1
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
2
|
Deshmukh V, Pathan NS, Haldar N, Nalawade S, Narwade M, Gajbhiye KR, Gajbhiye V. Exploring intranasal drug delivery via nanocarriers: A promising glioblastoma therapy. Colloids Surf B Biointerfaces 2024; 245:114285. [PMID: 39366109 DOI: 10.1016/j.colsurfb.2024.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Glioblastoma is one of the most recurring types of glioma, having the highest mortality rate among all other gliomas. Traditionally, the standard course of treatment for glioblastoma involved maximum surgical resection, followed by chemotherapy and radiation therapy. Nanocarriers have recently focused on enhancing the chemotherapeutic administration to the brain to satisfy unmet therapeutic requirements for treating brain-related disorders. Due to the significant drawbacks and high recurrence rates of gliomas, intranasal administration of nanocarrier systems presents several advantages. These include low toxicity, non-invasiveness, and the ability to cross the blood-brain barrier. By customizing their size, encasing them with mucoadhesive agents, or undergoing surface modification that encourages movement over the nose's mucosa, we can exceptionally engineer nanocarriers for intranasal administration. Olfactory and trigeminal nerves absorb drugs administered nasally and transport them to the brain, serving as the primary delivery mechanism for nose-to-brain administration. This review sums up the latest developments in chemotherapeutic nanocarriers, such as metallic nanoparticles, polymeric nanoparticles, nanogels, nano vesicular carriers, genetic material-based nanocarriers, and polymeric micelles. These nanocarriers have demonstrated efficient drug delivery from the nose to the brain, effectively overcoming mucociliary clearance. However, challenges persist, such as limitations in targeted chemotherapy and restricted drug loading capacity for intranasal administration. Additionally, the review addresses regulatory considerations and prospects for these innovative drug delivery systems.
Collapse
Affiliation(s)
- Vishawambhar Deshmukh
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India
| | - Nida Sayed Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Niladri Haldar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Shubhangi Nalawade
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India
| | - Mahavir Narwade
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India
| | - Kavita R Gajbhiye
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| |
Collapse
|
3
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
4
|
du Chatinier A, Velilla IQ, Meel MH, Hoving EW, Hulleman E, Metselaar DS. Microglia in pediatric brain tumors: The missing link to successful immunotherapy. Cell Rep Med 2023; 4:101246. [PMID: 37924816 PMCID: PMC10694606 DOI: 10.1016/j.xcrm.2023.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
Brain tumors are the leading cause of cancer-related mortality in children. Despite the development of immunotherapeutic strategies for adult brain tumors, progress in pediatric neuro-oncology has been hindered by the complex and poorly understood nature of the brain's immune system during early development, a phase that is critical for the onset of many pediatric brain tumors. A defining characteristic of these tumors is the abundance of microglia, the resident immune cells of the central nervous system. In this review, we explore the concept of microglial diversity across brain regions and throughout development and discuss how their maturation stage may contribute to tumor growth in children. We also summarize the current knowledge on the roles of microglia in common pediatric brain tumor entities and provide examples of myeloid-based immunotherapeutic strategies. Our review underscores the importance of microglial plasticity in pediatric brain tumors and its significance for developing effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Irene Querol Velilla
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Michaël Hananja Meel
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Eelco Wieger Hoving
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Dennis Serge Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands.
| |
Collapse
|
5
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
6
|
Brassesco MS, Roberto GM, Delsin LE, Baldissera GC, Medeiros M, Umezawa K, Tone LG. A foretaste for pediatric glioblastoma therapy: targeting the NF-kB pathway with DHMEQ. Childs Nerv Syst 2023; 39:1519-1528. [PMID: 36807999 DOI: 10.1007/s00381-023-05878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE While pediatric glioblastomas are molecularly distinct from adult counterparts, the activation of NF-kB is partially shared by both subsets, playing key roles in tumor propagation and treatment response. RESULTS We show that, in vitro, dehydroxymethylepoxyquinomicin (DHMEQ) impairs growth and invasiveness. Xenograft response to the drug alone varied according to the model, being more effective in KNS42-derived tumors. In combination, SF188-derived tumors were more sensitive to temozolomide while KNS42-derived tumors responded better to the combination with radiotherapy, with continued tumor regression. CONCLUSION Taken together, our results strengthen the potential usefulness of NF-kB inhibition in future therapeutic strategies to overcome this incurable disease.
Collapse
Affiliation(s)
- María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| | - Gabriela Molinari Roberto
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Lara Elis Delsin
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Gabriel Carlos Baldissera
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Gouda MB, Hassan NM, Kandil EI, Haroun RAH. Pathogenetic Significance of YBX1 Expression in Acute Myeloid Leukemia Relapse. Curr Res Transl Med 2022; 70:103336. [DOI: 10.1016/j.retram.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
8
|
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel) 2022; 14:2412. [PMID: 35626018 PMCID: PMC9139611 DOI: 10.3390/cancers14102412] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies, with a median overall survival of approximately 15 months. In this review, we analyze the pathogenesis of GBM, as well as epidemiological data, by age, gender, and tumor location. The data indicate that GBM is the higher-grade primary brain tumor and is significantly more common in men. The risk of being diagnosed with glioma increases with age, and median survival remains low, despite medical advances. In addition, it is difficult to determine clearly how GBM is influenced by stimulants, certain medications (e.g., NSAIDs), cell phone use, and exposure to heavy metals.
Collapse
Affiliation(s)
- Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48 St., 71-210 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| |
Collapse
|
9
|
Da-Veiga MA, Rogister B, Lombard A, Neirinckx V, Piette C. Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers (Basel) 2022; 14:cancers14092296. [PMID: 35565425 PMCID: PMC9099564 DOI: 10.3390/cancers14092296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Pediatric high-grade glioma (pHGG) has a dismal prognosis in which the younger the patient, the more restricted the treatments are, in regard to the incurred risks. Current therapies destroy many tumor cells but fail to target the highly malignant glioma stem cells (GSCs) that adapt quickly to give rise to recurring, treatment-resistant cancers. Despite a lack of consensus around an efficient detection, GSCs are well described in adult brain tumors but remain poorly investigated in pediatric cases, mostly due to their rarity. An improved knowledge about GSC roles in pediatric tumors would provide a key leverage towards the elimination of this sub-population, based on targeted treatments. The aim of this review is to sum up the state of art about GSCs in pHGG. Abstract In children, high-grade gliomas (HGG) and diffuse midline gliomas (DMG) account for a high proportion of death due to cancer. Glioma stem cells (GSCs) are tumor cells in a specific state defined by a tumor-initiating capacity following serial transplantation, self-renewal, and an ability to recapitulate tumor heterogeneity. Their presence was demonstrated several decades ago in adult glioblastoma (GBM), and more recently in pediatric HGG and DMG. In adults, we and others have previously suggested that GSCs nest into the subventricular zone (SVZ), a neurogenic niche, where, among others, they find shelter from therapy. Both bench and bedside evidence strongly indicate a role for the GSCs and the SVZ in GBM progression, fostering the development of innovative targeting treatments. Such new therapeutic approaches are of particular interest in infants, in whom standard therapies are often limited due to the risk of late effects. The aim of this review is to describe current knowledge about GSCs in pediatric HGG and DMG, i.e., their characterization, the models that apply to their development and maintenance, the specific signaling pathways that may underlie their activity, and their specific interactions with neurogenic niches. Finally, we will discuss the clinical relevance of these observations and the therapeutic advantages of targeting the SVZ and/or the GSCs in infants.
Collapse
Affiliation(s)
- Marc-Antoine Da-Veiga
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Neurology, CHU of Liège, 4000 Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Pediatrics, Division of Hematology-Oncology, CHU Liège, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
10
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
11
|
Li S, Gai X, Myint SS, Arroyo K, Morimoto L, Metayer C, de Smith AJ, Walsh KM, Wiemels JL. Mitochondrial 1555 G>A variant as a potential risk factor for childhood glioblastoma. Neurooncol Adv 2022; 4:vdac045. [PMID: 35571988 PMCID: PMC9092641 DOI: 10.1093/noajnl/vdac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Childhood glioblastoma multiforme (GBM) is a highly aggressive disease with low survival, and its etiology, especially concerning germline genetic risk, is poorly understood. Mitochondria play a key role in putative tumorigenic processes relating to cellular oxidative metabolism, and mitochondrial DNA variants were not previously assessed for association with pediatric brain tumor risk. Methods We conducted an analysis of 675 mitochondrial DNA variants in 90 childhood GBM cases and 2789 controls to identify enrichment of mitochondrial variant associated with GBM risk. We also performed this analysis for other glioma subtypes including pilocytic astrocytoma. Nuclear-encoded mitochondrial gene variants were also analyzed. Results We identified m1555 A>G was significantly associated with GBM risk (adjusted OR 29.30, 95% CI 5.25-163.4, P-value 9.5 X 10-4). No association was detected for other subtypes. Haplotype analysis further supported the independent risk contributed by m1555 G>A, instead of a haplogroup joint effect. Nuclear-encoded mitochondrial gene variants identified significant associations in European (rs62036057 in WWOX, adjusted OR = 2.99, 95% CI 1.88-4.75, P-value = 3.42 X 10-6) and Hispanic (rs111709726 in EFHD1, adjusted OR = 3.57, 95% CI 1.99-6.40, P-value = 1.41 X 10-6) populations in ethnicity-stratified analyses. Conclusion We report for the first time a potential role played by a functional mitochondrial ribosomal RNA variant in childhood GBM risk, and a potential role for both mitochondrial and nuclear-mitochondrial DNA polymorphisms in GBM tumorigenesis. These data implicate cellular oxidative metabolic capacity as a contributor to the etiology of pediatric glioblastoma.
Collapse
Affiliation(s)
- Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Katti Arroyo
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Kyle M Walsh
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Guens GP. YB-1 Protein in Breast Cancer (Scientific and Personal Meetings with Professor Ovchinnikov). BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S86-S47. [PMID: 35501988 DOI: 10.1134/s0006297922140073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
In the article, the author examines the properties of Y-box-binding protein (YB-1) and expression of the YBX-1 gene in various malignant tumors and provides the data from her own prospective study in breast cancer patients. YB-1 is a member of the highly conserved family of cold shock proteins with multiple functions in the cytoplasm and cell nucleus. YB-1 is involved in embryogenesis; it ensures cell proliferation and protects cell from the action of various aggressive environmental factors. In adult organisms, YB-1 is involved in a variety of cellular functions that regulate malignant phenotype in several types of tumors. YB-1 is a molecular marker of tumor progression that can be used in clinical practice as both prognostic factor and a target for anticancer therapy. Our prospective clinical study showed that expression of YB-1 mRNA is an independent prognostic factor, as breast cancer patients expressing YB-1 have a lower disease-free survival rate, regardless of the tumor stage and biological subtype. We recommend determining the level of YB-1 mRNA expression as a prognostic test in breast cancer patients.
Collapse
Affiliation(s)
- Gelena P Guens
- Department of Oncology and Radiation Therapy, Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473, Russia.
| |
Collapse
|
13
|
Gonçalves FG, Viaene AN, Vossough A. Advanced Magnetic Resonance Imaging in Pediatric Glioblastomas. Front Neurol 2021; 12:733323. [PMID: 34858308 PMCID: PMC8631300 DOI: 10.3389/fneur.2021.733323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Al Shudifat A, Al Suqi H, Soub K, Al Nemrawi L, Abu Jaber M, Al Barbarawi M, Shewaikani N, El Adwan Y, Al Refaei A. AB Blood Group Confers Higher Risk for Primary Brain Tumors in Pediatrics. Risk Manag Healthc Policy 2021; 14:4031-4035. [PMID: 34611451 PMCID: PMC8486269 DOI: 10.2147/rmhp.s322546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Our current study investigates the relationship between ABO blood groups and brain tumor incidence in the Jordanian pediatric population in a case-controlled manner. Patients and Methods This case-control study targeted pediatric primary brain tumor patients and tumor-free controls. Cases included patients younger than 18 when given a histologically confirmed diagnosis with a primary brain tumor, ascertained from two tertiary hospitals in Jordan. Controls were age- and gender-matched to cases and acquired from JUH pediatric clinics, with an exclusion for all patients with a personal history of tumors. Through using available records and calling guardians, our team obtained patients’ and controls’ blood groups. Results Our case control included 81 (35.4%) pediatric primary brain tumor patients and age- and gender-matched tumor-free controls 148 (64.6%). When compared to O blood group, patients with A and B blood groups were not at higher risk of developing pediatric primary brain tumors (P=0.742, P=1.000, respectively). However, Chi-square analysis revealed a 2.79-fold higher risk for pediatric primary brain tumors in AB blood group patients (P=0.024). Gender-specific analysis revealed a 3.42-fold higher risk for pediatric brain tumors in AB blood group males when compared to O blood group males. Conclusion This work represents the first published study on the association between blood groups and pediatric brain tumors. With future research with larger samples and control of confounding factors, AB blood group may become a more established risk factor for pediatric brain tumors, aiding in screening.
Collapse
Affiliation(s)
| | - Hala Al Suqi
- School of Medicine, University of Jordan, Amman, Jordan
| | - Kutada Soub
- Department of Neurosurgery, University of Jordan, Amman, Jordan
| | | | | | - Mohammad Al Barbarawi
- Department of Neurosurgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | |
Collapse
|
15
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
16
|
Zhang GL, Wang CF, Qian C, Ji YX, Wang YZ. Role and mechanism of neural stem cells of the subventricular zone in glioblastoma. World J Stem Cells 2021; 13:877-893. [PMID: 34367482 PMCID: PMC8316865 DOI: 10.4252/wjsc.v13.i7.877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Gui-Long Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Chuan-Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Cheng Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Yun-Xiang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Ye-Zhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| |
Collapse
|
17
|
Stojanovska V, Shah A, Woidacki K, Fischer F, Bauer M, Lindquist JA, Mertens PR, Zenclussen AC. YB-1 Is Altered in Pregnancy-Associated Disorders and Affects Trophoblast in Vitro Properties via Alternation of Multiple Molecular Traits. Int J Mol Sci 2021; 22:ijms22137226. [PMID: 34281280 PMCID: PMC8269420 DOI: 10.3390/ijms22137226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes between the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while they were increased in preeclampsia and unchanged in spontaneous abortions when compared to normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overexpression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation, while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The invasion and migration properties were affected at different degrees among the trophoblast cell lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflammation was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated, leads to trophoblast disadvantage that at least in part is mediated by NF-κB.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
- Correspondence: (V.S.); (A.C.Z.)
| | - Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Katja Woidacki
- Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (J.A.L.); (P.R.M.)
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research-UFZ-, 04318 Leipzig, Germany; (F.F.); (M.B.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Correspondence: (V.S.); (A.C.Z.)
| |
Collapse
|
18
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
19
|
Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, Colak O, Ozcan F, Gundem E, Elcim Y, Dirican B, Beyzadeoglu M. Concise review of stereotactic irradiation for pediatric glial neoplasms: Current concepts and future directions. World J Methodol 2021; 11:61-74. [PMID: 34026579 PMCID: PMC8127424 DOI: 10.5662/wjm.v11.i3.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Brain tumors, which are among the most common solid tumors in childhood, remain a leading cause of cancer-related mortality in pediatric population. Gliomas, which may be broadly categorized as low grade glioma and high grade glioma, account for the majority of brain tumors in children. Expectant management, surgery, radiation therapy (RT), chemotherapy, targeted therapy or combinations of these modalities may be used for management of pediatric gliomas. Several patient, tumor and treatment-related characteristics including age, lesion size, grade, location, phenotypic and genotypic features, symptomatology, predicted outcomes and toxicity profile of available therapeutic options should be considered in decision making for optimal treatment. Management of pediatric gliomas poses a formidable challenge to the physicians due to concerns about treatment induced toxicity. Adverse effects of therapy may include neurological deficits, hemiparesis, dysphagia, ataxia, spasticity, endocrine sequelae, neurocognitive and communication impairment, deterioration in quality of life, adverse socioeconomic consequences, and secondary cancers. Nevertheless, improved understanding of molecular pathology and technological advancements may pave the way for progress in management of pediatric glial neoplasms. Multidisciplinary management with close collaboration of disciplines including pediatric oncology, surgery, and radiation oncology is warranted to achieve optimal therapeutic outcomes. In the context of RT, stereotactic irradiation is a viable treatment modality for several central nervous system disorders and brain tumors. Considering the importance of minimizing adverse effects of irradiation, radiosurgery has attracted great attention for clinical applications in both adults and children. Radiosurgical applications offer great potential for improving the toxicity profile of radiation delivery by focused and precise targeting of well-defined tumors under stereotactic immobilization and image guidance. Herein, we provide a concise review of stereotactic irradiation for pediatric glial neoplasms in light of the literature.
Collapse
Affiliation(s)
- Omer Sager
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Ferrat Dincoglan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Selcuk Demiral
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Bora Uysal
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Hakan Gamsiz
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Onurhan Colak
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Fatih Ozcan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Esin Gundem
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Yelda Elcim
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Bahar Dirican
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Murat Beyzadeoglu
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| |
Collapse
|
20
|
Y-Box Binding Protein-1: A Neglected Target in Pediatric Brain Tumors? Mol Cancer Res 2020; 19:375-387. [DOI: 10.1158/1541-7786.mcr-20-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
|
21
|
Sangermano F, Delicato A, Calabrò V. Y box binding protein 1 (YB-1) oncoprotein at the hub of DNA proliferation, damage and cancer progression. Biochimie 2020; 179:205-216. [PMID: 33058958 DOI: 10.1016/j.biochi.2020.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The Y Box binding protein 1 (YB-1) belongs to the highly conserved Cold Shock Domain protein family and is a major component of messenger ribonucleoprotein particles (mRNPs) in various organisms and cells. Cold Shock proteins are multifunctional nucleic acids binding proteins involved in a variety of cellular functions. Biological activities of YB-1 range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. The role of YB-1 in malignant cell transformation and fate transition is the subject of intensive investigation. Besides, emerging evidence indicates that YB-1 participates in several DNA damage repair pathways as a non-canonical DNA repair factor thus pointing out that the protein can allow cancer cells to evade conventional anticancer therapies and avoid cell death. Here, we will attempt to collect and summarize the current knowledge on this subject and provide the basis for further lines of inquiry.
Collapse
Affiliation(s)
- Felicia Sangermano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy.
| | - Antonella Delicato
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
22
|
Kloetgen A, Duggimpudi S, Schuschel K, Hezaveh K, Picard D, Schaal H, Remke M, Klusmann JH, Borkhardt A, McHardy AC, Hoell JI. YBX1 Indirectly Targets Heterochromatin-Repressed Inflammatory Response-Related Apoptosis Genes through Regulating CBX5 mRNA. Int J Mol Sci 2020; 21:ijms21124453. [PMID: 32585856 PMCID: PMC7352269 DOI: 10.3390/ijms21124453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastomas arise from undifferentiated precursor cells in the cerebellum and account for about 20% of all solid brain tumors during childhood; standard therapies include radiation and chemotherapy, which oftentimes come with severe impairment of the cognitive development of the young patients. Here, we show that the posttranscriptional regulator Y-box binding protein 1 (YBX1), a DNA- and RNA-binding protein, acts as an oncogene in medulloblastomas by regulating cellular survival and apoptosis. We observed different cellular responses upon YBX1 knockdown in several medulloblastoma cell lines, with significantly altered transcription and subsequent apoptosis rates. Mechanistically, PAR-CLIP for YBX1 and integration with RNA-Seq data uncovered direct posttranscriptional control of the heterochromatin-associated gene CBX5; upon YBX1 knockdown and subsequent CBX5 mRNA instability, heterochromatin-regulated genes involved in inflammatory response, apoptosis and death receptor signaling were de-repressed. Thus, YBX1 acts as an oncogene in medulloblastoma through indirect transcriptional regulation of inflammatory genes regulating apoptosis and represents a promising novel therapeutic target in this tumor entity.
Collapse
Affiliation(s)
- Andreas Kloetgen
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
- Correspondence:
| | - Sujitha Duggimpudi
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Konstantin Schuschel
- Department of Pediatrics 1, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (K.S.); (J.-H.K.)
| | - Kebria Hezaveh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Jan-Henning Klusmann
- Department of Pediatrics 1, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (K.S.); (J.-H.K.)
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Alice C. McHardy
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Jessica I. Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
- Department of Pediatrics 1, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (K.S.); (J.-H.K.)
| |
Collapse
|
23
|
Tan LQ, Nagaputra JC, Soh SY, Ng LP, Low DCY, Low SYY. Extraneural metastatic paediatric glioblastoma: Case report and literature review. J Clin Neurosci 2020; 76:246-248. [PMID: 32278517 DOI: 10.1016/j.jocn.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
The incidence of paediatric glioblastoma is uncommon in comparison to their adult counterpart. Even more infrequent are extraneural metastases in glioblastoma. A previously well 14-year-old female presented with progressive right hemiparesis secondary to a left fronto-temporal lobe glioblastoma (WHO IV). She underwent successful gross total resection for her brain tumour. Prior to commencement of her adjuvant treatment, she developed tumour recurrence associated with intra-lesional haemorrhage. Although she underwent a second surgery, the patient developed bilateral malignant pleural effusion secondary to extraneural pulmonary metastases. Early awareness of its existence enables prompt diagnosis for this devastating disease. The authors emphasize the urgent need for international collaborations to work together for children affected by this challenging brain tumour.
Collapse
Affiliation(s)
- Leanne Q Tan
- Department of Neurosurgery, National Neuroscience Institute, Singapore
| | - Jerry C Nagaputra
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Shui Yen Soh
- Paediatric Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore
| | - Lee Ping Ng
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore
| | - David C Y Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Neurosurgical Service, KK Women's and Children's Hospital, Singapore; SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore
| | - Sharon Y Y Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Neurosurgical Service, KK Women's and Children's Hospital, Singapore; SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore; VIVA-KKH Paediatric Brain and Solid Tumours Laboratory, Singapore.
| |
Collapse
|
24
|
Pulvinar Locus is Highly Relevant to Patients' Outcomes in Surgically Resected Thalamic Gliomas in Children. World Neurosurg 2019; 134:e530-e539. [PMID: 31704359 DOI: 10.1016/j.wneu.2019.10.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Thalamic gliomas in children are less suitable for surgical resection because of their location. In cases of unavoidable resection, careful surgical planning in addition to histology and extent of resection affects prognosis. METHODS A cohort of 10 pediatric patients with thalamic glioma underwent surgical resection at our department. The predominant location of tumor origins in the thalamus was defined in imaging studies. Histopathology was determined (retrospectively in a subset) according to the World Health Organization classification 2016, including the newly established type of "diffuse midline glioma, H3 K27M-mutant." RESULTS Three low-grade gliomas (grade I/II) and 7 high-grade gliomas (grade III/IV) were identified. The mean follow-up period was 49.8 months. All 3 low-grade gliomas did not recur (progression-free survival, 58.3 months). Six of 7 high-grade gliomas recurred, and the patients died of the primary disease (overall survival, 28.1 months). Poor outcomes, especially when located at the pulvinar region, were noticeable, with strong predictive power for poor prognosis (P = 0.0018). The presence of H3 K27M mutation and pulvinar location were closely associated (P = 0.0036). Four of 5 patients with pulvinar region tumors developed dissemination and died of the primary disease. CONCLUSIONS Pulvinar location is specifically associated with a high rate of malignancy in histology, the presence of H3 K27M mutation, and dissemination at an early disease stage. This association suggests that a distinct biological profile affects prognosis depending on location within the thalamus, especially the pulvinar. We report that tumor location is highly relevant to prognosis and should be taken into consideration when planning treatment.
Collapse
|
25
|
Garcia-Fabiani MB, Comba A, Kadiyala P, Haase S, Núñez FJ, Altshuler D, Lowenstein PR, Castro MG. Isolation and characterization of immune cells from the tumor microenvironment of genetically engineered pediatric high-grade glioma models using the sleeping beauty transposon system. Methods Enzymol 2019; 632:369-388. [PMID: 32000905 DOI: 10.1016/bs.mie.2019.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common malignant brain tumors in the pediatric population. Even though great efforts have been made to understand their distinctive molecular characteristics, there has not been any improvements in the median survival in decades. In children, high-grade glial tumors have a median survival of 9-15 months. It has recently been demonstrated that pediatric high-grade gliomas (pHGG) are biologically and molecularly different from the adult counterparts, which could explain why conventional treatments universally fail. The development of an in vivo pHGG model harboring the specific genetic alterations encountered in pediatric gliomas is imperative in order to study the molecular basis that drives the progression and aggressiveness of these tumors. It would also enable harnessing these results for the development of novel therapeutic approaches. Our lab has implemented a method to induce brain tumors using transposon-mediated integration of plasmid DNA into cells of the subventricular zone of neonatal mouse brain. One of the main advantages of this method is that tumors are induced by altering the genome of the host cells, allowing us to recapitulate the salient features of the human disease. In this chapter we describe a method to isolate two cell populations from tumors generated in situ in mice, i.e., one population enriched in tumor cells and another population enriched in CD45+ cells. We also present methodologies as to how tumor infiltrating immune cells can be phenotypically characterized using flow cytometry.
Collapse
Affiliation(s)
- Maria Belen Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Felipe Javier Núñez
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - David Altshuler
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, MI, United States.
| |
Collapse
|
26
|
Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, De Jay N, Deshmukh S, Chen CCL, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 2019; 10:1262. [PMID: 30890717 PMCID: PMC6425035 DOI: 10.1038/s41467-019-09140-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 01/16/2023] Open
Abstract
Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice. Lysine27-to-methionine mutations in histone H3 genes (H3K27M) occur in a subgroup of gliomas and decrease genome-wide H3K27 trimethylation. Here the authors utilise primary H3K27M tumour lines and isogenic CRISPR-edited controls and show that H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3.
Collapse
Affiliation(s)
- Ashot S Harutyunyan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Haifen Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | | | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.,Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Shriya Deshmukh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Jad Belle
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Gael Cagnone
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Warren A Cheung
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.,Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | | | - Denise Bechet
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Damien Faury
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Melissa K McConechy
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Manav Pathania
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, London, WCE1 6DD, United Kingdom
| | - Siddhant U Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | - Alexandre Montpetit
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, London, WCE1 6DD, United Kingdom.,Nuclear Function in CNS pathophysiology, German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.,Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.,Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada. .,Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada.
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada. .,McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
27
|
Spinelli C, Adnani L, Choi D, Rak J. Extracellular Vesicles as Conduits of Non-Coding RNA Emission and Intercellular Transfer in Brain Tumors. Noncoding RNA 2018; 5:ncrna5010001. [PMID: 30585246 PMCID: PMC6468529 DOI: 10.3390/ncrna5010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) species have emerged in as molecular fingerprints and regulators of brain tumor pathogenesis and progression. While changes in ncRNA levels have been traditionally regarded as cell intrinsic there is mounting evidence for their extracellular and paracrine function. One of the key mechanisms that enables ncRNA to exit from cells is their selective packaging into extracellular vesicles (EVs), and trafficking in the extracellular space and biofluids. Vesicular export processes reduce intracellular levels of specific ncRNA in EV donor cells while creating a pool of EV-associated ncRNA in the extracellular space and biofluids that enables their uptake by other recipient cells; both aspects have functional consequences. Cancer cells produce several EV subtypes (exosomes, ectosomes), which differ in their ncRNA composition, properties and function. Several RNA biotypes have been identified in the cargo of brain tumor EVs, of which microRNAs are the most studied, but other species (snRNA, YRNA, tRNA, and lncRNA) are often more abundant. Of particular interest is the link between transforming oncogenes and the biogenesis, cargo, uptake and function of tumor-derived EV, including EV content of oncogenic RNA. The ncRNA repertoire of EVs isolated from cerebrospinal fluid and serum is being developed as a liquid biopsy platform in brain tumors.
Collapse
Affiliation(s)
- Cristiana Spinelli
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Lata Adnani
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Dongsic Choi
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
28
|
The unexpected role of histones in childhood brain cancer. Nature 2018; 561:S56-S58. [PMID: 30258160 DOI: 10.1038/d41586-018-06712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Li J, Eberwine J. The successes and future prospects of the linear antisense RNA amplification methodology. Nat Protoc 2018; 13:811-818. [PMID: 29599441 PMCID: PMC7086549 DOI: 10.1038/nprot.2018.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022]
Abstract
This Perspective discusses the development of the linear amplified RNA amplification technique over the last 25 years, and future applications of this important and versatile methodology. It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.
Collapse
Affiliation(s)
- Jifen Li
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Eberwine
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
The therapeutic potential of targeting the PI3K pathway in pediatric brain tumors. Oncotarget 2018; 8:2083-2095. [PMID: 27926496 PMCID: PMC5356782 DOI: 10.18632/oncotarget.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system tumors are the most common cancer type in children and the leading cause of cancer related deaths. There is therefore a need to develop novel treatments. Large scale profiling studies have begun to identify alterations that could be targeted therapeutically, including the phosphoinositide 3-kinase (PI3K) signaling pathway, which is one of the most commonly activated pathways in cancer with many inhibitors under clinical development. PI3K signaling has been shown to be aberrantly activated in many pediatric CNS neoplasms. Pre-clinical analysis supports a role for PI3K signaling in the control of tumor growth, survival and migration as well as enhancing the cytotoxic effects of current treatments. Based on this evidence agents targeting PI3K signaling have begun to be tested in clinical trials of pediatric cancer patients. Overall, targeting the PI3K pathway presents as a promising strategy for the treatment of pediatric CNS tumors. In this review we examine the genetic alterations found in the PI3K pathway in pediatric CNS tumors and the pathological role it plays, as well as summarizing the current pre-clinical and clinical data supporting the use of PI3K pathway inhibitors for the treatment of these tumors.
Collapse
|
31
|
Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, Henderson S, Mikael LG, Richard-Londt A, Zhang Y, Costa JR, Hébert S, Khazaei S, Ibrahim NS, Herrero J, Riccio A, Albrecht S, Ketteler R, Brandner S, Kleinman CL, Jabado N, Salomoni P. H3.3 K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell 2017; 32:684-700.e9. [PMID: 29107533 PMCID: PMC5687892 DOI: 10.1016/j.ccell.2017.09.014] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023]
Abstract
Gain-of-function mutations in histone 3 (H3) variants are found in a substantial proportion of pediatric high-grade gliomas (pHGG), often in association with TP53 loss and platelet-derived growth factor receptor alpha (PDGFRA) amplification. Here, we describe a somatic mouse model wherein H3.3K27M and Trp53 loss alone are sufficient for neoplastic transformation if introduced in utero. H3.3K27M-driven lesions are clonal, H3K27me3 depleted, Olig2 positive, highly proliferative, and diffusely spreading, thus recapitulating hallmark molecular and histopathological features of pHGG. Addition of wild-type PDGFRA decreases latency and increases tumor invasion, while ATRX knockdown is associated with more circumscribed tumors. H3.3K27M-tumor cells serially engraft in recipient mice, and preliminary drug screening reveals mutation-specific vulnerabilities. Overall, we provide a faithful H3.3K27M-pHGG model which enables insights into oncohistone pathogenesis and investigation of future therapies.
Collapse
Affiliation(s)
- Manav Pathania
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Nicola Maestro
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Ashot S Harutyunyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Justyna Nitarska
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | - Pirasteh Pahlavan
- Nuclear Function Group, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, Bonn 53127, Germany
| | - Stephen Henderson
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Leonie G Mikael
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Ying Zhang
- UCL Institute of Neurology, London WC1N 3BG, UK
| | - Joana R Costa
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | - Steven Hébert
- The Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Sima Khazaei
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | - Steffen Albrecht
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | | | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; The Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK; Nuclear Function Group, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, Bonn 53127, Germany.
| |
Collapse
|
32
|
Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ, Becher OJ, Cho YJ, Gupta N, Hawkins C, Hargrave D, Haas-Kogan DA, Jabado N, Li XN, Mueller S, Nicolaides T, Packer RJ, Persson AI, Phillips JJ, Simonds EF, Stafford JM, Tang Y, Pfister SM, Weiss WA. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 2017; 19:153-161. [PMID: 27282398 PMCID: PMC5464243 DOI: 10.1093/neuonc/now101] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022] Open
Abstract
High-grade gliomas in children are different from those that arise in adults. Recent collaborative molecular analyses of these rare cancers have revealed previously unappreciated connections among chromatin regulation, developmental signaling, and tumorigenesis. As we begin to unravel the unique developmental origins and distinct biological drivers of this heterogeneous group of tumors, clinical trials need to keep pace. It is important to avoid therapeutic strategies developed purely using data obtained from studies on adult glioblastoma. This approach has resulted in repetitive trials and ineffective treatments being applied to these children, with limited improvement in clinical outcome. The authors of this perspective, comprising biology and clinical expertise in the disease, recently convened to discuss the most effective ways to translate the emerging molecular insights into patient benefit. This article reviews our current understanding of pediatric high-grade glioma and suggests approaches for innovative clinical management.
Collapse
Affiliation(s)
- Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Matthias A Karajannis
- Division of Pediatric Hematology/Oncology, NYU Langone Medical Center, New York, NY, USA
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Centre, Heidelberg, Germany
| | - Mark W Kieran
- Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michelle Monje
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Oren J Becher
- Departments of Pediatrics and Pathology, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Yoon-Jae Cho
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California, USA
| | - Nalin Gupta
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Darren Hargrave
- Neuro-oncology and Experimental Therapeutics, Great Ormond Street Hospital for Children, London, UK
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, Canada
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Sabine Mueller
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Theo Nicolaides
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, District of Columbia, USA
| | - Anders I Persson
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Erin F Simonds
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - James M Stafford
- Department of Biochemistry, NYU Langone Medical Center, New York, New York, USA
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Centre, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - William A Weiss
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
33
|
Maurya PK, Mishra A, Yadav BS, Singh S, Kumar P, Chaudhary A, Srivastava S, Murugesan SN, Mani A. Role of Y Box Protein-1 in cancer: As potential biomarker and novel therapeutic target. J Cancer 2017; 8:1900-1907. [PMID: 28819388 PMCID: PMC5556654 DOI: 10.7150/jca.17689] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Y-box binding protein (YB-1) is known to be a multifunctional transcription and translation factor during expression of several proteins. It is a vital oncoprotein that regulates cancer cell progression and proliferation. YB-1 is over-expressed in various human cancers such as breast cancer, colon cancer, lung cancer, gastric cancer, oesophageal cancer and glioblastoma. Nuclear expression of YB-1 is found to be associated with multidrug resistance and cancer cell progression. YB-1 is reported to regulate many cellular signalling pathways in different types of cancer proliferation. Knowledge about nuclear localization and nuclear level expression of YB-1 in different cancers has been correlated with prospective prognosis of cancer. This review discusses the prospects of YB-1 as a potential biomarker as well as therapeutic target in lieu of their role during cancer progression and multidrug resistance.
Collapse
Affiliation(s)
| | - Alok Mishra
- Department of Biotechnology, MNNIT Allahabad-211004
| | | | - Swati Singh
- Center of Bioinformatics, University of Allahabad, Allahabad-211002
| | | | | | | | | | | |
Collapse
|
34
|
Li Z, Sun Q, Shi Y. Recent perspectives of molecular aberrations in pediatric high-grade glioma. Minerva Pediatr 2017. [PMID: 28643992 DOI: 10.23736/s0026-4946.17.04823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pediatric high-grade glioma (HGG), including diffuse intrinsic pontine glioma (DIPG) are highly aggressive tumors with no effective cures. Lack of understanding of the molecular biology of these tumors, in part due to lack of well-characterized pre-clinical models, is a great challenge in the development of novel therapies. Recent studies have shown that pediatric HGG short-term cell cultures retain many of the tumor characteristics in vivo and at present one of the best choices for in-vivo experimental studies. The present review article would put light on novel genetic and epigenetic changes in pediatric HGG that might, act as a gold standard potential biomarkers and/or therapeutic targets in near future.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Qingzeng Sun
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Yingchun Shi
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China -
| |
Collapse
|
35
|
Sturm D, Pfister SM, Jones DTW. Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. J Clin Oncol 2017. [PMID: 28640698 DOI: 10.1200/jco.2017.73.0242] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gliomas are the most common CNS tumors in children and adolescents, and they show an extremely broad range of clinical behavior. The majority of pediatric gliomas present as benign, slow-growing lesions classified as grade I or II by the WHO classification of CNS tumors. These pediatric low-grade gliomas (LGGs) are fundamentally different from IDH-mutant LGGs occurring in adults, because they rarely undergo malignant transformation and show excellent overall survival under current treatment strategies. However, a significant fraction of gliomas develop over a short period of time and progress rapidly and are therefore classified as WHO grade III or IV high-grade gliomas (HGGs). Despite all therapeutic efforts, they remain largely incurable, with the most aggressive forms being lethal within months. Thus, the intentions of neurosurgeons, pediatric oncologists, and radiotherapists to improve care for pediatric patients with glioma range from increasing quality of life and preventing long-term sequelae in what is often a chronic, but rarely life-threatening disease (LGG), to uncovering effective treatment options to prolong patient survival in an almost universally fatal setting (HGG). The last decade has seen unprecedented progress in understanding the molecular biology underlying pediatric gliomas, fueling hopes to achieve both goals. Large-scale collaborative studies around the globe have cataloged genomic and epigenomic alterations in gliomas across ages, grades, and histologies. These studies have revealed biologic subgroups characterized by distinct molecular, pathologic, and clinical features, with clear relevance for patient management. In this review, we summarize hallmark discoveries that have expanded our knowledge in pediatric LGGs and HGGs, explain their role in tumor biology, and convey our current concepts on how these findings may be translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Dominik Sturm
- Dominik Sturm, Stefan M. Pfister, and David T.W. Jones, German Cancer Research Center; Hopp-Children's Cancer Center at the National Center for Tumor Diseases Heidelberg; German Consortium for Translational Cancer Research; and Dominik Sturm and Stefan M. Pfister, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Dominik Sturm, Stefan M. Pfister, and David T.W. Jones, German Cancer Research Center; Hopp-Children's Cancer Center at the National Center for Tumor Diseases Heidelberg; German Consortium for Translational Cancer Research; and Dominik Sturm and Stefan M. Pfister, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Dominik Sturm, Stefan M. Pfister, and David T.W. Jones, German Cancer Research Center; Hopp-Children's Cancer Center at the National Center for Tumor Diseases Heidelberg; German Consortium for Translational Cancer Research; and Dominik Sturm and Stefan M. Pfister, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
Fuller CE, Jones DTW, Kieran MW. New Classification for Central Nervous System Tumors: Implications for Diagnosis and Therapy. Am Soc Clin Oncol Educ Book 2017; 37:753-763. [PMID: 28561665 DOI: 10.1200/edbk_175088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 2016 World Health Organization Classification of Tumors of the Central Nervous System (WHO 2016) represents a noteworthy divergence from prior classification schemas. This new classification introduced the concept of "integrated diagnoses" based on a marriage of both phenotypic (microscopic) and genotypic parameters, with the intended goals of improving diagnostic accuracy and patient management. The result is a major restructuring in many of the brain tumor categories, with the codification of multiple new tumor entities and subgroups. It is therefore imperative that pathologists, clinicians, and neuro-oncology researchers alike rapidly become familiar with this new classification schema. Many of the diagnostic updates set forth in the WHO 2016 have impacted brain tumor types that commonly arise in the pediatric age group, particularly within the diffuse glioma, ependymoma, and embryonal tumor categories. This review gives a brief overview of (1) the WHO 2016 as it relates to pediatric central nervous system (CNS) tumors, with an emphasis on molecular diagnostic tools used in the clinical arena, (2) ongoing and developing approaches to the molecular and genomic classification of pediatric CNS tumors, and (3) the impact of this new classification schema on clinical trials in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Christine E Fuller
- From the Cincinnati Children's Hospital Medical Center, Cincinnati, OH; German Cancer Research Center, Heidelberg, Germany; Dana-Farber Cancer Institute, Boston, MA
| | - David T W Jones
- From the Cincinnati Children's Hospital Medical Center, Cincinnati, OH; German Cancer Research Center, Heidelberg, Germany; Dana-Farber Cancer Institute, Boston, MA
| | - Mark W Kieran
- From the Cincinnati Children's Hospital Medical Center, Cincinnati, OH; German Cancer Research Center, Heidelberg, Germany; Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
37
|
Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-κB signaling pathway in human neuroblastoma SH-SY5Y cells. Mol Cell Biochem 2017; 433:1-12. [PMID: 28382490 DOI: 10.1007/s11010-017-3011-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
Y-box binding protein-1 (YB-1), a member of Y-box protein family binding DNA and RNA, has been proposed as a novel marker in multiple malignant tumors and found to be associated with tumor malignancy. Neuroblastoma is an embryonal tumor arising from neuroblast cells of the autonomic nervous system, which is the most common cancer diagnosed in infants. It has been reported that YB-1 is highly expressing in various human tumors including nasopharynx, thyroid, lung, breast, colon, ovary, and prostate cancers. This study aimed to investigate the functional role of YB-1 in neuroblastoma by silencing YB-1 using RNA interference (shRNA) in neuroblastoma SH-SY5Y cells. We found that silencing of YB-1 decreased the proliferation, migration, and invasion of SH-SY5Y cells. At molecular level, inhibition of YB-1 decreased the expression level of PCNA as well as MMP-2 in neuroblastoma SH-SY5Y cells. Also, we discovered that YB-1 silencing sensitized SH-SY5Y cells to cisplatin and promoted the apoptosis induced by cisplatin due to down-regulation of multidrug resistance (MDR) 1 protein via NF-κB signaling pathway. Therefore, we consider that targeting YB-1 is promising for neuroblastoma treatment and for overcoming its cisplatin resistance in the development of new neuroblastoma therapeutic strategies.
Collapse
|
38
|
Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol 2017; 134:541-549. [PMID: 28357536 DOI: 10.1007/s11060-017-2393-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023]
Abstract
High-grade pediatric central nervous system glial tumors are comprised primarily of anaplastic astrocytomas (AA, WHO grade III) and glioblastomas (GBM, WHO grade IV). High-grade gliomas are most commonly diagnosed in the primary setting in children, but as in adults, they can also arise as a result of transformation of a low-grade malignancy, though with limited frequency in the pediatric population. The molecular genetics of high-grade gliomas in the pediatric population are distinct from their adult counterparts. In contrast to the adult population, high-grade gliomas in children are relatively infrequent, representing less than 20% of cases.
Collapse
|
39
|
Malchenko S, Sredni ST, Bi Y, Margaryan NV, Boyineni J, Mohanam I, Tomita T, Davuluri RV, Soares MB. Stabilization of HIF-1α and HIF-2α, up-regulation of MYCC and accumulation of stabilized p53 constitute hallmarks of CNS-PNET animal model. PLoS One 2017; 12:e0173106. [PMID: 28249000 PMCID: PMC5332108 DOI: 10.1371/journal.pone.0173106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023] Open
Abstract
Recently, we described a new animal model of CNS primitive neuroectodermal tumors (CNS-PNET), which was generated by orthotopic transplantation of human Radial Glial (RG) cells into NOD-SCID mice's brain sub-ventricular zone. In the current study we conducted comprehensive RNA-Seq analyses to gain insights on the mechanisms underlying tumorigenesis in this mouse model of CNS-PNET. Here we show that the RNA-Seq profiles derived from these tumors cluster with those reported for patients' PNETs. Moreover, we found that (i) stabilization of HIF-1α and HIF-2α, which are involved in mediation of the hypoxic responses in the majority of cell types, (ii) up-regulation of MYCC, a key onco-protein whose dysregulation occurs in ~70% of human tumors, and (iii) accumulation of stabilized p53, which is commonly altered in human cancers, constitute hallmarks of our tumor model, and might represent the basis for CNS-PNET tumorigenesis in this model. We discuss the possibility that these three events might be interconnected. These results indicate that our model may prove invaluable to uncover the molecular events leading to MYCC and TP53 alterations, which would be of broader interest considering their relevance to many human malignancies. Lastly, this mouse model might prove useful for drug screening targeting MYCC and related members of its protein interaction network.
Collapse
Affiliation(s)
- Sergey Malchenko
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United States of America
| | - Simone Treiger Sredni
- Department of Surgery, Division of Pediatric Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Cancer Biology and Epigenomics Program at the Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Yingtao Bi
- Department of Preventive Medicine, Division of Health and Biomedical Informatics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Abbvie Bioresearch Center, Worcester, Massachusetts, United States
| | - Naira V. Margaryan
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jerusha Boyineni
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United States of America
| | - Indra Mohanam
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United States of America
| | - Tadanori Tomita
- Department of Surgery, Division of Pediatric Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ramana V. Davuluri
- Department of Preventive Medicine, Division of Health and Biomedical Informatics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Marcelo B. Soares
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United States of America
| |
Collapse
|
40
|
Konar SK, Bir SC, Maiti TK, Nanda A. A systematic review of overall survival in pediatric primary glioblastoma multiforme of the spinal cord. J Neurosurg Pediatr 2017; 19:239-248. [PMID: 27813458 DOI: 10.3171/2016.8.peds1631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The incidence of primary spinal cord glioblastoma multiforme (GBM) in the pediatric age group is very rare. Only a few case series and case reports have been published in the literature; therefore, overall survival (OS) outcome and the as-yet poorly defined management options are not discussed in detail. The authors performed a cumulative survival analysis of all reported cases of pediatric spinal cord GBM to identify the predictive factors related to final survival outcome. METHODS A comprehensive search for relevant articles was performed on PubMed's electronic database MEDLINE for the period from 1950 to 2015 using the search words "malignant spinal cord tumor" and "spinal glioblastoma multiforme." This study was limited to patients younger than 18 years of age. Survival rates for children with various tumor locations and treatments were collected from the published articles and analyzed. RESULTS After an extensive literature search, 29 articles met the study inclusion criteria. From the detailed information in these articles, the authors found 53 children eligible for the survival analysis. The majority (45%) of the children were more than 12 years old. Thirty-four percent of the cases were between 7 and 12 years of age, and 21% were younger than 7 years. In the Kaplan-Meier survival analysis, children younger than 7 years of age had better survival (13 months) than the children older than 7 years (7-12 years: 10 months, > 12 years: 9 months; p = 0.01, log-rank test). Fifty-five percent of the children were female and 45% were male. A cervical tumor location (32%) was the most common, followed by thoracic (28.3%). Cervicothoracic (18.9%) and conus (18.8%) tumor locations shared the same percentage of cases. Cervical tumors had a worse outcome than tumors in other locations (p = 0.003, log-rank test). The most common presenting symptom was limb weakness (53%), followed by sensory disturbances (25%). Median OS was 10 months. The addition of adjuvant therapy (radiotherapy [RT] and/or chemotherapy [CT]) after surgery significantly improved OS (p = 0.01, log-rank test). Children who underwent gross-total resection and RT had better outcomes than those who underwent subtotal resection and RT (p = 0.04, log-rank test). Cerebrospinal fluid spread, hydrocephalus, brain metastasis, and spinal metastasis were not correlated with OS in primary spinal GBM. CONCLUSIONS Adjuvant therapy after surgery had a beneficial effect on overall outcome of spinal GBM in the pediatric age group. Gross-total resection followed by RT produced a better outcome than subtotal resection with RT. Further large-scale prospective study is required to establish the genetic and molecular factors related to OS in primary GBM of the spinal cord in pediatric patients.
Collapse
Affiliation(s)
- Subhas K Konar
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| | - Shyamal C Bir
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| | - Tanmoy K Maiti
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| | - Anil Nanda
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| |
Collapse
|
41
|
Espinoza JC, Haley K, Patel N, Dhall G, Gardner S, Allen J, Torkildson J, Cornelius A, Rassekh R, Bedros A, Etzl M, Garvin J, Pradhan K, Corbett R, Sullivan M, McGowage G, Stein D, Jasty R, Sands SA, Ji L, Sposto R, Finlay JL. Outcome of young children with high-grade glioma treated with irradiation-avoiding intensive chemotherapy regimens: Final report of the Head Start II and III trials. Pediatr Blood Cancer 2016; 63:1806-13. [PMID: 27332770 PMCID: PMC5598351 DOI: 10.1002/pbc.26118] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/03/2016] [Accepted: 05/21/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE To report the final analysis of survival outcomes for children with newly diagnosed high-grade glioma (HGG) treated on the "Head Start" (HS) II and III protocols with chemotherapy and intent to avoid irradiation in children <6 years old. PATIENTS AND METHODS Between 1997 and 2009, 32 eligible children were enrolled in HS II and III with anaplastic astrocytoma (AA, n = 19), glioblastoma multiforme (GBM, n = 11), or other HGG (n = 2). Central pathology review was completed on 78% of patients. Patients with predominantly brainstem tumors were excluded. Patients were to be treated with single induction chemotherapy regimen C, comprising four cycles of vincristine, carboplatin, and temozolomide. Following induction, patients underwent marrow-ablative chemotherapy and autologous hematopoietic cell rescue. Irradiation was used for patients with residual tumor after consolidation or >6 years old or at the time of tumor progression. RESULTS The 5-year event-free survival (EFS) and overall survival (OS) for all HGG patients were 25 ± 8% and 36 ± 9%, respectively. The EFS at 5 years for patients with AA and GBM were 24 ± 11% and 30 ± 16%, respectively (P = 0.65). The OS at 5 years for patients with AA and GBM was 34 ± 12% and 35 ± 16%, respectively (P = 0.83). Children <36 months old experienced improved 5-year EFS and OS of 44 ± 17% and 63 ± 17%, compared with children 36-71 months old (31 ± 13% and 38 ± 14%) and children >72 months old (0% and 13 ± 12%). CONCLUSIONS Irradiation-avoiding treatment strategies should be evaluated further in young children with HGG given similar survival rates to older children receiving standard irradiation-containing therapies.
Collapse
Affiliation(s)
| | - Kelley Haley
- Children's Hospital Los Angeles, Los Angeles, California
| | - Neha Patel
- Department of pediatrics, University of Wisconsin, Madison, Wisconsin
| | - Girish Dhall
- Children's Hospital Los Angeles, Los Angeles, California
| | - Sharon Gardner
- Department of pediatrics, New York University Medical Center, New York, New York
| | - Jeffrey Allen
- Department of pediatrics, New York University Medical Center, New York, New York
| | | | | | - Rod Rassekh
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Antranik Bedros
- Department of pediatrics, Loma Linda University Medical Center, Loma Linda, California
| | - Morris Etzl
- Phoenix Children's Hospital, Phoenix, Arizona
| | - James Garvin
- Columbia Children's Hospital, New York, New York
| | | | - Robin Corbett
- Department of pediatrics, University of Otago, Christchurch, New Zealand
| | - Michael Sullivan
- Department of pediatrics, University of Otago, Christchurch, New Zealand
| | | | | | | | - Stephen A. Sands
- Department of pediatrics, Columbia University Medical Center, New York, New York
| | - Lingyun Ji
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Richard Sposto
- Children's Hospital Los Angeles, Los Angeles, California
| | - Jonathan L. Finlay
- Department of pediatrics, Division of Hematology, Oncology and BMT, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| |
Collapse
|
42
|
Moiseeva NI, Susova OY, Mitrofanov AA, Panteleev DY, Pavlova GV, Pustogarov NA, Stavrovskaya AA, Rybalkina EY. Connection between proliferation rate and temozolomide sensitivity of primary glioblastoma cell culture and expression of YB-1 and LRP/MVP. BIOCHEMISTRY (MOSCOW) 2016; 81:628-35. [DOI: 10.1134/s0006297916060109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Abstract
Great progress has been made in many areas of pediatric oncology. However, tumors of the central nervous system (CNS) remain a significant challenge. A recent explosion of data has led to an opportunity to understand better the molecular basis of these diseases and is already providing a foundation for the pursuit of rationally chosen therapeutics targeting relevant molecular pathways. The molecular biology of pediatric brain tumors is shifting from a singular focus on basic scientific discovery to a platform upon which insights are being translated into therapies.
Collapse
|
44
|
Robison NJ, Kieran MW. Identification of novel biologic targets in the treatment of newly diagnosed diffuse intrinsic pontine glioma. Am Soc Clin Oncol Educ Book 2016:625-8. [PMID: 24451808 DOI: 10.14694/edbook_am.2012.32.190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) carry an extremely poor prognosis. Standard practice has been to base the diagnosis on classic imaging and clinical characteristics and to treat with focal radiation therapy, usually accompanied with experimental therapy. As a result of the desire to avoid upfront biopsy, little has been learned regarding the molecular features of this disease. Findings from several autopsy series have included loss of p53 and PTEN, and amplification of PDGFR. Based on these and other findings, murine models have been generated and provide a new tool for preclinical testing. DIPG biopsy at diagnosis has increasingly become incorporated into national protocols at several centers, bringing the prospect of a better understanding of DIPG biology in the future. Initial analyses of pretreatment tumors cast valuable new light and establish the importance of p53 inactivation and the RTK-PI3K pathway in this disease.
Collapse
Affiliation(s)
- Nathan J Robison
- From the Dana-Farber Children's Hospital Cancer Center, Boston, MA
| | - Mark W Kieran
- From the Dana-Farber Children's Hospital Cancer Center, Boston, MA
| |
Collapse
|
45
|
D'Asti E, Chennakrishnaiah S, Lee TH, Rak J. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 2016; 36:383-407. [PMID: 26993504 DOI: 10.1007/s10571-015-0296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Esterina D'Asti
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
46
|
Chen F, Becker A, LoTurco J. Overview of Transgenic Glioblastoma and Oligoastrocytoma CNS Models and Their Utility in Drug Discovery. ACTA ACUST UNITED AC 2016; 72:14.37.1-14.37.12. [PMID: 26995546 DOI: 10.1002/0471141755.ph1437s72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many animal models have been developed to investigate the sources of central nervous system (CNS) tumor heterogeneity. Reviewed in this unit is a recently developed CNS tumor model using the piggyBac transposon system delivered by in utero electroporation, in which sources of tumor heterogeneity can be conveniently studied. Their applications for studying CNS tumors and drug discovery are also reviewed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Fuyi Chen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn.,Current address: Department of Neurology, Yale School of Medicine, New Haven, Conn
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn
| |
Collapse
|
47
|
Triscott J, Rose Pambid M, Dunn SE. Concise review: bullseye: targeting cancer stem cells to improve the treatment of gliomas by repurposing disulfiram. Stem Cells 2016; 33:1042-6. [PMID: 25588723 DOI: 10.1002/stem.1956] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are thought to be at the root of cancer recurrence because they resist conventional therapies and subsequently reinitiate tumor cell growth. Thus, targeting CSCs could be the bullseye to successful cancer therapeutics in the future. Brain tumors are some of the most challenging types of cancer to treat and the median survival following the initial diagnosis is 12-18 months. Among the different types of brain tumors, glioblastoma (GBM) is considered the most aggressive and remains extremely difficult to treat. Despite surgery, radiation, and chemotherapy, most patients develop refractory disease. Temozolomide (TMZ) is a chemotherapy used to treat GBM however resistance develops in most patients. The underlying mechanisms for TMZ resistance (TMZ-resistant) involve the expression of DNA repair gene O(6)-methylguanine-DNA methyltransferase. CSC genes such as Sox-2, BMI-1, and more recently Y-box binding protein-1 also play a role in resistance. In order to develop novel therapies for GBM, libraries of small interfering RNAs and off-patent drugs have been screened. Over the past few years, several independent laboratories identified disulfiram (DSF) as an off-patent drug that kills GBM CSCs. Reportedly DSF has several modes of action including its ability to inhibit aldehyde dehydrogenases, E3 ligase, polo-like kinase 1, and NFkB. Due to the fact that GBM is a disease of heterogeneity, chemotherapy with multitargeting properties may be the way of the future. In broader terms, DSF kills CSCs from a range of different cancer types further supporting the idea of repurposing it for "target practice."
Collapse
Affiliation(s)
- Joanna Triscott
- Experimental Medicine Program, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
48
|
YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene 2016; 35:4256-68. [PMID: 26725322 PMCID: PMC4931992 DOI: 10.1038/onc.2015.491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 10/26/2015] [Accepted: 11/27/2015] [Indexed: 12/29/2022]
Abstract
Postnatal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells of origin for the SHH-associated subgroup of medulloblastoma, is driven by Sonic hedgehog (Shh) and insulin-like growth factor (IGF) in the developing cerebellum. Shh induces the oncogene Yes-associated protein (YAP), which drives IGF2 expression in CGNPs and mouse Shh-associated medulloblastomas. To determine how IGF2 expression is regulated downstream of YAP, we carried out an unbiased screen for transcriptional regulators bound to IGF2 promoters. We report that Y-box binding protein-1 (YB-1), an onco-protein regulating transcription and translation, binds to IGF2 promoter P3. We observed that YB-1 is upregulated across human medulloblastoma subclasses as well as in other varieties of pediatric brain tumors. Utilizing the cerebellar progenitor model for the Shh subgroup of medulloblastoma in mice, we show for the first time that YB-1 is induced by Shh in CGNPs. Its expression is YAP-dependent and it is required for IGF2 expression in CGNPs. Finally, both gain-of function and loss-of-function experiments reveal that YB-1 activity is required for sustaining CGNP and medulloblastoma cell (MBC) proliferation. Collectively, our findings describe a novel role for YB-1 in driving proliferation in the developing cerebellum and MBCs and they identify the SHH:YAP:YB1:IGF2 axis as a powerful target for therapeutic intervention in medulloblastomas.
Collapse
|
49
|
Molecular Biology in Pediatric High-Grade Glioma: Impact on Prognosis and Treatment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:215135. [PMID: 26448930 PMCID: PMC4584033 DOI: 10.1155/2015/215135] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/04/2014] [Indexed: 12/17/2022]
Abstract
High-grade gliomas are the main cause of death in children with brain tumours. Despite recent advances in cancer therapy, their prognosis remains poor and the treatment is still challenging. To date, surgery followed by radiotherapy and temozolomide is the standard therapy. However, increasing knowledge of glioma biology is starting to impact drug development towards targeted therapies. The identification of agents directed against molecular targets aims at going beyond the traditional therapeutic approach in order to develop a personalized therapy and improve the outcome of pediatric high-grade gliomas. In this paper, we critically review the literature regarding the genetic abnormalities implicated in the pathogenesis of pediatric malignant gliomas and the current development of molecularly targeted therapies. In particular, we analyse the impact of molecular biology on the prognosis and treatment of pediatric high-grade glioma, comparing it to that of adult gliomas.
Collapse
|
50
|
IDH1 mutation-associated long non-coding RNA expression profile changes in glioma. J Neurooncol 2015; 125:253-63. [PMID: 26337623 DOI: 10.1007/s11060-015-1916-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/29/2015] [Indexed: 12/24/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutation is an important prognostic marker in glioma. However, its downstream effect remains incompletely understood. Long non-coding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis in a number of human malignancies, including glioma. Here, we investigated whether and how lncRNA expression profiles would differ between gliomas with or without IDH1 mutation. By using our previously reported lncRNA mining approach, we performed lncRNA profiling in three public glioma microarray datasets. The differential lncRNA expression analysis was then conducted between mutant-type and wild-type IDH1 glioma samples. Comparison analysis identified 14 and 9 lncRNA probe sets that showed significantly altered expressions in astrocytic and oligodendroglial tumors, respectively (fold change ≥ 1.5, false discovery rate ≤ 0.1). Moreover, the differential expressions of these lncRNAs could be confirmed in the independent testing sets. Functional exploration of the lncRNAs by analyzing the lncRNA-protein interactions revealed that these IDH1 mutation-associated lncRNAs were involved in multiple tumor-associated cellular processes, including metabolism, cell growth and apoptosis. Our data suggest the potential roles of lncRNA in gliomagenesis, and may help to understand the pathogenesis of gliomas associated with IDH1 mutation.
Collapse
|