1
|
Hesen N, Anany M, Freidel A, Baker M, Siegmund D, Zaitseva O, Wajant H, Lang I. Genetically engineered IgG1 and nanobody oligomers acquire strong intrinsic CD40 agonism. Bioengineered 2024; 15:2302246. [PMID: 38214443 PMCID: PMC10793706 DOI: 10.1080/21655979.2024.2302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.
Collapse
Affiliation(s)
- Nienke Hesen
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Giza, Egypt
| | - Andre Freidel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mediya Baker
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| |
Collapse
|
2
|
Ababneh O, Nishizaki D, Kato S, Kurzrock R. Tumor necrosis factor superfamily signaling: life and death in cancer. Cancer Metastasis Rev 2024:10.1007/s10555-024-10206-6. [PMID: 39363128 DOI: 10.1007/s10555-024-10206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
Collapse
Affiliation(s)
- Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Department of Medicine, MCW Cancer Center, Milwaukee, WI, USA.
- Department of Oncology, University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
3
|
Tran B, Voskoboynik M, Bendell J, Gutierrez M, Lemech C, Day D, Frentzas S, Garrido-Laguna I, Standifer N, Wang F, Ferte C, Wang Y, Das M, Carneiro BA. A phase 1 study of the CD40 agonist MEDI5083 in combination with durvalumab in patients with advanced solid tumors. Immunotherapy 2024; 16:759-774. [PMID: 39264730 PMCID: PMC11421296 DOI: 10.1080/1750743x.2024.2359359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/21/2024] [Indexed: 09/14/2024] Open
Abstract
Aim: This first-in-human study evaluated safety and efficacy of CD40 agonist MEDI5083 with durvalumab in patients with advanced solid tumors.Methods: Patients received MEDI5083 (3-7.5 mg subcutaneously every 2 weeks × 4 doses) and durvalumab (1500 mg every 4 weeks) either sequentially (N = 29) or concurrently (N = 9). Primary end point was safety; secondary end points included efficacy.Results: Thirty-eight patients received treatment. Most common adverse events (AEs) were injection-site reaction (ISR; sequential: 86%; concurrent: 100%), fatigue (41%; 33%), nausea (20.7%; 55.6%) and decreased appetite (24.1%; 33.3%). Nine patients had MEDI5083-related grade ≥3 AEs with ISR being the most common. Two patients experienced dose limiting toxicities (ISR). One death occurred due to a MEDI5083-related AE. MEDI5083 maximum tolerated dose was 5 mg. Objective response rate was 2.8% (1 partial response and 11 stable disease).Conclusion: MEDI5083 toxicity profile limits its further development.
Collapse
Affiliation(s)
- Ben Tran
- Peter MacCallum Cancer Centre, Melbourne, 8006, Australia
| | - Mark Voskoboynik
- Nucleus Network, Melbourne, 3004, Australia
- Monash University, Melbourne, 3004, Australia
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN 37203, USA
| | | | - Charlotte Lemech
- Scientia Clinical Research, Randwick, 2031, Australia
- The University of New South Wales, Sydney, 2052, Australia
| | - Daphne Day
- Monash University, Melbourne, 3004, Australia
- Monash Medical Centre, Clayton, 3800, Australia
| | - Sophia Frentzas
- Monash University, Melbourne, 3004, Australia
- Monash Medical Centre, Clayton, 3800, Australia
| | | | - Nathan Standifer
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Fujun Wang
- Oncology Biometrics, AstraZeneca, Gaithersburg, MD 20878,USA
| | | | - Yue Wang
- AstraZeneca, Gaithersburg, MD 20878,USA
| | | | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI 02903,USA
| |
Collapse
|
4
|
Cheng W, Huang Z, Hao Y, Hua H, Zhang B, Li X, Fu F, Yang J, Zheng K, Zhang X, Qi C. The engineered agonistic anti-CD40 antibody potentiates the antitumor effects of β-glucan by resetting TAMs. Immunol Lett 2024; 268:106882. [PMID: 38810887 DOI: 10.1016/j.imlet.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Anti-CD40 antibodies (Abs) have been shown to induce antitumor T-cell responses. We reported that the engineered agonistic anti-CD40 Ab (5C11, IgG4 isotype) recognized human CD40 antigen expressed on a human B lymphoblastoid cell line as well as on splenic cells isolated from humanized CD40 mice. Of note, a single high dosage of 5C11 was able to prohibit tumor growth in parallel with an increase in the population of infiltrated CD8+ T cells. Furthermore, the antitumor effects of 5C11 were enhanced in the presence of β-glucan along with an increase in the population of infiltrated CD8+ T cells. In addition, the numbers of CD86+ TAMs and neutrophils were elevated in the combination of 5C11 and β-glucan compared with either 5C11 or β-glucan alone. Furthermore, the abundance of Faecalibaculum, one of the probiotics critical for tumor suppression, was obviously increased in the combination of 5C11 and β-glucan-treated mice. These data reveal a novel mechanism of tumor suppression upon the combination treatment of 5C11 and β-glucan and propose that the combination treatment of agonistic anti-human CD40 antibody 5C11 and β-glucan could be a promising therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Wanpeng Cheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Provincial Medical Key Discipline, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, China
| | - Yongzhe Hao
- Laboratory of Oncology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| | - Hui Hua
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bo Zhang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fengqing Fu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Provincial Medical Key Discipline, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Provincial Medical Key Discipline, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, China.
| | - Chunjian Qi
- Laboratory of Oncology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China.
| |
Collapse
|
5
|
Du W, Zhou B, Forjaz A, Shin SM, Wu F, Crawford AJ, Nair PR, Johnston AC, West-Foyle H, Tang A, Kim D, Fan R, Kiemen AL, Wu PH, Phillip JM, Ho WJ, Sanin DE, Wirtz D. High-motility pro-tumorigenic monocytes drive macrophage enrichment in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603739. [PMID: 39071324 PMCID: PMC11275814 DOI: 10.1101/2024.07.16.603739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enrichment of tumor-associated macrophages (TAMΦs) in the tumor microenvironment correlates with worse clinical outcomes in triple-negative breast cancer (TNBC) patients, prompting the development of therapies to inhibit TAMΦ infiltration. However, the lackluster efficacy of CCL2-based chemotaxis blockade in clinical trials suggests that a new understanding of monocyte/macrophage infiltration may be necessary. Here we demonstrate that random migration, and not only chemotaxis, drives macrophage tumor infiltration. We identified tumor- associated monocytes (TAMos) that display a dramatically enhanced migration capability, induced rapidly by the tumor microenvironment, that drives effective tumor infiltration, in contrast to low-motility differentiated macrophages. TAMo, not TAMΦ, promotes cancer cell proliferation through activation of the MAPK pathway. IL-6 secreted both by cancer cells and TAMo themselves enhances TAMo migration by increasing dendritic protrusion dynamics and myosin- based contractility via the JAK2/STAT3 signaling pathway. Independent from CCL2 mediated chemotaxis, IL-6 driven enhanced migration and pro-proliferative effect of TAMo were validated in a syngeneic TNBC mouse model. Depletion of IL-6 in cancer cells significantly attenuated monocyte infiltration and reversed TAMo-induced cancer cell proliferation. This work reveals the critical role random migration plays in monocyte driven TAMΦ enrichment in a tumor and pinpoints IL-6 as a potential therapeutic target in combination with CCL2 to ameliorate current strategies against TAMΦ infiltration.
Collapse
|
6
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
7
|
Caudell DL, Dugan GO, Babitzki G, Schubert C, Braendli-Baiocco A, Wasserman K, Acona G, Stern M, Passioukov A, Cline JM, Charo J. Systemic immune response to a CD40 agonist antibody in nonhuman primates. J Leukoc Biol 2024; 115:1084-1093. [PMID: 38372596 DOI: 10.1093/jleuko/qiae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/13/2023] [Accepted: 11/30/2023] [Indexed: 02/20/2024] Open
Abstract
The cell surface molecule CD40 is a member of the tumor necrosis factor receptor superfamily and is broadly expressed by immune cells including B cells, dendritic cells, and monocytes, as well as other normal cells and some malignant cells. CD40 is constitutively expressed on antigen-presenting cells, and ligation promotes functional maturation, leading to an increase in antigen presentation and cytokine production, and a subsequent increase in the activation of antigen-specific T cells. It is postulated that CD40 agonists can mediate both T cell-dependent and T cell-independent immune mechanisms of tumor regression in mice and patients. In addition, it is believed that CD40 activation also promotes apoptotic death of tumor cells and that the presence of the molecule on the surface of cancer cells is an important factor in the generation of tumor-specific T cell responses that contribute to tumor cell elimination. Notably, CD40 agonistic therapies were evaluated in patients with solid tumors and hematologic malignancies with reported success as a single agent. Preclinical studies have shown that subcutaneous administration of CD40 agonistic antibodies reduces systemic toxicity and elicits a stronger and localized pharmacodynamic response. Two independent studies in cynomolgus macaque (Macaca fascicularis) were performed to further evaluate potentially immunotoxicological effects associated with drug-induced adverse events seen in human subjects. Studies conducted in monkeys showed that when selicrelumab is administered at doses currently used in clinical trial patients, via subcutaneous injection, it is safe and effective at stimulating a systemic immune response.
Collapse
Affiliation(s)
- David L Caudell
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Gregory O Dugan
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Galina Babitzki
- Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Diagnostics GmbH, F. Hoffmann-La Roche AG, Staffelseestrasse 2-8, 81477 Munich, Germany
| | - Christine Schubert
- Pharmaceutical Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Annamaria Braendli-Baiocco
- Pharmaceutical Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ken Wasserman
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, 3900 Reservoir Rd NW #337, Washington, DC 20007, United States
| | - Gonzalo Acona
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, F. Hoffmann-La Roche AG, Wagistrasse 10, 8952 Schlieren, Zurich, Switzerland
| | - Martin Stern
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexandre Passioukov
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, F. Hoffmann-La Roche AG, Wagistrasse 10, 8952 Schlieren, Zurich, Switzerland
| | - J Mark Cline
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Jehad Charo
- Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, F. Hoffmann-La Roche AG, Wagistrasse 10, 8952 Schlieren, Zurich, Switzerland
| |
Collapse
|
8
|
Lim SH, Beers SA, Al-Shamkhani A, Cragg MS. Agonist Antibodies for Cancer Immunotherapy: History, Hopes, and Challenges. Clin Cancer Res 2024; 30:1712-1723. [PMID: 38153346 PMCID: PMC7615925 DOI: 10.1158/1078-0432.ccr-23-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Immunotherapy is among the most promising new treatment modalities to arise over the last two decades; antibody drugs are delivering immunotherapy to millions of patients with many different types of cancer. Initial success with antibody therapeutics came in the form of direct targeting or cytotoxic antibodies, such as rituximab and trastuzumab, which bind directly to tumor cells to elicit their destruction. These were followed by immunomodulatory antibodies that elicit antitumor responses by either stimulating immune cells or relieving tumor-mediated suppression. By far the most successful approach in the clinic to date has been relieving immune suppression, with immune checkpoint blockade now a standard approach in the treatment of many cancer types. Despite equivalent and sometimes even more impressive effects in preclinical models, agonist antibodies designed to stimulate the immune system have lagged behind in their clinical translation. In this review, we document the main receptors that have been targeted by agonist antibodies, consider the various approaches that have been evaluated to date, detail what we have learned, and consider how their anticancer potential can be unlocked.
Collapse
Affiliation(s)
- Sean H. Lim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
9
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
10
|
Andersson H, Nyesiga B, Hermodsson T, Enell Smith K, Hägerbrand K, Lindstedt M, Ellmark P. Next-generation CD40 agonists for cancer immunotherapy. Expert Opin Biol Ther 2024; 24:351-363. [PMID: 38764393 DOI: 10.1080/14712598.2024.2357714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION There is a need for new therapies that can enhance response rates and broaden the number of cancer indications where immunotherapies provide clinical benefit. CD40 targeting therapies provide an opportunity to meet this need by promoting priming of tumor-specific T cells and reverting the suppressive tumor microenvironment. This is supported by emerging clinical evidence demonstrating the benefits of immunotherapy with CD40 antibodies in combination with standard of care chemotherapy. AREAS COVERED This review is focused on the coming wave of next-generation CD40 agonists aiming to improve efficacy and safety, using new approaches and formats beyond monospecific antibodies. Further, the current understanding of the role of different CD40 expressing immune cell populations in the tumor microenvironment is reviewed. EXPERT OPINION There are multiple promising next-generation approaches beyond monospecific antibodies targeting CD40 in immuno-oncology. Enhancing efficacy is the most important driver for this development, and approaches that maximize the ability of CD40 to both remodel the tumor microenvironment and boost the anti-tumor T cell response provide great opportunities to benefit cancer patients. Enhanced understanding of the role of different CD40 expressing immune cells in the tumor microenvironment may facilitate more efficient clinical development of these compounds.
Collapse
Affiliation(s)
- Hampus Andersson
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Barnabas Nyesiga
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Tova Hermodsson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | - Malin Lindstedt
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Peter Ellmark
- Alligator Bioscience, Alligator Bioscience AB, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Beckmann K, Reitinger C, Yan X, Carle A, Blümle E, Jurkschat N, Paulmann C, Prassl S, Kazandjian LV, Loré K, Nimmerjahn F, Fischer S. Fcγ-Receptor-Independent Controlled Activation of CD40 Canonical Signaling by Novel Therapeutic Antibodies for Cancer Therapy. Antibodies (Basel) 2024; 13:31. [PMID: 38651411 PMCID: PMC11036229 DOI: 10.3390/antib13020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients.
Collapse
Affiliation(s)
| | - Carmen Reitinger
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Xianglei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Anna Carle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | - Eva Blümle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | | | - Sandra Prassl
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
- FAU Profile Centre Immunomedicine, 91054 Erlangen, Germany
| | | |
Collapse
|
12
|
Avilez ND, Capibaribe DM, Reis LO. Experimental and New Approaches for Bladder Preservation in Intermediate and High-Risk Non-Muscle-Invasive Bladder Cancer (NMIBC). Res Rep Urol 2024; 16:89-113. [PMID: 38601921 PMCID: PMC11005851 DOI: 10.2147/rru.s452377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/08/2024] [Indexed: 04/12/2024] Open
Abstract
About 75% of bladder cancers are detected as non-muscle invasive. High-risk patients have high progression risk. Although the standard is transurethral resection of bladder tumor plus full dose intravesical BCG for one to 3 years, due to the high risk of progression, radical cystectomy may be considered in specific cases. Although radical cystectomy is still the best approach for high-grade NMIBC from an oncological perspective, its high morbidity and impact on quality of life motivate studies of new strategies that may reduce the need for cystectomy. We carried out a mini-review whose objectives were: 1 - to identify bladder-sparing alternatives that are being studied as possible treatment for patients with intermediate and high-risk NMIBC; 2 - understand the evidence that exists regarding success rate, follow-up, and side effects of different strategies. Several studies have sought alternatives for bladder preservation, including immunotherapy, intravesical chemotherapy, chemo-hyperthermia, antibody-drug conjugates, viral genetic therapy, and others with promising results. The selection of an optimal therapy for high-risk NMIBC that can reduce the need for cystectomy, with low toxicity and high efficacy, is of paramount importance and remains an issue, however, several known medications are being tested as bladder-preserving alternatives in this scenario and have shown promise in studies.
Collapse
Affiliation(s)
- Natália D Avilez
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Diego M Capibaribe
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Leonardo O Reis
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, PUC-Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024; 305:122463. [PMID: 38232643 DOI: 10.1016/j.biomaterials.2023.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.
Collapse
Affiliation(s)
- Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yangyue Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Hui Ren
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, 310022, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
15
|
Soto M, Filbert EL, Yang H, Starzinski S, Starzinski A, Gin M, Chen B, Le P, Li T, Bol B, Cheung A, Zhang L, Hsu FJ, Ko A, Fong L, Keenan BP. Neoadjuvant CD40 Agonism Remodels the Tumor Immune Microenvironment in Locally Advanced Esophageal/Gastroesophageal Junction Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:200-212. [PMID: 38181044 PMCID: PMC10809910 DOI: 10.1158/2767-9764.crc-23-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Sotigalimab is an agonistic anti-CD40 mAb that can modulate antitumor immune responses. In a phase II clinical trial of sotigalimab combined with neoadjuvant chemoradiation (CRT) in locally advanced esophageal/gastroesophageal junction (E/GEJ) cancer with the primary outcome of efficacy as measured by pathologic complete response (pCR) rate, the combination induced pCR in 38% of treated patients. We investigated the mechanism of action of sotigalimab in samples obtained from this clinical trial. Tumor biopsies and peripheral blood samples were collected at baseline, following an initial dose of sotigalimab, and at the time of surgery after CRT completion from six patients. High dimensional single-cell techniques were used, including combined single-cell RNA-sequencing and proteomics (CITEseq) and multiplexed ion beam imaging, to analyze immune responses. Sotigalimab dramatically remodeled the immune compartment in the periphery and within the tumor microenvironment (TME), increasing expression of molecules related to antigen processing and presentation and altering metabolic pathways in myeloid cells. Concomitant with these changes in myeloid cells, sotigalimab treatment primed new T cell clonotypes and increased the density and activation of T cells with enhanced cytotoxic function. Sotigalimab treatment also induced a decrease in the frequency of Tregs in the TME. These findings indicate that a single dose of sotigalimab leads to enhanced antigen presentation that can activate T cells and induce new T cell clones. This restructuring of the TME provides elements which are critical to the development of effective antitumor immune responses and improved clinical outcomes.
Collapse
Affiliation(s)
- Maira Soto
- Pyxis Oncology, Inc., Boston, Massachusetts
- Apexigen America, Inc, San Carlos, California (now a fully owned subsidiary of Pyxis Oncology, Inc.)
| | - Erin L. Filbert
- Apexigen America, Inc, San Carlos, California (now a fully owned subsidiary of Pyxis Oncology, Inc.)
| | - Hai Yang
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Stephanie Starzinski
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alec Starzinski
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Marissa Gin
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Brandon Chen
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Phi Le
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Tony Li
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Brandon Bol
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alexander Cheung
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Li Zhang
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Frank J. Hsu
- Pyxis Oncology, Inc., Boston, Massachusetts
- Apexigen America, Inc, San Carlos, California (now a fully owned subsidiary of Pyxis Oncology, Inc.)
| | - Andrew Ko
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Lawrence Fong
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Bridget P. Keenan
- Cancer Immunotherapy Program, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology/Oncology, University of California, San Francisco, California
| |
Collapse
|
16
|
Wu RC, Luke JJ. Uncovering the Potential of CD40 Agonism to Enhance Immune Checkpoint Blockade. Clin Cancer Res 2024; 30:9-11. [PMID: 37870487 PMCID: PMC10842335 DOI: 10.1158/1078-0432.ccr-23-2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
In this CCR Translations, we discuss the therapeutic potential of CD40 agonism, which stimulates antigen-presenting cells (APC) to activate effector T and NK cells. CD40 agonism may lead to development of an interferon-activated, T cell-inflamed tumor microenvironment and has the potential to facilitate long-term response with immune checkpoint blockade. See related article by Weiss et al., p. 74.
Collapse
Affiliation(s)
- Richard C. Wu
- The Ohio State University James Cancer Center and Division of Medical Oncology
| | - Jason J. Luke
- UPMC Hillman Cancer Center and the University of Pittsburgh Dept. of Medicine
| |
Collapse
|
17
|
Weiss SA, Sznol M, Shaheen M, Berciano-Guerrero MÁ, Couselo EM, Rodríguez-Abreu D, Boni V, Schuchter LM, Gonzalez-Cao M, Arance A, Wei W, Ganti AK, Hauke RJ, Berrocal A, Iannotti NO, Hsu FJ, Kluger HM. A Phase II Trial of the CD40 Agonistic Antibody Sotigalimab (APX005M) in Combination with Nivolumab in Subjects with Metastatic Melanoma with Confirmed Disease Progression on Anti-PD-1 Therapy. Clin Cancer Res 2024; 30:74-81. [PMID: 37535056 PMCID: PMC10767304 DOI: 10.1158/1078-0432.ccr-23-0475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Disease progression during or after anti-PD-1-based treatment is common in advanced melanoma. Sotigalimab is a CD40 agonist antibody with a unique epitope specificity and Fc receptor binding profile optimized for activation of CD40-expressing antigen-presenting cells. Preclinical data indicated that CD40 agonists combined with anti-PD1 could overcome resistance to anti-PD-1. PATIENTS AND METHODS We conducted a multicenter, open-label, phase II trial to evaluate the combination of sotigalimab 0.3 mg/kg and nivolumab 360 mg every 3 weeks in patients with advanced melanoma following confirmed disease progression on a PD-1 inhibitor. The primary objective was to determine the objective response rate (ORR). RESULTS Thirty-eight subjects were enrolled and evaluable for safety. Thirty-three were evaluable for activity. Five confirmed partial responses (PR) were observed for an ORR of 15%. Two PRs are ongoing at 45.9+ and 26+ months, whereas the other three responders relapsed at 41.1, 18.7, and 18.4 months. The median duration of response was at least 26 months. Two additional patients had stable disease for >6 months. Thirty-four patients (89%) experienced at least one adverse event (AE), and 13% experienced a grade 3 AE related to sotigalimab. The most common AEs were pyrexia, chills, nausea, fatigue, pruritus, elevated liver function, rash, vomiting, headache, arthralgia, asthenia, myalgia, and diarrhea. There were no treatment-related SAEs, deaths, or discontinuation of sotigalimab due to AEs. CONCLUSIONS Sotigalimab plus nivolumab had a favorable safety profile consistent with the toxicity profiles of each agent. The combination resulted in durable and prolonged responses in a subset of patients with anti-PD-1-resistant melanoma, warranting further evaluation in this setting. See related commentary by Wu and Luke, p. 9.
Collapse
Affiliation(s)
- Sarah A. Weiss
- Yale University School of Medicine, New Haven, Connecticut
| | - Mario Sznol
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Miguel-Ángel Berciano-Guerrero
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | | | - Valentina Boni
- START Madrid-CIOCC, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Lynn M. Schuchter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Gonzalez-Cao
- Instituto Oncológico, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Ana Arance
- Hospital Clínic Barcelona, Barcelona, Spain
| | - Wei Wei
- Yale University School of Medicine, New Haven, Connecticut
| | - Apar Kishor Ganti
- VA Nebraska Western Iowa Healthcare System and University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | |
Collapse
|
18
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
19
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
20
|
Lee YM, Hsu CL, Chen YH, Ou DL, Hsu C, Tan CT. Genomic and Transcriptomic Landscape of an Oral Squamous Cell Carcinoma Mouse Model for Immunotherapy. Cancer Immunol Res 2023; 11:1553-1567. [PMID: 37669022 PMCID: PMC10618654 DOI: 10.1158/2326-6066.cir-23-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The immune checkpoint inhibitor (ICI), anti-programmed death-1 (anti-PD-1), has shown moderate efficacy in some patients with head and neck squamous cell carcinoma (HNSCC). Because of this, it is imperative to establish a mouse tumor model to explore mechanisms of antitumor immunity and to develop novel therapeutic options. Here, we examined the 4-nitroquinoline-1-oxide (4NQO)-induced oral squamous cell carcinoma (OSCC) model for genetic aberrations, transcriptomic profiles, and immune cell composition at different pathologic stages. Genomic exome analysis in OSCC-bearing mice showed conservation of critical mutations found in human HNSCC. Transcriptomic data revealed that a key signature comprised of immune-related genes was increased beginning at the moderate dysplasia stages. We first identified that macrophage composition in primary tumors differed across pathologic stages, leading to an oncogenic evolution through a change in the M1/M2 macrophage ratio during tumorigenesis. We treated the 4NQO-induced OSCC-bearing mice with anti-PD-1 and agonistic anti-CD40, which modulated multiple immune responses. The growth of tumor cells was significantly decreased by agonistic anti-CD40 by promoting an increase in the M1/M2 ratio. By examining cross-species genomic conservation in human and mouse tumors, our study demonstrates the molecular mechanisms underlying the development of OSCC and the regulation of contributing immune-related factors, and aims to facilitate the development of suitable ICI-based treatments for patients with HNSCC.
Collapse
Affiliation(s)
- Yi-Mei Lee
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Hsin Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Chiun Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
21
|
Chu C, Pietzak E. Immune mechanisms and molecular therapeutic strategies to enhance immunotherapy in non-muscle invasive bladder cancer: Invited review for special issue "Seminar: Treatment Advances and Molecular Biology Insights in Urothelial Carcinoma". Urol Oncol 2023; 41:398-409. [PMID: 35811207 PMCID: PMC10167944 DOI: 10.1016/j.urolonc.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/12/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Intravesical immunotherapy with Bacillus Calmette-Guérin (BCG) has been the standard of care for patients with high-risk non non-muscle invasive bladder cancer (NMIBC) for over four decades. Despite its success as a cancer immunotherapy, disease recurrence and progression remain common. Current efforts are focused on developing effective and well-tolerated alternatives to BCG and salvage bladder preservation therapies after BCG has failed. The focus of this review is to synthesize our current understanding of the molecular biology and tumor immune microenvironment of NMIBC to provide rationale for existing and emerging therapeutic targets. We highlight recent and ongoing clinical trials and define the current treatment landscape, challenges, and future directions of salvage treatment. Combination regimens that are rationally designed will be needed to make meaningful therapeutic advancements. Investigations into the molecular underpinnings of NMIBC are leading to the emergence of predictive molecular biomarkers that provide greater insight into the clinical heterogeneity of NMIBC and enable us to identify drivers of treatment resistance and new therapeutic targets.
Collapse
Affiliation(s)
- Carissa Chu
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eugene Pietzak
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Urology, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
22
|
Andersson H, Sobti A, Jimenez DG, de Coaña YP, Ambarkhane SV, Hägerbrand K, Smith KE, Lindstedt M, Ellmark P. Early Pharmacodynamic Changes Measured Using RNA Sequencing of Peripheral Blood from Patients in a Phase I Study with Mitazalimab, a Potent CD40 Agonistic Monoclonal Antibody. Cells 2023; 12:2365. [PMID: 37830579 PMCID: PMC10572020 DOI: 10.3390/cells12192365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
CD40-targeting therapies can enhance the dendritic cell priming of tumor-specific T cells and repolarize intratumoral macrophages to alleviate the tumoral immunosuppressive environment and remodel the extracellular matrix. Mitazalimab is a potent agonistic CD40 monoclonal IgG1 antibody currently under clinical development. This study used RNA sequencing of blood samples from a subset of patients from a Phase I trial with mitazalimab (NCT02829099) to assess peripheral pharmacodynamic activity. We found that mitazalimab induced transient peripheral transcriptomic alterations (at 600 µg/kg and 900 µg/kg dose administered intravenously), which mainly were attributed to immune activation. In particular, the transcriptomic alterations showed a reduction in effector cells (e.g., CD8+ T cells and natural killer cells) and B cells peripherally with the remaining cells (e.g., dendritic cells, monocytes, B cells, and natural killer cells) showing transcription profiles consistent with activation. Lastly, distinct patient subgroups based on the pattern of transcriptomic alterations could be identified. In summary, the data presented herein reinforce the anticipated mode of action of mitazalimab and support its ongoing clinical development.
Collapse
Affiliation(s)
- Hampus Andersson
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| | - Aastha Sobti
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - David Gomez Jimenez
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - Yago Pico de Coaña
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | | | - Karin Hägerbrand
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - Karin Enell Smith
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - Malin Lindstedt
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| | - Peter Ellmark
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| |
Collapse
|
23
|
Fromm G, de Silva S, Schreiber TH. Reconciling intrinsic properties of activating TNF receptors by native ligands versus synthetic agonists. Front Immunol 2023; 14:1236332. [PMID: 37795079 PMCID: PMC10546206 DOI: 10.3389/fimmu.2023.1236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
The extracellular domain of tumor necrosis factor receptors (TNFR) generally require assembly into a homotrimeric quaternary structure as a prerequisite for initiation of signaling via the cytoplasmic domains. TNF receptor homotrimers are natively activated by similarly homo-trimerized TNF ligands, but can also be activated by synthetic agonists including engineered antibodies and Fc-ligand fusion proteins. A large body of literature from pre-clinical models supports the hypothesis that synthetic agonists targeting a diverse range of TNF receptors (including 4-1BB, CD40, OX40, GITR, DR5, TNFRSF25, HVEM, LTβR, CD27, and CD30) could amplify immune responses to provide clinical benefit in patients with infectious diseases or cancer. Unfortunately, however, the pre-clinical attributes of synthetic TNF receptor agonists have not translated well in human clinical studies, and have instead raised fundamental questions regarding the intrinsic biology of TNF receptors. Clinical observations of bell-shaped dose response curves have led some to hypothesize that TNF receptor overstimulation is possible and can lead to anergy and/or activation induced cell death of target cells. Safety issues including liver toxicity and cytokine release syndrome have also been observed in humans, raising questions as to whether those toxicities are driven by overstimulation of the targeted TNF receptor, a non-TNF receptor related attribute of the synthetic agonist, or both. Together, these clinical findings have limited the development of many TNF receptor agonists, and may have prevented generation of clinical data which reflects the full potential of TNF receptor agonism. A number of recent studies have provided structural insights into how different TNF receptor agonists bind and cluster TNF receptors, and these insights aid in deconvoluting the intrinsic biology of TNF receptors with the mechanistic underpinnings of synthetic TNF receptor agonist therapeutics.
Collapse
|
24
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
25
|
Khalili S, Zeinali F, Moghadam Fard A, Taha SR, Fazlollahpour Naghibi A, Bagheri K, Shariat Zadeh M, Eslami Y, Fattah K, Asadimanesh N, Azarimatin A, Khalesi B, Almasi F, Payandeh Z. Macrophage-Based Therapeutic Strategies in Hematologic Malignancies. Cancers (Basel) 2023; 15:3722. [PMID: 37509382 PMCID: PMC10378576 DOI: 10.3390/cancers15143722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Macrophages are types of immune cells, with ambivalent functions in tumor growth, which depend on the specific environment in which they reside. Tumor-associated macrophages (TAMs) are a diverse population of immunosuppressive myeloid cells that play significant roles in several malignancies. TAM infiltration in malignancies has been linked to a poor prognosis and limited response to treatments, including those using checkpoint inhibitors. Understanding the precise mechanisms through which macrophages contribute to tumor growth is an active area of research as targeting these cells may offer potential therapeutic approaches for cancer treatment. Numerous investigations have focused on anti-TAM-based methods that try to eliminate, rewire, or target the functional mediators released by these cells. Considering the importance of these strategies in the reversion of tumor resistance to conventional therapies and immune modulatory vaccination could be an appealing approach for the immunosuppressive targeting of myeloid cells in the tumor microenvironment (TME). The combination of reprogramming and TAM depletion is a special feature of this approach compared to other clinical strategies. Thus, the present review aims to comprehensively overview the pleiotropic activities of TAMs and their involvement in various stages of cancer development as a potent drug target, with a focus on hematologic tumors.
Collapse
Affiliation(s)
- Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Fatemeh Zeinali
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Atousa Moghadam Fard
- Universal Scientific Education and Research Network (USERN), Tehran 4188783417, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Andarz Fazlollahpour Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717641367, Iran
| | - Kimia Bagheri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717641367, Iran
| | - Mahdieh Shariat Zadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Yeghaneh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Naghmeh Asadimanesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Armin Azarimatin
- Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1416634793, Iran
| | - Zahra Payandeh
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Sharon S, Daher-Ghanem N, Zaid D, Gough MJ, Kravchenko-Balasha N. The immunogenic radiation and new players in immunotherapy and targeted therapy for head and neck cancer. FRONTIERS IN ORAL HEALTH 2023; 4:1180869. [PMID: 37496754 PMCID: PMC10366623 DOI: 10.3389/froh.2023.1180869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Although treatment modalities for head and neck cancer have evolved considerably over the past decades, survival rates have plateaued. The treatment options remained limited to definitive surgery, surgery followed by fractionated radiotherapy with optional chemotherapy, and a definitive combination of fractionated radiotherapy and chemotherapy. Lately, immunotherapy has been introduced as the fourth modality of treatment, mainly administered as a single checkpoint inhibitor for recurrent or metastatic disease. While other regimens and combinations of immunotherapy and targeted therapy are being tested in clinical trials, adapting the appropriate regimens to patients and predicting their outcomes have yet to reach the clinical setting. Radiotherapy is mainly regarded as a means to target cancer cells while minimizing the unwanted peripheral effect. Radiotherapy regimens and fractionation are designed to serve this purpose, while the systemic effect of radiation on the immune response is rarely considered a factor while designing treatment. To bridge this gap, this review will highlight the effect of radiotherapy on the tumor microenvironment locally, and the immune response systemically. We will review the methodology to identify potential targets for therapy in the tumor microenvironment and the scientific basis for combining targeted therapy and radiotherapy. We will describe a current experience in preclinical models to test these combinations and propose how challenges in this realm may be faced. We will review new players in targeted therapy and their utilization to drive immunogenic response against head and neck cancer. We will outline the factors contributing to head and neck cancer heterogeneity and their effect on the response to radiotherapy. We will review in-silico methods to decipher intertumoral and intratumoral heterogeneity and how these algorithms can predict treatment outcomes. We propose that (a) the sequence of surgery, radiotherapy, chemotherapy, and targeted therapy should be designed not only to annul cancer directly, but to prime the immune response. (b) Fractionation of radiotherapy and the extent of the irradiated field should facilitate systemic immunity to develop. (c) New players in targeted therapy should be evaluated in translational studies toward clinical trials. (d) Head and neck cancer treatment should be personalized according to patients and tumor-specific factors.
Collapse
Affiliation(s)
- Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral and Maxillofacial Surgery, Boston University and Boston Medical Center, Boston, MA, United States
| | - Narmeen Daher-Ghanem
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deema Zaid
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Yan X, Ols S, Arcoverde Cerveira R, Lenart K, Hellgren F, Ye K, Cagigi A, Buggert M, Nimmerjahn F, Falkesgaard Højen J, Parera D, Pessara U, Fischer S, Loré K. Cell targeting and immunostimulatory properties of a novel Fcγ-receptor-independent agonistic anti-CD40 antibody in rhesus macaques. Cell Mol Life Sci 2023; 80:189. [PMID: 37353664 PMCID: PMC10289945 DOI: 10.1007/s00018-023-04828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Targeting CD40 by agonistic antibodies used as vaccine adjuvants or for cancer immunotherapy is a strategy to stimulate immune responses. The majority of studied agonistic anti-human CD40 antibodies require crosslinking of their Fc region to inhibitory FcγRIIb to induce immune stimulation although this has been associated with toxicity in previous studies. Here we introduce an agonistic anti-human CD40 monoclonal IgG1 antibody (MAB273) unique in its specificity to the CD40L binding site of CD40 but devoid of Fcγ-receptor binding. We demonstrate rapid binding of MAB273 to B cells and dendritic cells resulting in activation in vitro on human cells and in vivo in rhesus macaques. Dissemination of fluorescently labeled MAB273 after subcutaneous administration was found predominantly at the site of injection and specific draining lymph nodes. Phenotypic cell differentiation and upregulation of genes associated with immune activation were found in the targeted tissues. Antigen-specific T cell responses were enhanced by MAB273 when given in a prime-boost regimen and for boosting low preexisting responses. MAB273 may therefore be a promising immunostimulatory adjuvant that warrants future testing for therapeutic and prophylactic vaccination strategies.
Collapse
Affiliation(s)
- Xianglei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Kewei Ye
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jesper Falkesgaard Højen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
28
|
Coveler AL, Smith DC, Phillips T, Curti BD, Goel S, Mehta AN, Kuzel TM, Markovic SN, Rixe O, Bajor DL, Gajewski TF, Gutierrez M, Lee HJ, Gopal AK, Caimi P, Heath EI, Thompson JA, Ansari S, Jacquemont C, Topletz-Erickson A, Zhou P, Schmitt MW, Grilley-Olson JE. Phase 1 dose-escalation study of SEA-CD40: a non-fucosylated CD40 agonist, in advanced solid tumors and lymphomas. J Immunother Cancer 2023; 11:e005584. [PMID: 37385724 PMCID: PMC10314623 DOI: 10.1136/jitc-2022-005584] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND SEA-CD40 is an investigational, non-fucosylated, humanized monoclonal IgG1 antibody that activates CD40, an immune-activating tumor necrosis factor receptor superfamily member. SEA-CD40 exhibits enhanced binding to activating FcγRIIIa, possibly enabling greater immune stimulation than other CD40 agonists. A first-in-human phase 1 trial was conducted to examine safety, pharmacokinetics, and pharmacodynamics of SEA-CD40 monotherapy in patients with advanced solid tumors and lymphoma. METHODS SEA-CD40 was administered intravenously to patients with solid tumors or lymphoma in 21-day cycles with standard 3+3 dose escalation at 0.6, 3, 10, 30, 45, and 60 µg/kg. An intensified dosing regimen was also studied. The primary objectives of the study were to evaluate the safety and tolerability and identify the maximum tolerated dose of SEA-CD40. Secondary objectives included evaluation of the pharmacokinetic parameters, antitherapeutic antibodies, pharmacodynamic effects and biomarker response, and antitumor activity. RESULTS A total of 67 patients received SEA-CD40 including 56 patients with solid tumors and 11 patients with lymphoma. A manageable safety profile was observed, with predominant adverse events of infusion/hypersensitivity reactions (IHRs) reported in 73% of patients. IHRs were primarily ≤grade 2 with an incidence associated with infusion rate. To mitigate IHRs, a standardized infusion approach was implemented with routine premedication and a slowed infusion rate. SEA-CD40 infusion resulted in potent immune activation, illustrated by dose dependent cytokine induction with associated activation and trafficking of innate and adaptive immune cells. Results suggested that doses of 10-30 µg/kg may result in optimal immune activation. SEA-CD40 monotherapy exhibited evidence of antitumor activity, with a partial response in a patient with basal cell carcinoma and a complete response in a patient with follicular lymphoma. CONCLUSIONS SEA-CD40 was tolerable as monotherapy and induced potent dose dependent immune cell activation and trafficking consistent with immune activation. Evidence of monotherapy antitumor activity was observed in patients with solid tumors and lymphoma. Further evaluation of SEA-CD40 is warranted, potentially as a component of a combination regimen. TRIAL REGISTRATION NUMBER NCT02376699.
Collapse
Affiliation(s)
- Andrew L Coveler
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | | | | | | | - Sanjay Goel
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | - Olivier Rixe
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - David L Bajor
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Martin Gutierrez
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Hun Ju Lee
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ajay K Gopal
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Paolo Caimi
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - John A Thompson
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | - Juneko E Grilley-Olson
- Duke Cancer Institute, Durham, North Carolina, USA
- Duke University, Durham, North Carolina, USA
| |
Collapse
|
29
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Manso T, Kushwaha A, Abdollahi N, Duroux P, Giudicelli V, Kossida S. Mechanisms of action of monoclonal antibodies in oncology integrated in IMGT/mAb-DB. Front Immunol 2023; 14:1129323. [PMID: 37215135 PMCID: PMC10196129 DOI: 10.3389/fimmu.2023.1129323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.
Collapse
|
32
|
Hinterberger M, Endt K, Bathke B, Habjan M, Heiseke A, Schweneker M, Von Rohrscheidt J, Atay C, Chaplin P, Kalla M, Hausmann J, Schmittwolf C, Lauterbach H, Volkmann A, Hochrein H, Medina-Echeverz J. Preclinical development of a first-in-class vaccine encoding HER2, Brachyury and CD40L for antibody enhanced tumor eradication. Sci Rep 2023; 13:5162. [PMID: 36997583 PMCID: PMC10060934 DOI: 10.1038/s41598-023-32060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The induction of antiviral innate immunity by systemic immunization with live virus can be employed to positively impact the response to therapeutic vaccination. We previously demonstrated that systemic immunization with a non-replicating MVA encoding CD40 ligand (CD40L) enhances innate immune cell activation and function, and triggers potent antitumor CD8+ T cell responses in different murine tumor models. Antitumor efficacy was increased when combined with tumor targeting antibodies. Here we report the development of TAEK-VAC-HerBy (TVH), a first-in-class human tumor antibody enhanced killing (TAEK) vaccine based on the non-replicating MVA-BN viral vector. It encodes the membrane bound form of human CD40L, HER2 and the transcription factor Brachyury. TVH is designed for therapeutic use in HER2- or Brachyury-expressing cancer patients in combination with tumor targeting antibodies. To preclude possible oncogenic activities in infected cells and to prevent binding of vaccine-encoded HER2 by monoclonal antibodies trastuzumab and pertuzumab, genetic modifications of HER2 were introduced in the vaccine. Brachyury was genetically modified to prevent nuclear localization of the protein thereby inhibiting its transcriptional activity. CD40L encoded in TVH enhanced human leukocyte activation and cytokine secretion in vitro. Lastly, TVH intravenous administration to non-human primates was proven immunogenic and safe in a repeat-dose toxicity study. Nonclinical data presented here highlight TVH as a first-in-class immunotherapeutic vaccine platform currently under clinical investigation.
Collapse
Affiliation(s)
| | - Kathrin Endt
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Barbara Bathke
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Matthias Habjan
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Alexander Heiseke
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- GlaxoSmithKline GmbH, Prinzregentenpl. 9, 81675, Munich, Germany
| | - Marc Schweneker
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Julia Von Rohrscheidt
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Origenis GmbH, Am Klopferspitz 19A, 82152, Planegg, Germany
| | - Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Paul Chaplin
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Markus Kalla
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Jürgen Hausmann
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | | | - Henning Lauterbach
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Hookipa Pharma Inc, 350 Fifth Avenue, Room/Suite 7240, New York City, NY, USA
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | | | - José Medina-Echeverz
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Affimed, Im Neuenheimer Feld 582, 69120, Heidelberg, Germany
| |
Collapse
|
33
|
Zaitseva O, Anany M, Wajant H, Lang I. Basic characterization of antibodies targeting receptors of the tumor necrosis factor receptor superfamily. Front Immunol 2023; 14:1115667. [PMID: 37051245 PMCID: PMC10083269 DOI: 10.3389/fimmu.2023.1115667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Many new immunotherapeutic approaches aim on the stimulatory targeting of receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) using antibodies with intrinsic or conditional agonism. There is an initial need to characterize corresponding TNFRSF receptor (TNFR)-targeting antibodies with respect to affinity, ligand binding, receptor activation and the epitope recognized. Here, we report a collection of simple and matched protocols enabling the detailed investigation of these aspects by help of Gaussia princeps luciferase (GpL) fusion proteins and analysis of interleukin-8 (IL8) production as an easily measurable readout of TNFR activation. In a first step, the antibodies and antibody variants of interest are transiently expressed in human embryonal kidney 293 cells, either in non-modified form or as fusion proteins with GpL as a reporter domain. The supernatants containing the antibody-GpL fusion proteins can then be used without further purification in cell-free and/or cellular binding studies to determine affinity. Similarly, binding studies with mutated TNFR variants enable the characterization of the antibody binding site within the TNFR ectodomain. Furthermore, in cellular binding studies with GpL fusion proteins of soluble TNFL molecules, the ability of the non-modified antibody variants to interfere with TNFL-TNFR interaction can be analyzed. Last but not least, we describe a protocol to determine the intrinsic and the Fc gamma receptor (FcγR)-dependent agonism of anti-TNFR antibodies which exploits i) the capability of TNFRs to trigger IL8 production in tumor cell lines lacking expression of FcγRs and ii) vector- and FcγR-transfected cells, which produce no or only very low amounts of human IL8. The presented protocols only require standard molecular biological equipment, eukaryotic cell culture and plate readers for the quantification of luminescent and colorimetric signals.
Collapse
Affiliation(s)
- Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Giza, Egypt
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Harald Wajant,
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Singh A, Ranjan A. Adrenergic receptor signaling regulates the CD40-receptor mediated anti-tumor immunity. Front Immunol 2023; 14:1141712. [PMID: 37006295 PMCID: PMC10050348 DOI: 10.3389/fimmu.2023.1141712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
InroductionAnti-CD40 agonistic antibody (αCD40), an activator of dendritic cells (DC) can enhance antigen presentation and activate cytotoxic T-cells against poorly immunogenic tumors. However, cancer immunotherapy trials also suggest that αCD40 is only moderately effective in patients, falling short of achieving clinical success. Identifying factors that decrease αCD40 immune-stimulating effects can aid the translation of this agent to clinical reality.Method/ResultsHere, we reveal that β-adrenergic signaling on DCs directly interferes with αCD40 efficacy in immunologically cold head and neck tumor model. We discovered that β-2 adrenergic receptor (β2AR) activation rewires CD40 signaling in DCs by directly inhibiting the phosphorylation of IκBα and indirectly by upregulating levels of phosphorylated-cAMP response element-binding protein (pCREB). Importantly, the addition of propranolol, a pan β-Blocker reprograms the CD40 pathways, inducing superior tumor regressions, increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-cells in tumors compared to monotherapy.Discussion/ConclusionThus, our study highlights an important mechanistic link between stress-induced β2AR signaling and reduced αCD40 efficacy in cold tumors, providing a new combinatorial approach to improve clinical outcomes in patients.
Collapse
|
35
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
36
|
Moreno V, Perets R, Peretz-Yablonski T, Fourneau N, Girgis S, Guo Y, Hellemans P, Verona R, Pendás N, Xia Q, Geva R, Calvo E. A phase 1 study of intravenous mitazalimab, a CD40 agonistic monoclonal antibody, in patients with advanced solid tumors. Invest New Drugs 2023; 41:93-104. [PMID: 36538259 DOI: 10.1007/s10637-022-01319-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Mitazalimab is an agonistic human monoclonal antibody targeting CD40, a target for anti-tumor immunotherapy. This phase 1, dose-escalation study evaluated the safety, dose-limiting toxicities (DLTs), pharmacokinetic and pharmacodynamic profile of mitazalimab. Adults with advanced solid malignancies received mitazalimab intravenously once every-2-weeks. Dose-escalation was pursued with and without pre-infusion corticosteroids for mitigation of infusion-related reactions (IRRs). In all, 95 patients were enrolled in 7 cohorts (n = 50, 75-2000 µg/kg) with corticosteroids and in 5 cohorts (n = 45, 75-1200 µg/kg) without corticosteroids. Two patients experienced DLTs (transient Grade-3 headache; Grade-3 drug-induced liver injury [Hy's law]). The most frequently reported (≥ 25%) treatment-emergent adverse events were fatigue (44.2%), pyrexia (38.9%), pruritus (38.9%), chills (27.4%), and headache (26.3%). IRRs were reported in 51.6% of patients; pruritus (30.5%; with corticosteroids [36.0%], without corticosteroids [24.4%]) was the most frequent. Following the first infusions of 600 μg/kg and 2000 μg/kg, mitazalimab was rapidly cleared from the systemic circulation with mean terminal half-life of 11.9 and 24.1 h, respectively. Pharmacokinetics appeared to exhibit target-mediated drug disposition at the tested doses. Mitazalimab treatment induced higher levels of selected chemokines and transient reduction of B-cells, T-cells, and NK cells. One patient (renal cell carcinoma) displayed partial response lasting 5.6 months. Stable disease was reported by 35 (36.8%) patients, persisting for ≥ 6 months in 9 patients. Mitazalimab has a manageable safety profile with acceptable pharmacokinetic and pharmacodynamic properties. Future clinical development will evaluate combination with existing treatment options. Trial registration NCT02829099 (ClinicalTrials.gov; July 7, 2016).
Collapse
Affiliation(s)
- Victor Moreno
- START Madrid-FJD. Hospital Fundación Jiménez Díaz, Madrid, Spain.
| | - Ruth Perets
- Rambam Health Care Campus, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Peretz-Yablonski
- The Sharett Oncology Institure, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | | - Suzette Girgis
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Yue Guo
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Raluca Verona
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Qi Xia
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Ravit Geva
- Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| |
Collapse
|
37
|
Jhajj HS, Lwo TS, Yao EL, Tessier PM. Unlocking the potential of agonist antibodies for treating cancer using antibody engineering. Trends Mol Med 2023; 29:48-60. [PMID: 36344331 PMCID: PMC9742327 DOI: 10.1016/j.molmed.2022.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Agonist antibodies that target immune checkpoints, such as those in the tumor necrosis factor receptor (TNFR) superfamily, are an important class of emerging therapeutics due to their ability to regulate immune cell activity, especially for treating cancer. Despite their potential, to date, they have shown limited clinical utility and further antibody optimization is urgently needed to improve their therapeutic potential. Here, we discuss key antibody engineering approaches for improving the activity of antibody agonists by optimizing their valency, specificity for different receptors (e.g., bispecific antibodies) and epitopes (e.g., biepitopic or biparatopic antibodies), and Fc affinity for Fcγ receptors (FcγRs). These powerful approaches are being used to develop the next generation of cancer immunotherapeutics with improved efficacy and safety.
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
39
|
Pfefferlé M, Dubach IL, Buzzi RM, Dürst E, Schulthess-Lutz N, Baselgia L, Hansen K, Imhof L, Koernig S, Le Roy D, Roger T, Humar R, Schaer DJ, Vallelian F. Antibody-induced erythrophagocyte reprogramming of Kupffer cells prevents anti-CD40 cancer immunotherapy-associated liver toxicity. J Immunother Cancer 2023; 11:e005718. [PMID: 36593065 PMCID: PMC9809320 DOI: 10.1136/jitc-2022-005718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Agonistic anti-CD40 monoclonal antibodies (mAbs) have emerged as promising immunotherapeutic compounds with impressive antitumor effects in mouse models. However, preclinical and clinical studies faced dose-limiting toxicities mediated by necroinflammatory liver disease. An effective prophylactic treatment for liver immune-related adverse events that does not suppress specific antitumor immunity remains to be found. METHODS We used different mouse models and time-resolved single-cell RNA-sequencing to characterize the pathogenesis of anti-CD40 mAb induced liver toxicity. Subsequently, we developed an antibody-based treatment protocol to selectively target red blood cells (RBCs) for erythrophagocytosis in the liver, inducing an anti-inflammatory liver macrophage reprogramming. RESULTS We discovered that CD40 signaling in Clec4f+ Kupffer cells is the non-redundant trigger of anti-CD40 mAb-induced liver toxicity. Taking advantage of the highly specific functionality of liver macrophages to clear antibody-tagged RBCs from the blood, we hypothesized that controlled erythrophagocytosis and the linked anti-inflammatory signaling by the endogenous metabolite heme could be exploited to reprogram liver macrophages selectively. Repeated low-dose administration of a recombinant murine Ter119 antibody directed RBCs for selective phagocytosis in the liver and skewed the phenotype of liver macrophages into a Hmoxhigh/Marcohigh/MHCIIlow anti-inflammatory phenotype. This unique mode of action prevented necroinflammatory liver disease following high-dose administration of anti-CD40 mAbs. In contrast, extrahepatic inflammation, antigen-specific immunity, and antitumor activity remained unaffected in Ter119 treated animals. CONCLUSIONS Our study offers a targeted approach to uncouple CD40-augmented antitumor immunity in peripheral tissues from harmful inflammatoxicity in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sandra Koernig
- CSL Ltd., Research, Bio21 Institute, Parkville, Victoria, Australia
| | | | | | - Rok Humar
- University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
40
|
Khan SM, Desai R, Coxon A, Livingstone A, Dunn GP, Petti A, Johanns TM. Impact of CD4 T cells on intratumoral CD8 T-cell exhaustion and responsiveness to PD-1 blockade therapy in mouse brain tumors. J Immunother Cancer 2022; 10:jitc-2022-005293. [PMID: 36543376 PMCID: PMC9772691 DOI: 10.1136/jitc-2022-005293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glioblastoma is a fatal disease despite aggressive multimodal therapy. PD-1 blockade, a therapy that reinvigorates hypofunctional exhausted CD8 T cells (Tex) in many malignancies, has not shown efficacy in glioblastoma. Loss of CD4 T cells can lead to an exhausted CD8 T-cell phenotype, and terminally exhausted CD8 T cells (Tex term) do not respond to PD-1 blockade. GL261 and CT2A are complementary orthotopic models of glioblastoma. GL261 has a functional CD4 T-cell compartment and is responsive to PD-1 blockade; notably, CD4 depletion abrogates this survival benefit. CT2A is composed of dysfunctional CD4 T cells and is PD-1 blockade unresponsive. We leverage these models to understand the impact of CD4 T cells on CD8 T-cell exhaustion and PD-1 blockade sensitivity in glioblastoma. METHODS Single-cell RNA sequencing was performed on flow sorted tumor-infiltrating lymphocytes from female C57/BL6 mice implanted with each model, with and without PD-1 blockade therapy. CD8+ and CD4+ T cells were identified and separately analyzed. Survival analyses were performed comparing PD-1 blockade therapy, CD40 agonist or combinatorial therapy. RESULTS The CD8 T-cell compartment of the models is composed of heterogenous CD8 Tex subsets, including progenitor exhausted CD8 T cells (Tex prog), intermediate Tex, proliferating Tex, and Tex term. GL261 is enriched with the PD-1 responsive Tex prog subset relative to the CT2A and CD4-depleted GL261 models, which are composed predominantly of the PD-1 blockade refractory Tex term subset. Analysis of the CD4 T-cell compartments revealed that the CT2A microenvironment is enriched with a suppressive Treg subset and an effector CD4 T-cell subset that expresses an inhibitory interferon-stimulated (Isc) signature. Finally, we demonstrate that addition of CD40 agonist to PD-1 blockade therapy improves survival in CT2A tumor-bearing mice. CONCLUSIONS Here, we describe that dysfunctional CD4 T cells are associated with terminal CD8 T-cell exhaustion, suggesting CD4 T cells impact PD-1 blockade efficacy by controlling the severity of exhaustion. Given that CD4 lymphopenia is frequently observed in patients with glioblastoma, this may represent a basis for resistance to PD-1 blockade. We demonstrate that CD40 agonism may circumvent a dysfunctional CD4 compartment to improve PD-1 blockade responsiveness, supporting a novel synergistic immunotherapeutic approach.
Collapse
Affiliation(s)
- Saad M Khan
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Rupen Desai
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Andrew Coxon
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Alexandra Livingstone
- Department of Medicine, Division of Medical Oncology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allegra Petti
- Department of Neurosurgery, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Tanner M Johanns
- Department of Medicine, Division of Medical Oncology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
41
|
Pascual-Pasto G, McIntyre B, Shraim R, Buongervino SN, Erbe AK, Zhelev DV, Sadirova S, Giudice AM, Martinez D, Garcia-Gerique L, Dimitrov DS, Sondel PM, Bosse KR. GPC2 antibody-drug conjugate reprograms the neuroblastoma immune milieu to enhance macrophage-driven therapies. J Immunother Cancer 2022; 10:jitc-2022-004704. [PMID: 36460335 PMCID: PMC9723962 DOI: 10.1136/jitc-2022-004704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) that deliver cytotoxic drugs to tumor cells have emerged as an effective and safe anticancer therapy. ADCs may induce immunogenic cell death (ICD) to promote additional endogenous antitumor immune responses. Here, we characterized the immunomodulatory properties of D3-GPC2-PBD, a pyrrolobenzodiazepine (PBD) dimer-bearing ADC that targets glypican 2 (GPC2), a cell surface oncoprotein highly differentially expressed in neuroblastoma. METHODS ADC-mediated induction of ICD was studied in GPC2-expressing murine neuroblastomas in vitro and in vivo. ADC reprogramming of the neuroblastoma tumor microenvironment was profiled by RNA sequencing, cytokine arrays, cytometry by time of flight and flow cytometry. ADC efficacy was tested in combination with macrophage-driven immunoregulators in neuroblastoma syngeneic allografts and human patient-derived xenografts. RESULTS The D3-GPC2-PBD ADC induced biomarkers of ICD, including neuroblastoma cell membrane translocation of calreticulin and heat shock proteins (HSP70/90) and release of high-mobility group box 1 and ATP. Vaccination of immunocompetent mice with ADC-treated murine neuroblastoma cells promoted T cell-mediated immune responses that protected animals against tumor rechallenge. ADC treatment also reprogrammed the tumor immune microenvironment to a proinflammatory state in these syngeneic neuroblastoma models, with increased tumor trafficking of activated macrophages and T cells. In turn, macrophage or T-cell inhibition impaired ADC efficacy in vivo, which was alternatively enhanced by both CD40 agonist and CD47 antagonist antibodies. In human neuroblastomas, the D3-GPC2-PBD ADC also induced ICD and promoted tumor phagocytosis by macrophages, which was further enhanced when blocking CD47 signaling in vitro and in vivo. CONCLUSIONS We elucidated the immunoregulatory properties of a GPC2-targeted ADC and showed robust efficacy of combination immunotherapies in diverse neuroblastoma preclinical models.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samantha N Buongervino
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Doncho V Zhelev
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shakhnozakhon Sadirova
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anna M Giudice
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Martinez
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Garcia-Gerique
- Immunology, Microenvironment and Metastasis Program, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA,Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Semin Cancer Biol 2022; 86:14-27. [PMID: 36041672 PMCID: PMC9713834 DOI: 10.1016/j.semcancer.2022.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alaina C Larson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
43
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
44
|
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int J Mol Sci 2022; 23:12869. [PMID: 36361658 PMCID: PMC9655775 DOI: 10.3390/ijms232112869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024] Open
Abstract
Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Würzburg, Auvera Haus, Grombühlstrasse 12, 97080 Würzburg, Germany
| |
Collapse
|
45
|
Murgaski A, Kiss M, Van Damme H, Kancheva D, Vanmeerbeek I, Keirsse J, Hadadi E, Brughmans J, Arnouk SM, Hamouda AE, Debraekeleer A, Bosteels V, Elkrim Y, Boon L, Hoves S, Vandamme N, Deschoemaeker S, Janssens S, Garg AD, Vande Velde G, Schmittnaegel M, Ries CH, Laoui D. Efficacy of CD40 Agonists Is Mediated by Distinct cDC Subsets and Subverted by Suppressive Macrophages. Cancer Res 2022; 82:3785-3801. [PMID: 35979635 PMCID: PMC9574379 DOI: 10.1158/0008-5472.can-22-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
Agonistic αCD40 therapy has been shown to inhibit cancer progression in only a fraction of patients. Understanding the cancer cell-intrinsic and microenvironmental determinants of αCD40 therapy response is therefore crucial to identify responsive patient populations and to design efficient combinatorial treatments. Here, we show that the therapeutic efficacy of αCD40 in subcutaneous melanoma relies on preexisting, type 1 classical dendritic cell (cDC1)-primed CD8+ T cells. However, after administration of αCD40, cDC1s were dispensable for antitumor efficacy. Instead, the abundance of activated cDCs, potentially derived from cDC2 cells, increased and further activated antitumor CD8+ T cells. Hence, distinct cDC subsets contributed to the induction of αCD40 responses. In contrast, lung carcinomas, characterized by a high abundance of macrophages, were resistant to αCD40 therapy. Combining αCD40 therapy with macrophage depletion led to tumor growth inhibition only in the presence of strong neoantigens. Accordingly, treatment with immunogenic cell death-inducing chemotherapy sensitized lung tumors to αCD40 therapy in subcutaneous and orthotopic settings. These insights into the microenvironmental regulators of response to αCD40 suggest that different tumor types would benefit from different combinations of therapies to optimize the clinical application of CD40 agonists. SIGNIFICANCE This work highlights the temporal roles of different dendritic cell subsets in promoting CD8+ T-cell-driven responses to CD40 agonist therapy in cancer.
Collapse
Affiliation(s)
- Aleksandar Murgaski
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Máté Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daliya Kancheva
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isaure Vanmeerbeek
- Laboratory of Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Hadadi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Brughmans
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sana M. Arnouk
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmed E.I. Hamouda
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ayla Debraekeleer
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Victor Bosteels
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Yvon Elkrim
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sabine Hoves
- Roche Pharmaceutical Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Sofie Deschoemaeker
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Janssens
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Abhishek D. Garg
- Laboratory of Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Martina Schmittnaegel
- Roche Pharmaceutical Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Carola H. Ries
- Roche Pharmaceutical Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Author: Damya Laoui, Lab of Cellular and Molecular Immunology, Pleinlaan 2, B-1050, Brussels, Belgium. E-mail:
| |
Collapse
|
46
|
Adams R, Osborn G, Mukhia B, Laddach R, Willsmore Z, Chenoweth A, Geh JLC, MacKenzie Ross AD, Healy C, Barber L, Tsoka S, Sanz-Moreno V, Lacy KE, Karagiannis SN. Influencing tumor-associated macrophages in malignant melanoma with monoclonal antibodies. Oncoimmunology 2022; 11:2127284. [PMID: 36211808 PMCID: PMC9543025 DOI: 10.1080/2162402x.2022.2127284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Bipashna Mukhia
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Jenny L C Geh
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | | | - Katie E Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK,CONTACT Sophia N Karagiannis St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, Tower Wing, 9th Floor, London, SE1 9RT, UK
| |
Collapse
|
47
|
Correa S, Meany EL, Gale EC, Klich JH, Saouaf OM, Mayer AT, Xiao Z, Liong CS, Brown RA, Maikawa CL, Grosskopf AK, Mann JL, Idoyaga J, Appel EA. Injectable Nanoparticle-Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103677. [PMID: 35975424 PMCID: PMC9534946 DOI: 10.1002/advs.202103677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/27/2022] [Indexed: 05/31/2023]
Abstract
When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow-releasing injectable hydrogel depot to reduce dose-limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer-nanoparticle (PNP) hydrogel system is leveraged that exhibits shear-thinning and yield-stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel-based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a-loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug-agnostic method to ameliorate immune-related adverse effects and explore locoregional delivery of immunostimulatory drugs.
Collapse
Affiliation(s)
- Santiago Correa
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Emily L. Meany
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Emily C. Gale
- Department of BiochemistryStanford University School of MedicineStanfordCA94305USA
| | - John H. Klich
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Olivia M. Saouaf
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Aaron T. Mayer
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Zunyu Xiao
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Celine S. Liong
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ryanne A. Brown
- Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | | | | | - Joseph L. Mann
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Juliana Idoyaga
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
| |
Collapse
|
48
|
Skorupan N, Palestino Dominguez M, Ricci SL, Alewine C. Clinical Strategies Targeting the Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:4209. [PMID: 36077755 PMCID: PMC9454553 DOI: 10.3390/cancers14174209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer has a complex tumor microenvironment which engages in extensive crosstalk between cancer cells, cancer-associated fibroblasts, and immune cells. Many of these interactions contribute to tumor resistance to anti-cancer therapies. Here, new therapeutic strategies designed to modulate the cancer-associated fibroblast and immune compartments of pancreatic ductal adenocarcinomas are described and clinical trials of novel therapeutics are discussed. Continued advances in our understanding of the pancreatic cancer tumor microenvironment are generating stromal and immune-modulating therapeutics that may improve patient responses to anti-tumor treatment.
Collapse
Affiliation(s)
- Nebojsa Skorupan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Medical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mayrel Palestino Dominguez
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel L. Ricci
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine Alewine
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol 2022; 15:118. [PMID: 36031601 PMCID: PMC9420297 DOI: 10.1186/s13045-022-01335-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1, programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 provide deep and durable treatment responses which have revolutionized oncology. However, despite over 40% of cancer patients being eligible to receive immunotherapy, only 12% of patients gain benefit. A key to understanding what differentiates treatment response from non-response is better defining the role of the innate immune system in anti-tumor immunity and immune tolerance. Teleologically, myeloid cells, including macrophages, dendritic cells, monocytes, and neutrophils, initiate a response to invading pathogens and tissue repair after pathogen clearance is successfully accomplished. However, in the tumor microenvironment (TME), these innate cells are hijacked by the tumor cells and are imprinted to furthering tumor propagation and dissemination. Major advancements have been made in the field, especially related to the heterogeneity of myeloid cells and their function in the TME at the single cell level, a topic that has been highlighted by several recent international meetings including the 2021 China Cancer Immunotherapy workshop in Beijing. Here, we provide an up-to-date summary of the mechanisms by which major myeloid cells in the TME facilitate immunosuppression, enable tumor growth, foster tumor plasticity, and confer therapeutic resistance. We discuss ongoing strategies targeting the myeloid compartment in the preclinical and clinical settings which include: (1) altering myeloid cell composition within the TME; (2) functional blockade of immune-suppressive myeloid cells; (3) reprogramming myeloid cells to acquire pro-inflammatory properties; (4) modulating myeloid cells via cytokines; (5) myeloid cell therapies; and (6) emerging targets such as Siglec-15, TREM2, MARCO, LILRB2, and CLEVER-1. There is a significant promise that myeloid cell-based immunotherapy will help advance immuno-oncology in years to come.
Collapse
Affiliation(s)
- Yi Wang
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Margaret E Gatti-Mays
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.
| | - Zihai Li
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
50
|
Salomon R, Dahan R. Next Generation CD40 Agonistic Antibodies for Cancer Immunotherapy. Front Immunol 2022; 13:940674. [PMID: 35911742 PMCID: PMC9326085 DOI: 10.3389/fimmu.2022.940674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
The clinical use of anti-CD40 agonist monoclonal antibodies (mAbs) is aimed at recruiting the immune system to fight the tumor cells. This approach has been demonstrated to be effective in various preclinical models. However, human CD40 Abs displayed only modest antitumor activity in cancer patients, characterized by low efficacy and dose-limiting toxicity. While recent studies highlight the importance of engineering the Fc region of human CD40 mAbs to optimize their agonistic potency, toxicity remains the main limiting factor, restricting clinical application to suboptimal doses. Here, we discuss the current challenges in realizing the full potential of CD40 mAbs in clinical practice, and describe novel approaches designed to circumvent the systemic toxicity associated with CD40 agonism.
Collapse
|