptor (α-FR) is highly-expressed in various non-mucinous tumors of epithelial origin, including ovarian carcinoma. The aim of this study was to investigate the relationship between alpha-folate receptor (α-FR) and the clinico-pathologic features and outcomes of serous ovarian carcinoma patients and the possible mechanism of α-FR to chemo-resistance. Therefore, semi-quantitative reverse-transcription polymerase chain reactions for α-FR expression were performed in the 91 specimens of serous ovarian carcinomas. The expression of α-FR in each ovarian cancer tissue specimen was defined as the ratio of density of α-FR to density of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In vitro apoptotic experiments were tested in the original OVCAR-3 tumor cells and various OVCAR-3 α-FR-transfectants. Patients with an increased α-FR expression level had poorer responses to chemotherapy (per α-FR expression level increase: odds ratio (OR): 8.97 (95% confidence interval (CI): 1.40-57.36), p = 0.021). An increased α-FR expression level was an independently poor prognostic factor for disease free interval (DFI) (per α-FR expression level increase: hazard ratio (HR): 2.45 (95% CI: 1.16-5.18), p = 0.02) and had a negative impact on overall survival (OS) of these serous ovarian cancer patients (per α-FR expression level increase: HR: 3.6 (95% CI: 0.93-13.29), p = 0.03) by multivariate analyses. α-FR inhibited cytotoxic drug-induced apoptosis in our in vitro apoptotic assays. α-FR could induce chemo-resistance via regulating the expression of apoptosis-related molecules, Bcl-2 and Bax. Therefore, α-FR can be a potential biomarker for the prediction of chemotherapeutic responses and clinical prognosis. It also could be the target of ovarian cancer treatment.
Collapse
Affiliation(s)
- Yu-Li Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, 7, Chung-Shan South Road, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Preston CC, Goode EL, Hartmann LC, Kalli KR, Knutson KL. Immunity and immune suppression in human ovarian cancer. Immunotherapy 2011; 3:539-56. [PMID: 21463194 DOI: 10.2217/imt.11.20] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clinical outcomes in ovarian cancer are heterogeneous, independent of common features such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling issue is the response of the patient's immune system to her ovarian cancer. Several studies have confirmed a prominent role for the immune system in modifying disease course. This has led to the identification and evaluation of novel immune-modulating therapeutic approaches such as vaccination and antibody therapy. Antitumor immunity, however, is often negated by immune suppression mechanisms present in the tumor microenvironment. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological issues that could influence ovarian cancer outcome, including tumor antigens, endogenous immune responses, immune escape and new and developing immunotherapeutic strategies.
Collapse
|
39
|
Erskine CL, Krco CJ, Hedin KE, Borson ND, Kalli KR, Behrens MD, Heman-Ackah SM, von Hofe E, Wettstein PJ, Mohamadzadeh M, Knutson KL. MHC class II epitope nesting modulates dendritic cell function and improves generation of antigen-specific CD4 helper T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:316-24. [PMID: 21613617 DOI: 10.4049/jimmunol.1100658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4 Th cells are critical to the development of coordinated immune responses to infections and tumors. Th cells are activated through interactions of the TCR with MHC class II complexed with peptide. T cell activation is dependent on the density of MHC peptide complexes as well as the duration of interaction of the TCR with APCs. In this study, we sought to determine whether MHC class II peptides could be modified with amino acid sequences that facilitated uptake and presentation with the goal of improving Th cell activation in vitro and in vivo. A model epitope derived from the murine folate receptor α, a self- and tumor Ag, was modified at its carboxyl terminus with the invariant chain-derived Ii-Key peptide and at its N terminus with a peptide that enhances uptake of Ag by APC. Modification of a peptide resulted in enhanced generation of high-avidity murine folate receptor α T cells that persisted in vivo and homed to sites of Ag deposition. The nesting approach was epitope and species independent and specifically excluded expansion of CD4 regulatory T cells. The resulting Th cells were therapeutic, enhanced in vivo helper activity and had an increased ability to resist tolerizing immune microenvironments. In addition to improved immunoadjuvants, this epitope modification strategy may be useful for enhancing ex vivo and in vivo generation of Th cells for preventing and treating diseases.
Collapse
Affiliation(s)
- Courtney L Erskine
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, Goode EL, Kalli KR, Knutson KL. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. THE JOURNAL OF IMMUNOLOGY 2011; 186:6905-13. [PMID: 21551365 DOI: 10.4049/jimmunol.1100274] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.
Collapse
Affiliation(s)
- James Krempski
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Wei Xia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
42
|
Lorusso D, Pietragalla A, Mainenti S, Di Legge A, Amadio G, Scambia G. Emerging drugs for ovarian cancer. Expert Opin Emerg Drugs 2010; 15:635-52. [PMID: 20604741 DOI: 10.1517/14728214.2010.502888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Ovarian cancer has the highest mortality of all female reproductive tract cancers, which reflects both the absence of proven ovarian cancer screening tests and the development of drug-resistant cancer cell. Apart from varying the dosages, schedules, mode of delivery and combinations of existing drugs, efforts must continue to identify signaling pathways in tumor cells sufficiently different from normal cells that can be a target for maximizing tumor kill and minimizing toxicity. AREAS COVERED IN THIS REVIEW Some of the most important cellular pathways are analyzed and discussed and the most interesting clinical trials, both closed and ongoing, described. WHAT THE READER WILL GAIN The reader will gain a panoramic vision of all the most active drugs in clinical investigations in ovarian cancer. The reader will also better understand what the unresolved problems of molecular research are and how complicated the process 'from the bench to the bedside' is. TAKE HOME MESSAGE It is only with a strong commitment, cooperation and collaboration from the international ovarian cancer community that significant improvement in patient outcomes can be attained beyond the marginal gains achieved so far.
Collapse
Affiliation(s)
- Domenica Lorusso
- Catholic University of the Sacred Heart, Department of Gynecologic Oncology, Largo Agostino Gemelli 8, IT-00168 Rome.
| | | | | | | | | | | |
Collapse
|
43
|
Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, Knutson KL, Bergh J, Lidbrink E, Kiessling R. Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 2010; 8:53. [PMID: 20529245 PMCID: PMC2903523 DOI: 10.1186/1479-5876-8-53] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/07/2010] [Indexed: 11/24/2022] Open
Abstract
Background Adjuvant trastuzumab (Herceptin) treatment of breast cancer patients significantly improves their clinical outcome. Vaccination is an attractive alternative approach to provide HER-2/neu (Her2)-specific antibodies and may in addition concomitantly stimulate Her2-reactive T-cells. Here we report the first administration of a Her2-plasmid DNA (pDNA) vaccine in humans. Patients and Methods The vaccine, encoding a full-length signaling-deficient version of the oncogene Her2, was administered together with low doses of GM-CSF and IL-2 to patients with metastatic Her2-expressing breast carcinoma who were also treated with trastuzumab. Six of eight enrolled patients completed all three vaccine cycles. In the remaining two patients treatment was discontinued after one vaccine cycle due to rapid tumor progression or disease-related complications. The primary objective was the evaluation of safety and tolerability of the vaccine regimen. As a secondary objective, treatment-induced Her2-specific immunity was monitored by measuring antibody production as well as T-cell proliferation and cytokine production in response to Her2-derived antigens. Results No clinical manifestations of acute toxicity, autoimmunity or cardiotoxicity were observed after administration of Her2-pDNA in combination with GM-CSF, IL-2 and trastuzumab. No specific T-cell proliferation following in vitro stimulation of freshly isolated PBMC with recombinant human Her2 protein was induced by the vaccination. Immediately after all three cycles of vaccination no or even decreased CD4+ T-cell responses towards Her2-derived peptide epitopes were observed, but a significant increase of MHC class II restricted T-cell responses to Her2 was detected at long term follow-up. Since concurrent trastuzumab therapy was permitted, λ-subclass specific ELISAs were performed to specifically measure endogenous antibody production without interference by trastuzumab. Her2-pDNA vaccination induced and boosted Her2-specific antibodies that could be detected for several years after the last vaccine administration in a subgroup of patients. Conclusion This pilot clinical trial demonstrates that Her2-pDNA vaccination in conjunction with GM-CSF and IL-2 administration is safe, well tolerated and can induce long-lasting cellular and humoral immune responses against Her2 in patients with advanced breast cancer. Trial registration The trial registration number at the Swedish Medical Products Agency for this trial is Dnr151:785/2001.
Collapse
Affiliation(s)
- Håkan Norell
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Goode EL, Maurer MJ, Sellers TA, Phelan CM, Kalli KR, Fridley BL, Vierkant RA, Armasu SM, White KL, Keeney GL, Cliby WA, Rider DN, Kelemen LE, Jones MB, Peethambaram PP, Lancaster JM, Olson JE, Schildkraut JM, Cunningham JM, Hartmann LC. Inherited determinants of ovarian cancer survival. Clin Cancer Res 2010; 16:995-1007. [PMID: 20103664 DOI: 10.1158/1078-0432.ccr-09-2553] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Due to variation of outcome among cases, we sought to examine whether overall survival in ovarian cancer was associated with common inherited variants in 227 candidate genes from ovarian cancer-related pathways including angiogenesis, inflammation, detoxification, glycosylation, one-carbon transfer, apoptosis, cell cycle regulation, and cellular senescence. EXPERIMENTAL DESIGN Blood samples were obtained from 325 women with invasive epithelial ovarian cancer diagnosed at the Mayo Clinic from 1999 to 2006. During a median follow-up of 3.8 years (range, 0.1-8.6 years), 157 deaths were observed. Germline DNA was analyzed at 1,416 single nucleotide polymorphisms (SNP). For all patients, and for 203 with serous subtype, we assessed the overall significance of each gene and pathway, and estimated risk of death via hazard ratios (HR) and 95% confidence intervals (CI), adjusting for known prognostic factors. RESULTS Variation within angiogenesis was most strongly associated with survival time overall (P = 0.03) and among patients with serous cancer (P = 0.05), particularly for EIF2B5 rs4912474 (all patients HR, 0.69; 95% CI, 0.54-0.89; P = 0.004), VEGFC rs17697305 (serous subtype HR, 2.29; 95% CI, 1.34-3.92; P = 0.003), and four SNPs in VHL. Variation within the inflammation pathway was borderline significant (all patients, P = 0.09), and SNPs in CCR3, IL1B, IL18, CCL2, and ALOX5 which correlated with survival time are worthy of follow-up. CONCLUSION An extensive multiple-pathway assessment found evidence that inherited differences may play a role in outcome of ovarian cancer patients, particularly in genes within the angiogenesis and inflammation pathways. Our work supports efforts to target such mediators for therapeutic gain.
Collapse
Affiliation(s)
- Ellen L Goode
- Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Karyampudi L, Formicola C, Erskine CL, Maurer MJ, Ingle JN, Krco CJ, Wettstein PJ, Kalli KR, Fikes JD, Beebe M, Hartmann LC, Disis ML, Ferrone S, Ishioka G, Knutson KL. A degenerate HLA-DR epitope pool of HER-2/neu reveals a novel in vivo immunodominant epitope, HER-2/neu88-102. Clin Cancer Res 2010; 16:825-34. [PMID: 20103660 DOI: 10.1158/1078-0432.ccr-09-2781] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Over the past two decades, there has been significant interest in targeting HER-2/neu in immune-based approaches for the treatment of HER-2/neu+ cancers. For example, peptide vaccination using a CD8 T cell-activating HER-2/neu epitope (amino acids 369-377) is an approach that is being considered in advanced phase clinical trials. Studies have suggested that the persistence of HER-2/neu-specific CD8 T cells could be improved by incorporating human leukocyte antigen (HLA) class II epitopes in the vaccine. Our goal in this study was to identify broad coverage HLA-DR epitopes of HER-2/neu, an antigen that is highly expressed in a variety of carcinomas. EXPERIMENTAL DESIGN A combination of algorithms and HLA-DR-binding assays was used to identify HLA-DR epitopes of HER-2/neu antigen. Evidence of preexistent immunity in cancer patients against the identified epitopes was determined using IFN-gamma enzyme-linked immunosorbent spot (ELIspot) assay. RESULTS Eighty-four HLA-DR epitopes of HER-2/neu were predicted, 15 of which had high binding affinity for > or =11 common HLA-DR molecules. A degenerate pool of four HLA-DR-restricted 15-amino acid epitopes (p59, p88, p422, and p885) was identified, against which >58% of breast and ovarian cancer patients had preexistent T-cell immunity. All four epitopes are naturally processed by antigen-presenting cells. Hardy-Weinberg analysis showed that the pool is useful in approximately 84% of population. Lastly, in this degenerate pool, we identified a novel in vivo immunodominant HLA-DR epitope, HER-2/neu(88-102) (p88). CONCLUSION The broad coverage and natural immunity to this epitope pool suggests potential usefulness in HER-2/neu-targeting, immune-based therapies such as vaccines.
Collapse
|
46
|
Campos SM, Ghosh S. A current review of targeted therapeutics for ovarian cancer. JOURNAL OF ONCOLOGY 2010; 2010:149362. [PMID: 20069122 PMCID: PMC2804109 DOI: 10.1155/2010/149362] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 09/28/2009] [Indexed: 11/25/2022]
Abstract
Difficult to detect, ovarian cancer typically presents at an advanced stage. Significant progress has been achieved in the treatment of ovarian cancer with therapeutics focused on DNA replication or cell division. However, despite sensitivity to induction chemotherapy the majority of patients will develop recurrent disease. Conventional agents for recurrent disease offer little in terms of long-term responses. Various targeted therapeutics have been explored in the management of ovarian cancer. These include monoclonal antibodies to epidermal growth factor receptors, small molecule tyrosine kinase inhibitors, monoclonal antibodies directed at the vascular endothelial growth factor (bevacizumab), and the small tyrosine kinase inhibitors that target the vascular endothelial growth factor receptor. Recently, several other agents have come forth as potential therapeutic agents in the management of ovarian cancer. These include monoclonal antibodies to the folate receptor, triple angiokinase inhibitors, PARP inhibitors, aurora kinase inhibitors, inhibitors of the Hedgehog pathway, folate receptor antagonists, and MTOR inhibitors.
Collapse
Affiliation(s)
- Susana M. Campos
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sue Ghosh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Karyampudi L, Krco CJ, Kalli KR, Erskine CL, Hartmann LC, Goodman K, Ingle JN, Maurer MJ, Nassar A, Yu C, Disis ML, Wettstein PJ, Fikes JD, Beebe M, Ishioka G, Knutson KL. Identification of a broad coverage HLA-DR degenerate epitope pool derived from carcinoembryonic antigen. Cancer Immunol Immunother 2009; 59:161-71. [PMID: 19621224 DOI: 10.1007/s00262-009-0738-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/02/2009] [Indexed: 12/19/2022]
Abstract
CD4 T cells are important for anti-tumor immune responses. Aside from their role in the activation of CD8 T cells, CD4 T cells also mediate anti-tumor immune responses by recruiting innate immune effectors into the tumor microenvironment. Thus, the search for strategies to boost CD4 T cell immunity is an active area of research. Our goal in this study was to identify HLA-DR epitopes of carcinoembryonic antigen (CEA), a commonly over-expressed tumor antigen. HLA-DR epitopes of CEA were identified using the epitope prediction program, PIC (predicted IC(50)) and tested using in vitro HLA-DR binding assays. Following CEA epitope confirmation, IFN-gamma ELIspot assays were used to detect existing immunity against the HLA-DR epitope panel of CEA in breast and ovarian cancer patients. In vitro generated peptide-specific CD4 T cells were used to determine whether the epitopes are naturally processed from CEA protein. Forty-three epitopes of CEA were predicted, 15 of which had high binding affinity for 8 or more common HLA-DR molecules. A degenerate pool of four, HLA-DR restricted 15 amino acid epitopes (CEA.24, CEA.176/354, CEA.488, and CEA.653) consisting of two novel epitopes (CEA.24 and CEA.488) was identified against which 40% of breast and ovarian cancer patients had pre-existent T cell immunity. All four epitopes are naturally processed by antigen-presenting cells. Hardy-Weinberg analysis showed that the pool is useful in approximately 94% of patients. Patients with breast or ovarian cancer demonstrate pre-existent immune responses to the tumor antigen CEA. The degenerate pool of CEA peptides may be useful for augmenting CD4 T cell immunity.
Collapse
Affiliation(s)
- Lavakumar Karyampudi
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Molloy AM, Quadros EV, Sequeira JM, Troendle JF, Scott JM, Kirke PN, Mills JL. Lack of association between folate-receptor autoantibodies and neural-tube defects. N Engl J Med 2009; 361:152-60. [PMID: 19587340 PMCID: PMC4149290 DOI: 10.1056/nejmoa0803783] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND A previous report described the presence of autoantibodies against folate receptors in 75% of serum samples from women with a history of pregnancy complicated by a neural-tube defect, as compared with 10% of controls. We sought to confirm this finding in an Irish population, which traditionally has had a high prevalence of neural-tube defects. METHODS We performed two studies. Study 1 consisted of analysis of stored frozen blood samples collected from 1993 through 1994 from 103 mothers with a history of pregnancy complicated by a neural-tube defect (case mothers), 103 mothers with a history of pregnancy but no complication by a neural-tube defect (matched with regard to number of pregnancies and sampling dates), 58 women who had never been pregnant, and 36 men. Study 2, conducted to confirm that the storage of samples did not influence the folate-receptor autoantibodies, included fresh samples from 37 case mothers, 22 control mothers, 10 women who had never been pregnant, and 9 men. All samples were assayed for blocking and binding autoantibodies against folate receptors. RESULTS In Study 1, blocking autoantibodies were found in 17% of case mothers, as compared with 13% of control mothers (odds ratio, 1.54; 95% confidence interval [CI], 0.70 to 3.39), and binding autoantibodies in 29%, as compared with 32%, respectively (odds ratio, 0.82; 95% CI, 0.44 to 1.50). Study 2 showed similar results, indicating that sample degradation was unlikely. CONCLUSIONS The presence and titer of maternal folate-receptor autoantibodies were not significantly associated with a neural-tube defect-affected pregnancy in this Irish population.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
49
|
Berrocal-Zaragoza MI, Murphy MM, Ceruelo S, Quadros EV, Sequeira JM, Fernandez-Ballart JD. High milk consumers have an increased risk of folate receptor blocking autoantibody production but this does not affect folate status in Spanish men and women. J Nutr 2009; 139:1037-41. [PMID: 19282368 DOI: 10.3945/jn.108.102475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Folate receptor (FR)-blocking autoantibodies (FR-autoantibodies) have been reported in women with neural tube defect-affected pregnancies and subfertility and in children with progressive neurodevelopment disorders. We investigated their prevalence and association with folate status and milk intake in adults unexposed to folic acid fortification. A cross-sectional study of a randomly selected representative sample of a Spanish population (aged 18-75 y) stratified by age and gender was performed. Plasma and red cell folate, plasma cobalamin, fasting plasma total homocysteine (tHcy) concentration, methylenetetrahydrofolate reductase C677T polymorphism, and FR-autoantibody titer were determined in blood samples from 787 fasting participants. Lifestyle data were collected and milk intake estimated from a 3-d dietary record. FR-autoantibody prevalence was 7.2% [0.30 +/- 0.27 nmol (mean +/- SD) FR blocked/L], equally affecting men and women of all ages. Plasma and red cell folate and tHcy did not differ between carriers and noncarriers of FR-autoantibodies. Milk intake was higher in carriers (225 +/- 199 g/d) than in noncarriers (199 +/- 147 g/d) (P < 0.01). The risk of having FR-autoantibodies increased progressively with increasing quintile of milk intake and was significant in the highest quintile (> or =307 g/d) compared with the lowest (< or =67 g/d) [odds ratio (OR), 2.41 [95% CI: 1.02, 5.69]; P < 0.05; linear trend, P = 0.02]. We concluded that FR-autoantibodies occur in men and women of all ages and do not affect indicators of folate status such as plasma and red cell folate and tHcy. Higher milk intake is associated with increased risk of having FR-autoantibodies.
Collapse
Affiliation(s)
- Maria Isabel Berrocal-Zaragoza
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Tarragona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Figini M, Martin F, Ferri R, Luison E, Ripamonti E, Zacchetti A, Mortarino M, Di Cioccio V, Maurizi G, Allegretti M, Canevari S. Conversion of murine antibodies to human antibodies and their optimization for ovarian cancer therapy targeted to the folate receptor. Cancer Immunol Immunother 2009; 58:531-46. [PMID: 18704410 PMCID: PMC11030786 DOI: 10.1007/s00262-008-0575-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 07/28/2008] [Indexed: 12/16/2022]
Abstract
We previously developed murine and chimeric antibodies against a specific epithelial ovarian carcinoma (EOC) marker, named folate receptor (FR), and promising results were obtained in phase II trials. More recently, we successfully generated a completely human Fab fragment, C4, by conversion of one of the murine anti-FR antibodies to human antibody using phage display and guided selection. However, subsequent efforts to obtain C4 in a dimer format, which seems especially desirable for EOC locoregional treatment, resulted in a highly heterogeneous product upon natural dimerization and in a very poor production yield upon chemical dimerization by a non-hydrolyzable linker to a di-Fab-maleimide (DFM). We therefore designed, constructed and characterized a large Fab dual combinatorial human antibody phage display library obtained from EOC patients and potentially biased toward an anti-tumor response in an effort to obtain new anti-FR human antibodies suitable for therapy. Using this library and guiding the selection on FR-expressing cells with murine/human antibody chains, we generated four new human anti-FR antibody (AFRA) Fab fragments, one of which was genetically and chemically manipulated to obtain a chemical dimer, designated AFRA-DFM5.3, with high yield production and the capability for purification scaled-up to clinical grade. Overall affinity of AFRA-DFM5.3 was in the 2-digit nanomolar range, and immunohistochemistry indicated that the reagent recognized the FR expressed on EOC samples. (131)I-AFRA-DFM5.3 showed high immunoreactivity, in vitro stability and integrity, and specifically accumulated only in FR-expressing tumors in subcutaneous preclinical in vivo models. Overall, our studies demonstrate the successful conversion of murine to completely human anti-FR antibodies through the combined use of antibody phage display libraries biased toward an anti-tumor response, guided selection and chain shuffling, and point to the suitability of AFRA5.3 for future clinical application in ovarian cancer.
Collapse
Affiliation(s)
- Mariangela Figini
- Unit of Molecular Therapies, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|