1
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
2
|
Demirkıran A, Kılınç F, Koçak MZ, Demirkıran D, Korkmaz M, Eryılmaz MK, Araz M, Karaağaç M, Artaç M. The prognostic role of HIF-1α and NF-κB expression in RAS wild-type metastatic colorectal cancer: A Turkish Oncology Group (TOG) study. J Cancer Res Clin Oncol 2023; 149:6849-6856. [PMID: 36808300 DOI: 10.1007/s00432-023-04628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Not all RAS wild-type metastatic colorectal cancer (mCRC) patients experience the same benefit from anti-epidermal growth factor receptor (EGFR) treatments. Studies have shown that nuclear factor-κB (NF-κB), hypoxia-inducible factor-1α (HIF-1α), interleukin 8 (IL-8) and transforming growth factor β (TGF-β) may be therapeutic targets for mCRC. The aim of this study was to clarify the prognostic value of NF-κB, HIF-1α, IL-8, and TGF-β expression in patients with left-sided mCRC receiving EGFR inhibitors. METHODS Patients with RAS wild-type, left-sided mCRC treated with anti-EGFR on the first line between September 2013 and April 2022 were included. Immunohistochemical staining for NF-κB, HIF-1α, IL-8 and TGF-β was performed from tumor tissues of 88 patients. Patients were divided into NF-κB, HIF-1α, IL-8 and TGF-β expression positive and negative group, moreover, expression positive group were also divided into two group as expression intensity low and high group. The median follow-up was 25.2 months. RESULTS Median progression-free survival (PFS) was 8.1 (6-10.2) months in the cetuximab group, 11.3 (8.5-14) months in the panitumumab group (p = 0.09). Median overall survival (OS) was 23.9 (4.3-43.4) months in the cetuximab group, 26.9 (15.9-31.9) months in the panitumumab group (p = 0.8). Cytoplasmic NF-κB expression was present in all patients. The mOS was 19.8 (11-28.6) months in NF-κB expression intensity low group and 36.5 (20.1-52.8) months in high group (p = 0.03). The mOS of the HIF-1α expression negative group was significantly longer compared with expression positive group (p = 0.014). There was no significant difference in IL-8 and TGF-β expression status on mOS and mPFS (for all, p > 0.05). Positive expression of HIF-1α was poor prognostic for mOS in the univariate analysis (HR:2.7, 95% CI 1.18-6.52, p = 0.02) and in multivariate analysis (HR 3.69, 95% CI 1.41-9.6, p = 0.008). High cytoplasmic expression intensity of NF-κB was found to have a good prognostic value for mOS (HR 0.47, 95% CI 0.26-0.85, p = 0.01). CONCLUSION High cytoplasmic expression intensity of NF-κB and negative expression of HIF-1α could be a good prognostic marker for mOS in RAS wild-type left-sided mCRC.
Collapse
Affiliation(s)
- Aykut Demirkıran
- Department of Medical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey.
| | - Fahriye Kılınç
- Department of Pathology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Mehmet Zahid Koçak
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Deniz Demirkıran
- Department of Pathology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Mustafa Korkmaz
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Melek Karakurt Eryılmaz
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Murat Araz
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Mustafa Karaağaç
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Mehmet Artaç
- Department of Medical Oncology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| |
Collapse
|
3
|
NF-kappa B expression in resected specimen of colonic cancer is higher compared to its expression in inflammatory bowel diseases and polyps. Sci Rep 2022; 12:16645. [PMID: 36198850 PMCID: PMC9534908 DOI: 10.1038/s41598-022-21078-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
NF-Kappa B has a significant role in inflammatory processes as well as in colorectal cancer. The aim of this study was to compare the expression of NF-kappa B in colonic adenocarcinoma specimen, colonic adenomas and inflammatory colonic tissues. Patients with colorectal cancer (CRC), colonic adenomas and inflammatory processes undergoing surgery were recruited. Following a routine pathological evaluation tissue samples were stained using anti NF-κB monoclonal antibodies. Expression of NF-κB was quantified using IMAGEJ program for immunohistochemistry staining. Samples were also stained and quantified for CEA expression. Fifty-six patients were included. 30 cancers, 6 polyps and 20 inflammatory processes. Expression of NF-κB was similar between polypoid and inflammation etiologies. However, it was significantly higher in CRC compared to both (p < 0.05). In cancer patients, NF-κB expression in the resection margins was correlated with positive node status. CEA expression was higher in the cancer group, less in the IBD group and the lowest in the colonic non diseased margins. Our results provide a supportive evidence that NF-κB pathway is strongly involved in colon cancer development and metastasis. Interestingly, expression of NF-κB in benign polypoid lesions was as high as in inflammatory etiologies. This support the role of NF-κB early in the adenoma to carcinoma sequence. Further research is needed to evaluate the exact role of NF-κB in tumor progression in order to look for diagnostic and therapeutic possibilities.
Collapse
|
4
|
Xu Q, Li G, Osorio D, Zhong Y, Yang Y, Lin YT, Zhang X, Cai JJ. scInTime: A Computational Method Leveraging Single-Cell Trajectory and Gene Regulatory Networks to Identify Master Regulators of Cellular Differentiation. Genes (Basel) 2022; 13:371. [PMID: 35205415 PMCID: PMC8872487 DOI: 10.3390/genes13020371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Trajectory inference (TI) or pseudotime analysis has dramatically extended the analytical framework of single-cell RNA-seq data, allowing regulatory genes contributing to cell differentiation and those involved in various dynamic cellular processes to be identified. However, most TI analysis procedures deal with individual genes independently while overlooking the regulatory relations between genes. Integrating information from gene regulatory networks (GRNs) at different pseudotime points may lead to more interpretable TI results. To this end, we introduce scInTime-an unsupervised machine learning framework coupling inferred trajectory with single-cell GRNs (scGRNs) to identify master regulatory genes. We validated the performance of our method by analyzing multiple scRNA-seq data sets. In each of the cases, top-ranking genes predicted by scInTime supported their functional relevance with corresponding signaling pathways, in line with the results of available functional studies. Overall results demonstrated that scInTime is a powerful tool to exploit pseudotime-series scGRNs, allowing for a clear interpretation of TI results toward more significant biological insights.
Collapse
Affiliation(s)
- Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - Guanxun Li
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel Osorio
- Department of Oncology, Institutes of Livestrong Cancer, Dell Medical School, University of Texas at Austin, Austin, TX 78701, USA;
| | - Yan Zhong
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai 200062, China;
| | - Yongjian Yang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
| | - Xiuren Zhang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
5
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
6
|
Sbirkov Y, Molander D, Milet C, Bodurov I, Atanasov B, Penkov R, Belev N, Forraz N, McGuckin C, Sarafian V. A Colorectal Cancer 3D Bioprinting Workflow as a Platform for Disease Modeling and Chemotherapeutic Screening. Front Bioeng Biotechnol 2021; 9:755563. [PMID: 34869264 PMCID: PMC8638705 DOI: 10.3389/fbioe.2021.755563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and has recently moved up to the second leading cause of death among carcinomas. Prognosis, especially for advanced diseases or certain molecular subtypes of CRC, remains poor, which highlights the urgent need for better therapeutic strategies. However, currently, as little as 0.1% of all drugs make it from bench to bedside because of the inherently high false-positive and false-negative rates of current preclinical and clinical drug testing data. Therefore, the success of developing novel treatment agents lies in the introduction of improved preclinical disease models which resemble in vivo carcinomas closer, possess higher predictive properties, and offer opportunities for individualized therapies. Aiming to address these needs, we have established an affordable, flexible, and highly reproducible 3D bioprinted CRC model. The histological assessment of Caco-2 cells in 3D bioprints revealed the formation of glandular-like structures which show greater pathomorphological resemblance to tumors than monolayer cultures do. RNA expression profiles in 3D bioprinted cells were marked by upregulation of genes involved in cell adhesion, hypoxia, EGFR/KRAS signaling, and downregulation of cell cycle programs. Testing this 3D experimental platform with three of the most commonly used chemotherapeutics in CRC (5-fluoruracil, oxaliplatin, and irinotecan) revealed overall increased resistance compared to 2D cell cultures. Last, we demonstrate that our workflow can be successfully extended to primary CRC samples. Thereby, we describe a novel accessible platform for disease modeling and drug testing, which may present an innovative opportunity for personalized therapeutic screening.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Diana Molander
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Ilia Bodurov
- UMHAT-Eurohospital, Clinical Pathology Department, Plovdiv, Bulgaria
| | - Boyko Atanasov
- UMHAT-Eurohospital, Surgical Department, Plovdiv, Bulgaria
- Department of Propaedeutics of Surgical Diseases, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Nikolay Belev
- Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
- UMHAT-Eurohospital, Surgical Department, Plovdiv, Bulgaria
- Medical Simulation Training Centre, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | | | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Alidoust M, Shamshiri AK, Tajbakhsh A, Gheibihayat SM, Mazloom SM, Alizadeh F, Pasdar A. The significant role of a functional polymorphism in the NF-κB1 gene in breast cancer: evidence from an Iranian cohort. Future Oncol 2021; 17:4895-4905. [PMID: 34730002 DOI: 10.2217/fon-2021-0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aims: Breast cancer (BC) is one of the most common cancers among women. The influence of genetic variations on BC risk has been thus far assessed via genome-wide association studies. NF-κB has been recognized as a major player in BC progression. In this study, the association between rs28362491 and BC was evaluated in a population from northeastern Iran. Materials & methods: This study was conducted on 476 patients with BC and 524 healthy controls. The genotyping method used was an amplification-refractory mutation system. Results: The INS/DEL genotype conferred a statistically significant increased risk in patients in comparison with controls. Additionally, in the recessive model, INS/INS + INS/DEL versus DEL/DEL was statistically significant (OR = 0.34; 95% CI: 0.12-0.96; p = 0.042). Conclusion: This study found that rs28362491, as a susceptibility genetic factor, may affect BC risk in the Iranian population.
Collapse
Affiliation(s)
- Maryam Alidoust
- Department of Medical Genetics & Molecular Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Asma Khorshid Shamshiri
- Department of Medical Genetics & Molecular Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Amir Tajbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8915167426, Iran
| | - Seyed Mostafa Mazloom
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad 91779-48944, Iran
| | - Farzaneh Alizadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 17345-1583, Iran
| | - Alireza Pasdar
- Department of Medical Genetics & Molecular Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Liang ZX, Liu HS, Xiong L, Yang X, Wang FW, Zeng ZW, He XW, Wu XR, Lan P. A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer 2021; 20:103. [PMID: 34412652 PMCID: PMC8375079 DOI: 10.1186/s12943-021-01404-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. METHODS We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC-MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. RESULTS A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. CONCLUSIONS circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.
Collapse
Affiliation(s)
- Zhen-Xing Liang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Hua-Shan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Yang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zi-Wei Zeng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China
| | - Xiao-Wen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
9
|
Feng Z, Duan Z, Shi G, Wang Q, Zhou J, Chen Y. Pharmacological inhibition of IRAK1 attenuates colitis-induced tumorigenesis in mice by inhibiting the inflammatory response and epithelial-mesenchymal transition. J Biochem Mol Toxicol 2021; 35:e22838. [PMID: 34273909 DOI: 10.1002/jbt.22838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer. Here, we studied the inhibitory effect of IRAK1 and IRAK4 as a preventive strategy using a colitis-induced tumorigenesis mouse model. CRC clinical data were obtained from the Gene Expression Omnibus (GEO). An experimental inflammation-dependent CRC model was induced by treatment with azoxymethane (AOM) and then dextran sodium sulfate (DSS) in C57BL/6 mice. Mice were administered an IRAK1/4 inhibitor by intraperitoneal injection at 3 mg/kg twice each week for 9 weeks. The IRAK1/4 inhibitor attenuated histological changes and prevented tumor growth. Tumor-associated proteins, including p65 and Ki-67, were downregulated by the IRAK1/4 inhibitor in AOM/DSS-treated mice. Additionally, IRAK1/4 inhibitor administration effectively decreased the expression of inflammatory cytokines. Furthermore, we observed that IRAK1/4 inhibitor treatment attenuated colitis-induced tumorigenesis by inhibiting epithelial-mesenchymal transition. These observations indicate that inhibition of IRAK1 and IRAK4 may suppress experimental colitis-induced tumorigenesis by inhibiting inflammatory responses and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zeyu Feng
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhenglan Duan
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guoping Shi
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiong Wang
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinyong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yugen Chen
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Martin M, Sun M, Motolani A, Lu T. The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:7429. [PMID: 34299049 PMCID: PMC8303169 DOI: 10.3390/ijms22147429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Over the last several decades, colorectal cancer (CRC) has been one of the most prevalent cancers. While significant progress has been made in both diagnostic screening and therapeutic approaches, a large knowledge gap still remains regarding the early identification and treatment of CRC. Specifically, identification of CRC biomarkers that can help with the creation of targeted therapies as well as increasing the ability for clinicians to predict the biological response of a patient to therapeutics, is of particular importance. This review provides an overview of CRC and its progression stages, as well as the basic types of CRC biomarkers. We then lay out the synopsis of signaling pathways related to CRC, and further highlight the pivotal and multifaceted role of nuclear factor (NF) κB signaling in CRC. Particularly, we bring forth knowledge regarding the tumor microenvironment (TME) in CRC, and its complex interaction with cancer cells. We also provide examples of NF-κB signaling-related CRC biomarkers, and ongoing efforts made at targeting NF-κB signaling in CRC treatment. We conclude and anticipate that with more emerging novel regulators of the NF-κB pathway being discovered, together with their in-depth characterization and the integration of large groups of genomic, transcriptomic and proteomic data, the day of successful development of more ideal NF-κB inhibitors is fast approaching.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Mengyao Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Sokar SS, Afify EH, Osman EY. Dexamethasone and losartan combination treatment protected cigarette smoke-induced COPD in rats. Hum Exp Toxicol 2021; 40:284-296. [PMID: 32812458 DOI: 10.1177/0960327120950012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a dangerous prevalent smoking-related disease characterized by abnormal inflammation and oxidative stress and expected to be the third cause of death in the world next decade. Corticosteroids have low effects in decreasing numbers of inflammatory mediators specifically in long-term use. Our study designed to investigate the possible protective effects of combined dexamethasone (Dex) (2mg/kg) and losartan (Los) (30mg/kg angiotensin receptor blocker, it possesses antioxidant and anti-inflammatory properties in lung injury in mice) against cigarette -smoke (CS) induced COPD in rats compared with dexamethasone and losartan. Male Sprague Dawley rats (N = 40) divided into five groups (n = 8): control group, CS group, Dex group, Los group, and Dex +Los group. COPD induced in rats by CS exposure twice daily for 10 weeks. After the specified treatment period, bronchoalveolar lavage fluid (BALF) and lung tissue were collected for measurement of SOD, NO, MDA, ICAM-, MMP-9, CRP, NF-κB and histopathology scoring. Our results indicated that Los+Dex significantly prevent CS-induced COPD emphysema, congested alveoli, and elevation of lung injury parameters in BALF. They also showed a significant decrease in MDA, ICAM-1, MMP-9, CRP, and NF-κB and a significant increase in SOD and NO. In conclusion, adding Los to Dex potentiating their activity in inhibition the progression of COPD based on its activity on oxidative stress, inflammation, and NF-κB protein expression.
Collapse
Affiliation(s)
- Samia S Sokar
- Professor of Pharmacology and Toxicology, 68904Faculty of Pharmacy, Tanta University, Egypt
| | | | - Enass Y Osman
- Department of Pharmacology and Toxicology, 68904Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
12
|
Chung SY, Chao TC, Su Y. The Stemness-High Human Colorectal Cancer Cells Promote Angiogenesis by Producing Higher Amounts of Angiogenic Cytokines via Activation of the Egfr/Akt/Nf-κB Pathway. Int J Mol Sci 2021; 22:ijms22031355. [PMID: 33573006 PMCID: PMC7866396 DOI: 10.3390/ijms22031355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: Cancer stem cells (CSCs) are responsible for cancer metastasis by stimulating tumor angiogenesis via various mechanisms. To elucidate the potential of the stemness-high human colorectal cancer (CRC) cells (i.e., CRCSCs) in activating angiogenesis, effects of the GATA6-overexpressing HCT-116 and HT-29 human CRC clones established previously by us in promoting the angiogenesis of human umbilical vein endothelial cells (HUVECs) were examined. Methods: Angiogenesis-promoting effects (i.e., migration, invasion, DNA synthesis, and tube formation) in HUVECs of the conditioned media (CM) from various human CRC clones were analyzed. MMP activities were assessed using a zymography assay. Western blotting and selective inhibitors were used to dissect the signaling pathway involved. IHC was used to examine the vascular density in tumor xenografts. Results: We found that the conditioned media (CM) collected from the GATA6-overexpressing clones enhanced angiogenesis of HUVECs more effectively which might be attributed partly to a higher MMP-9 production by HUVECs. Subsequently, elevated levels of IL-8 and VEGF-A were detected in the CM whose tube formation-enhancing activities were abolished by the co-treatment with either a VEGFR2 inhibitor or an IL-8 neutralizing antibody. Interestingly, increased production of these cytokines in the GATA6-overexpressing clones was due to an EGFR/AKT-mediated activation of NF-κB. Furthermore, not only were the levels of CD31 and endomucin but also the blood vessel density was much higher in the xenograft tumors grown from these clones. Conclusion: Our findings demonstrate that human CRCSCs promote a stronger angiogenesis by producing higher amounts of angiogenic factors through activation of the EGFR/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Shin-Yi Chung
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Shi-Pai, Taipei 11221, Taiwan;
| | - Ta-Chung Chao
- Department of Oncology, Division of Medical Oncology, Taipei Veterans General Hospital, Taipei 11221, Taiwan;
- Faculty of Medicine, School of Medicine, National Yang-Min University, Taipei 11221, Taiwan
| | - Yeu Su
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Shi-Pai, Taipei 11221, Taiwan;
- Correspondence: ; Fax: +886-2-2825-0883
| |
Collapse
|
13
|
Wang Z, Sheng C, Kan G, Yao C, Geng R, Chen S. RNAi Screening Identifies that TEX10 Promotes the Proliferation of Colorectal Cancer Cells by Increasing NF- κB Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000593. [PMID: 32995120 PMCID: PMC7507032 DOI: 10.1002/advs.202000593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Indexed: 05/08/2023]
Abstract
Colorectal cancer (CRC) has become a predominant cancer worldwide. To understand the process of carcinogenesis, a short hairpin RNA library screening is employed to search for candidate genes that promote proliferation in the CRC cell line HT29. The candidate genes overlap with differentially expressed genes in 32 CRC tumor tissues in the GEO dataset GSE8671. The seventh-ranked testis expressed 10 (TEX10) is upregulated in CRC and its knockdown decreases cell proliferation. The TEX10 high-expression group exhibits worse overall survival (P = 0.003) and progression-free survival (P = 0.001) than the TEX10 low-expression group. TEX10 depletion decreases the growth of CRC cells in vitro and in vivo. Gene set enrichment analysis indicates that the nuclear factor-kappa B pathway is significantly enriched in the genes downregulated by TEX10 knockdown. Mechanistically, TEX10 interacts with RELA and increases its nuclear localization. TEX10 promotes RELA occupancy at gene promoters and regulates the expression of a subset of RELA-targeted genes, including TNFAIP8, SAT1, and IL6ST. Taken together, this study identifies that TEX10 promotes the proliferation of CRC cells in an RELA-dependent manner. In addition, high TEX10 expression is associated with poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Ziyang Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Chunjie Sheng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Guangyan Kan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Chen Yao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Rong Geng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Shuai Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdong510060P. R. China
| |
Collapse
|
14
|
Kylmä AK, Tolvanen TA, Carpén T, Haglund C, Mäkitie A, Mattila PS, Grenman R, Jouhi L, Sorsa T, Lehtonen S, Hagström J. Elevated TLR5 expression in vivo and loss of NF-κΒ activation via TLR5 in vitro detected in HPV-negative oropharyngeal squamous cell carcinoma. Exp Mol Pathol 2020; 114:104435. [PMID: 32240617 DOI: 10.1016/j.yexmp.2020.104435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
In oropharyngeal squamous cell carcinoma (OPSCC), the expression pattern of toll-like receptors (TLRs), in comparison between human papillomavirus (HPV)-positive and -negative tumors differs. TLRs control innate immune responses by activating, among others, the nuclear factor-κΒ (NF-κΒ) signaling pathway. Elevated NF-κΒ activity is detectable in several cancers and regulates cancer development and progression. We studied TLR5 expression in 143 unselected consecutive OPSCC tumors, and its relation to HPV-DNA and p16 status, clinicopathological parameters, and patient outcome, and studied TLR5 stimulation and consecutive NF-κB cascade activation in vitro in two human OPSCC cell lines and immortalized human keratinocytes (HaCat). Clinicopathological data came from hospital registries, and TLR5 immunoexpression was evaluated by immunohistochemistry. Flagellin served to stimulate TLR5 in cultured cells, followed by analysis of the activity of the NF-κB signaling cascade with In-Cell Western for IκΒ and p-IκΒ. High TLR5 expression was associated with poor disease-specific survival in HPV-positive OPSCC, which typically shows low TLR5 immunoexpression. High TLR5 immunoexpression was more common in HPV-negative OPSCC, known for its less-favorable prognosis. In vitro, we detected NF-κΒ cascade activation in the HPV-positive OPSCC cell line and in HaCat cells, but not in the HPV-negative OPSCC cell line. Our results suggest that elevated TLR5 immunoexpression may be related to reduced NF-κΒ activity in HPV-negative OPSCC. The possible prognosis-worsening mechanisms among these high-risk OPSCC patients however, require further evaluation.
Collapse
Affiliation(s)
- Anna Kaisa Kylmä
- Department of Pathology, University of Helsinki, HUSLAB and Helsinki University Hospital, P. O. Box 21, 00014 Helsinki, Finland.
| | - Tuomas Aleksi Tolvanen
- Department of Pathology, University of Helsinki, Research Program for Clinical and Molecular Metabolism, P. O. Box 21, 00014 Helsinki, Finland
| | - Timo Carpén
- Department of Pathology, University of Helsinki, HUSLAB and Helsinki University Hospital, P. O. Box 21, 00014 Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 20, FI-00014, Helsinki, Finland; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, P. O. Box 63, 00014 Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden; Research Programme in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri S Mattila
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland
| | - Reidar Grenman
- Department of Otorhinolaryngology - Head and Neck Surgery, Department of Medical Biochemistry, Turku University Hospital, University of Turku, Kiinanmyllynkatu 4-8, P. O. Box 52, FI-20521 Turku, Finland
| | - Lauri Jouhi
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Central Hospital, P. O. Box 41, 00014 Helsinki, Finland; Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Research Program for Clinical and Molecular Metabolism, P. O. Box 21, 00014 Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki, HUSLAB and Helsinki University Hospital, P. O. Box 21, 00014 Helsinki, Finland; Department of Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 20, FI-00014, Helsinki, Finland; Department of Oral Pathology and Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Silencing of nuclear factor kappa b 1 gene expression inhibits colony formation, cell migration and invasion via the downregulation of interleukin 1 beta and matrix metallopeptidase 9 in renal cell carcinoma. Mol Biol Rep 2019; 47:1143-1151. [PMID: 31820316 DOI: 10.1007/s11033-019-05212-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023]
Abstract
Renal cell carcinoma (RCC) is a highly deadly urological tumor due to its high metastatic incidence and its notorious chemoresistance. The nuclear transcription factor kappa B (NF-κB) family has been associated with apoptosis resistance and cellular invasion in RCC. The purpose of this study was to evaluate the impact of NF-κB1 gene silencing on the colony formation, cell migration and invasion abilities of the RCC cell line. Renca-mock and Renca-shRNA-NF-κB1 cells were used in this work. NF-κB1 downregulation was assessed by western blotting. The mRNA expression levels of interleukin-1 beta (IL-1β) and MMP-9 were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). The IL-1β levels in the culture media were determined by a commercial ELISA kit. The MMP-9 protein expression and gelatinolytic activity were evaluated by western blotting and zymography, respectively, and the migration and invasion abilities were analysed. The expression levels of p105 and p50 in Renca-shRNA-NF-κBmoc1 cells were significantly reduced compared with those in the Renca-mock cells. The colony numbers of shRNA-NF-кB1 cells were lower than the colony numbers of the Renca-mock cells. NF-κB1 knockdown inhibited the cell migration and invasion of Renca-shRNA-NF-κB1 cells. These cells also exhibited reduced levels of IL-1β. The MMP-9 expression and activity levels were significantly reduced in Renca-shRNA-NF-κB1 cells. Taken together, these results indicate that the downregulation of NF-κB1 suppresses the tumourigenicity of RCC by reducing MMP-9 expression and activity; thus, NF-κB1 could be a molecular target for RCC treatment.
Collapse
|
16
|
Lampropoulou DI, Aravantinos G, Laschos K, Theodosopoulos T, Papadimitriou C, Gazouli M. MiR-218 and miR-100 polymorphisms as markers of irinotecan-based chemotherapy response in metastatic colorectal cancer. Int J Colorectal Dis 2019; 34:1871-1877. [PMID: 31598748 DOI: 10.1007/s00384-019-03401-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer is the fourth cause of cancer-related death. Drug toxicity and resistance remain concerns of major importance. miR-100 and miR-218 are micro-RNAs that regulate cellular proliferation, differentiation and apoptosis acting as oncogenes and tumour suppressors; their functions and have been linked with toxicity development and drug resistance. METHODS We investigated the correlation between rs11134527 miR-218 and rs1834306 miR-100 polymorphisms and irinotecan-based regimens with regard to drug efficacy and toxicity. A total of 105 mCRC patients receiving irinotecan-based regimens were included in our study and assessed in terms of toxicity development and response to treatment. Rs11134527 miR-218 and rs1834306 miR-100 polymorphism genotyping in the peripheral blood was performed with PCR-RFLP. RESULTS Neither rs11134527 miR-218 nor rs1834306 miR-100 are associated with toxicity risk to treatment regimens. GA/AA genotypes of rs11134527 and CT/TT genotypes of rs1834306 were associated with a significantly reduced time-to-progression (TTP) and overall survival (OS). CONCLUSIONS GA/AA genotypes of rs11134527 miR-218 and CT/TT genotypes of rs1834306 miR-100 polymorphisms could serve as prognostic biomarkers of TTP and OS. Carriers of the A allele of the miR-218 rs11134527 and T allele of the miR-100 rs1834306 polymorphisms are more likely not to respond to irinotecan-based therapies. However, further studies in larger patient populations are required.
Collapse
Affiliation(s)
- Dimitra-Ioanna Lampropoulou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Konstantinos Laschos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Theodosis Theodosopoulos
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527, Athens, Greece.
| |
Collapse
|
17
|
Li Q, Chen Y, Zhang D, Grossman J, Li L, Khurana N, Jiang H, Grierson PM, Herndon J, DeNardo DG, Challen GA, Liu J, Ruzinova MB, Fields RC, Lim KH. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight 2019; 4:130867. [PMID: 31527315 DOI: 10.1172/jci.insight.130867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the NF-κB transcription factors underlies chemoresistance in various cancer types, including colorectal cancer (CRC). Targeting the activating mechanisms, particularly with inhibitors to the upstream IκB kinase (IKK) complex, is a promising strategy to augment the effect of chemotherapy. However, clinical success has been limited, largely because of low specificity and toxicities of tested compounds. In solid cancers, the IKKs are driven predominantly by the Toll-like receptor (TLR)/IL-1 receptor family members, which signal through the IL-1 receptor-associated kinases (IRAKs), with isoform 4 (IRAK4) being the most critical. The pathogenic role and therapeutic value of IRAK4 in CRC have not been investigated. We found that IRAK4 inhibition significantly abrogates colitis-induced neoplasm in APCMin/+ mice, and bone marrow transplant experiments showed an essential role of IRAK4 in immune cells during neoplastic progression. Chemotherapy significantly enhances IRAK4 and NF-κB activity in CRC cells through upregulating TLR9 expression, which can in turn be suppressed by IRAK4 and IKK inhibitors, suggesting a feed-forward pathway that protects CRC cells from chemotherapy. Lastly, increased tumor phospho-IRAK4 staining or IRAK4 mRNA expression is associated with significantly worse survival in CRC patients. Our results support targeting IRAK4 to improve the effects of chemotherapy and outcomes in CRC.
Collapse
Affiliation(s)
- Qiong Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yali Chen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lin Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Herndon
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grant A Challen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, and
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Xing Y, Zhang Z, Chi F, Zhou Y, Ren S, Zhao Z, Zhu Y, Piao D. AEBP1, a prognostic indicator, promotes colon adenocarcinoma cell growth and metastasis through the NF-κB pathway. Mol Carcinog 2019; 58:1795-1808. [PMID: 31219650 DOI: 10.1002/mc.23066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/06/2019] [Accepted: 05/23/2019] [Indexed: 01/25/2023]
Abstract
The abnormal expression of adipocyte enhancer binding protein 1 (AEBP1) has been implicated in the carcinogenesis and progression of various types of human tumors. However, the role of AEBP1 in colon adenocarcinoma (COAD) remains largely unelucidated. In this study, we explored the clinical significance and biological function of AEBP1 in COAD. We observed that AEBP1 was overexpressed in COAD tissues and cells and that the expression of AEBP1 was correlated with tumor size, the level of histologic differentiation, lymph node metastasis, and cancer stage in COAD patients. In addition, univariate and multivariate Cox regression analyses revealed that high AEBP1 expression suggested poor prognosis in COAD. Moreover, AEBP1 silencing suppressed COAD cell proliferation, migration, and invasion, whereas the upregulation of AEBP1 promoted these behaviors. Additionally, mechanistic studies further demonstrated that AEBP1 promoted COAD cell proliferation, migration, and invasion by upregulating the expression of matrix metalloproteinase-2, vimentin, and TWIST whereas downregulating that of E-cadherin through the nuclear factor-κB pathway. Collectively, these data indicated that AEBP1 may be a new prognostic factor and a potential gene therapy target in COAD.
Collapse
Affiliation(s)
- Yanwei Xing
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiqiang Zhang
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fengxu Chi
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yang Zhou
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuo Ren
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiwei Zhao
- Department of General Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yuekun Zhu
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Daxun Piao
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
19
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
NF-κB pathways in the development and progression of colorectal cancer. Transl Res 2018; 197:43-56. [PMID: 29550444 DOI: 10.1016/j.trsl.2018.02.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Nuclear factor-κB (NF-κB) has been widely implicated in the development and progression of cancer. In colorectal cancer (CRC), NF-κB has a key role in cancer-related processes such as cell proliferation, apoptosis, angiogenesis, and metastasis. The role of NF-κB in CRC is complex, owed to the cross talk with other signaling pathways. Although there is sufficient evidence gained from cell lines and animal models that NF-κB is involved in cancer-related processes, because of a lack of studies in human tissue, the clinical evidence of its importance is limited in patients with CRC. This review summarizes evidence relating to how NF-κB is involved in the development and progression of CRC and comments on future work to be carried out.
Collapse
|
21
|
Martins M, Mansinho A, Cruz-Duarte R, Martins SL, Costa L. Anti-EGFR Therapy to Treat Metastatic Colorectal Cancer: Not for All. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:113-131. [PMID: 30623369 DOI: 10.1007/978-3-030-02771-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of monoclonal antibodies (mAbs) cetuximab and panitumumab, which target the transmembrane protein epidermal growth factor receptor (EGFR), mark a major step forward in the treatment of metastatic colorectal cancer (mCRC). However, this therapeutic progress proved to be effective only in a very restricted subset of patients. Although several mechanisms of resistance, both primary and acquired, have been identified, the only established predictive tumour biomarker for the treatment of mCRC patients is the RAS mutational status. RAS activating mutations predict a lack of response to these therapies while low levels of primary resistance characterize RAS wild type (WT) patients (only about 15%). However, even WT patients that initially respond to anti-EGFR therapy, eventually undergo tumour progression. In this context, there is still more to be done in the search for effective predictive markers with therapeutic applicability. In this chapter, we provide an overview on the mechanisms that contribute to resistance to EGFR-targeted therapy and highlight what is still missing in our understanding of these molecular mechanisms and approaches to overcome them.
Collapse
Affiliation(s)
- Marta Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | - André Mansinho
- Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Raquel Cruz-Duarte
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Soraia Lobo Martins
- Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Luís Costa
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
22
|
Neuropilin-1 contributes to esophageal squamous cancer progression via promoting P65-dependent cell proliferation. Oncogene 2017; 37:935-943. [DOI: 10.1038/onc.2017.399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|
23
|
Ateyya H, Hassan ZA, El-Sherbeeny NA. The selective tyrosine kinase-inhibitor nilotinib alleviates experimentally induced cisplatin nephrotoxicity and heptotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:60-67. [PMID: 28826126 DOI: 10.1016/j.etap.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
This work tested the action of nilotinib, selective inhibitor of tyrosine kinase on cisplatin (CP)-induced damage of kidney and liver in rats. Rats were assigned to 4 groups, control, nilotinib, CP, and CP plus nilotinib. Assessment of kidney and liver function, lipid peroxidation and antioxidant markers, anti-apoptotic protein Bcl2, nuclear factor- kappa B (NF-κB) immunoreactivity, and caspase 3 activity were done. CP-induced damage evidenced by histopathological changes, deterioration of renal and liver function, imbalance in oxidants/antioxidants markers, decreased Bcl2, increased caspase 3 activity, and NF-κB nuclear expression in both organs. Nilotinib treatment with CP restored kidney and liver oxidants/antioxidant levels also increased Bcl2 and decreased NF-κB immunoreactivity were evident with nilotinib treatment. In conclusions these results demonstrated a protective effect of nilotinib in experimentally induced CP kidney and liver damage that could be mediated through combating oxidative stress, reducing inflammation and anti-apoptosis in the two organs.
Collapse
Affiliation(s)
- Hayam Ateyya
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Zeinab A Hassan
- Faculty of Medicine, Taibah University, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt.
| | - Nagla A El-Sherbeeny
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt.
| |
Collapse
|
24
|
Rao US, Rao PS. Surface-bound galectin-4 regulates gene transcription and secretion of chemokines in human colorectal cancer cell lines. Tumour Biol 2017; 39:1010428317691687. [PMID: 28345468 DOI: 10.1177/1010428317691687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
One long-term complication of chronic intestinal inflammation is the development of colorectal cancer. However, the mechanisms linking inflammation to the colorectal tumorigenesis are poorly defined. Previously, we have demonstrated that galectin-4 is predominantly expressed in the luminal epithelia of the gastrointestinal tract, and its loss of expression plays a key role in the colorectal tumorigenesis. However, the mechanism by which galectin-4 regulates inflammation-induced tumorigenesis is unclear. Here, we show that galectin-4 secreted by the colorectal cancer cell lines was bound to the cell surface. Neutralization of surface-bound galectin-4 with anti-galectin-4 antibody resulted in increased cell proliferation with concomitant secretion of several chemokines into the extracellular medium. Neutralization of the surface-bound galectin-4 also resulted in the up-regulation of transcription of 29 genes, several of which are components of multiple inflammation signaling pathways. In an alternate experiment, binding of recombinant galectin-4 protein to cell surface of the galectin-4-negative colorectal cancer cells resulted in increased p27, and decreased cyclin D1 and c-Myc levels, leading to cell cycle arrest and apoptosis. Together, these data demonstrated that surface-bound galectin-4 is a dual function protein-down-regulating cell proliferation and chemokine secretion in galectin-4-expressing colorectal cancer cells on one hand and inducing apoptosis in galectin-4-negative colorectal cancer cells on the other hand.
Collapse
Affiliation(s)
- U Subrahmanyeswara Rao
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA, USA
| | - Prema S Rao
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA, USA
| |
Collapse
|
25
|
Fu W, Zhuo ZJ, Chen YC, Zhu J, Zhao Z, Jia W, Hu JH, Fu K, Zhu SB, He J, Liu GC. NFKB1 -94insertion/deletion ATTG polymorphism and cancer risk: Evidence from 50 case-control studies. Oncotarget 2017; 8:9806-9822. [PMID: 28039461 PMCID: PMC5354772 DOI: 10.18632/oncotarget.14190] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor-kappa B1 (NF-κB1) is a pleiotropic transcription factor and key contributor to tumorigenesis in many types of cancer. Numerous studies have addressed the association of a functional insertion (I)/deletion (D) polymorphism (-94ins/delATTG, rs28362491) in the promoter region of NFKB1 gene with the risk of various types of cancer; however, their conclusions have been inconsistent. We therefore conducted a meta-analysis to reevaluate this association. PubMed, EMBASE, China National Knowledge infrastructure (CNKI), and WANFANG databases were searched through July 2016 to retrieve relevant studies. After careful assessment, 50 case-control studies, comprising 18,299 cases and 23,484 controls were selected. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were used to determine the strength of the association. The NFKB1 -94ins/delATTG polymorphism was associated with a decreased risk of overall cancer in the homozygote model (DD vs. II): OR = 0.75, 95% CI = 0.64-0.87); heterozygote model (ID vs. II): OR = 0.91, 95% CI = 0.83-0.99; recessive model (DD vs. ID/II): OR = 0.81, 95% CI = 0.71-0.91; dominant model (ID/DD vs. II): OR = 0.86, 95% CI = 0.78-0.95; and allele contrast model (D vs. I): OR = 0.88, 95% CI = 0.81-0.95). Subgroup and stratified analyses revealed decreased risks for lung cancer, nasopharyngeal carcinoma, prostate cancer, ovarian cancer, and oral squamous cell carcinoma, and this association held true also for Asians (especially Chinese subjects) in hospital-based studies, and in studies with quality scores less than nine. Well-designed, large-scale case-control studies are needed to confirm these results.
Collapse
Affiliation(s)
- Wen Fu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhen-Jian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yung-Chang Chen
- Department of Gastroenterology, The First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), Foshan 528000, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Zhang Zhao
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jin-Hua Hu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Kai Fu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Shi-Bo Zhu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guo-Chang Liu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
26
|
Nilotinib, a tyrosine kinase inhibitor exhibits protection against acute pancreatitis-induced lung and liver damage in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:291-300. [PMID: 27975299 DOI: 10.1007/s00210-016-1327-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
|
27
|
Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodeling. Int Immunopharmacol 2016; 39:172-180. [PMID: 27485290 DOI: 10.1016/j.intimp.2016.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Airway remodeling includes lung structural changes that have a role in the irreversibility of pulmonary dysfunction shown in chronic bronchial asthmatics. The current experiment investigated the effect of the mitochondrial antioxidant, tiron in comparison with dexamethasone (DEXA) on airway remodeling in chronic asthma. Sensitized BALB/c mice were challenged with ovalbumin (OVA) aerosol for 8weeks, OVA sensitized-challenged mice were treated with either DEXA or tiron, respectively. After that, lung tissue and bronchoaveolar lavage fluid (BALF) were used for measurement of different biological markers. Lungs were examined for histopathological changes and immunohistochemistry. Upon comparing with vehicle treated animals, trion or DEXA treatment significantly reduced eosinophils, lymphocytes, neutrophils and macrophages count in the BALF. Both drugs significantly alleviated chronic OVA-induced oxidative stress as illustrated by decreased pulmonary malondialdenhyde (MDA) and increased glutathione (GSH) and superoxide dismutase (SOD) levels. Asthmatic mice exhibited elevated levels of NOx, IL-13 and TGF-β1 that were reduced by DEXA and tiron. Histopathological changes and increased immunoreactivity of nuclear factor-Kappa B (NF-κ B) in OVA-challenged mice were minimized by tiron and DEXA treatment. In conclusion, in this model of chronic asthma DEXA and tiron ameliorated airway remodeling and inflammation in experimental chronic asthma with no difference between the effect of tiron and DEXA. Tiron has a potential role as adjuvant treatment in chronic asthma.
Collapse
|
28
|
Secretome of tumor-associated leukocytes augment epithelial-mesenchymal transition in positive lymph node breast cancer patients via activation of EGFR/Tyr845 and NF-κB/p65 signaling pathway. Tumour Biol 2016; 37:12441-12453. [DOI: 10.1007/s13277-016-5123-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
|
29
|
Ateyya H, Wagih HM, El-Sherbeeny NA. Effect of tiron on remote organ injury in rats with severe acute pancreatitis induced by L-arginine. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:873-85. [PMID: 27118662 DOI: 10.1007/s00210-016-1250-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory disorder of the pancreas that can be complicated by involvement of other remote organs. Oxidative stress is known to have a crucial role in the development of pancreatic acinar damage and one of the main causes in multisystem organ failure in experimental AP. The aim of the study was to determine the effect of tiron on pancreas and remote organ damage in L-arginine (L-Arg) induced AP rat model. Thirty-two male rats were divided in random into four groups: control, tiron, L-Arg, and tiron with L-Arg. At the end of the experiment, blood samples were withdrawn for biochemical analysis. The pancreas, lung, kidney, and liver were collected for histopathological examination. Estimation of pancreatic water content was done. Analysis of pulmonary, hepatic, renal, and pancreatic lipid peroxide levels (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) were carried out. Finally, nuclear factor kappa B (NF-κB) and transforming growth factor β1 (TGF-β1) expression in pancreatic tissue was determined. Results indicated that treatment with tiron significantly decreased lipid peroxide levels and markedly increased both SOD activity and GSH level. Moreover, histopathological analysis further confirmed that administration of tiron relatively ameliorates pancreatic acinar cells and remote organ damage. Increased immunoreactivity of NF-κB and TGF-β1 were reduced also by tiron treatment. These findings pointed out the protective role of the mitochondrial antioxidant, tiron against AP induced by L-Arg.
Collapse
Affiliation(s)
- Hayam Ateyya
- College of Pharmacy, Taibah University, El-Madinah, El-Munawarah, Saudi Arabia. .,Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Heba M Wagih
- Medical Laboratories Technology Department, Faculty of Applied Medical Sciences, Taibah University, El-Madinah El-Munawarah, Saudi Arabia.,Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nagla A El-Sherbeeny
- College of Pharmacy, Taibah University, El-Madinah, El-Munawarah, Saudi Arabia.,Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
30
|
Min J, Liu L, Li X, Jiang J, Wang J, Zhang B, Cao D, Yu D, Tao D, Hu J, Gong J, Xie D. Absence of DAB2IP promotes cancer stem cell like signatures and indicates poor survival outcome in colorectal cancer. Sci Rep 2015; 5:16578. [PMID: 26564738 PMCID: PMC4643237 DOI: 10.1038/srep16578] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a critical factor for the high mortality of colorectal cancer (CRC), but its mechanism is not completely understood. Epithelial-mesenchymal transition (EMT) is thought to play a key role in metastasis and also increases the cancer stem cell (CSC) feature that facilitates metastatic colonization. In this study, we investigated the biological roles of DAB2IP regulating EMT and stem cell-like features in human CRC. We demonstrate that DAB2IP suppresses NF-κB-mediated EMT and CSC features in CRC cells. In DAB2IP knockout mice, we discovered the hyperplasia in colonic epithelium which aberrantly represents the mesenchymal feature and NF-κB pathway activation. In clinic CRC tissue, we also reveal that reduced DAB2IP can enrich the CD133(+) subpopulation. DAB2IP expression was inversely correlated with tumor differentiation and metastasis, and patients with lower DAB2IP expression had shorter overall survival time. Taken together, our study demonstrates that DAB2IP inhibits NF-κB-inducing EMT and CSC to suppress the CRC progression, and also suggests that DAB2IP is a beneficial prediction factor for CRC patient prognosis.
Collapse
Affiliation(s)
- Jiang Min
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Gastrointestinal Surgery Department, The First Affiliated Hospital of ChongQing Medical University, Chongqing 400016, P.R. of China
| | - Liang Liu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Xiaolan Li
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Jianwu Jiang
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Jingtao Wang
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Bo Zhang
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Dengyi Cao
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Dongdong Yu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Deding Tao
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Junbo Hu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Jianping Gong
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| | - Daxing Xie
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. of China
| |
Collapse
|
31
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
32
|
van Harten-Gerritsen AS, Balvers MGJ, Witkamp RF, Kampman E, van Duijnhoven FJB. Vitamin D, Inflammation, and Colorectal Cancer Progression: A Review of Mechanistic Studies and Future Directions for Epidemiological Studies. Cancer Epidemiol Biomarkers Prev 2015; 24:1820-8. [PMID: 26396142 DOI: 10.1158/1055-9965.epi-15-0601] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Survival from colorectal cancer is positively associated with vitamin D status. However, whether this association is causal remains unclear. Inflammatory processes may link vitamin D to colorectal cancer survival, and therefore investigating inflammatory markers as potential mediators may be a valuable next step. This review starts with an overview of inflammatory processes suggested to be involved in colorectal cancer progression and regulated by vitamin D. Next, we provide recommendations on how to study inflammatory markers in future epidemiologic studies on vitamin D and colorectal cancer survival. Mechanistic studies have shown that calcitriol-active form of vitamin D-influences inflammatory processes involved in cancer progression, including the enzyme cyclooxygenase 2, the NF-κB pathway, and the expression of the cytokines TNFα, IL1β, IL6, IL8, IL17, and TGFβ1. Based on this and taking into account methodologic issues, we recommend to include analysis of specific soluble peptides and proteins, such as cytokines, in future epidemiologic studies on this issue. Vitamin D and the markers should preferably be measured at multiple time points during disease progression or recovery and analyzed using mediation analysis. Including these markers in epidemiologic studies may help answer whether inflammation mediates a causal relationship between vitamin D and colorectal cancer survival.
Collapse
Affiliation(s)
| | - Michiel G J Balvers
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands. Clinical Chemistry and Haematology Laboratory, Gelderse Vallei Hospital, Ede, the Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands. Department for Health Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands. Department for Health Science, VU University Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
33
|
Shakibaei M, Kraehe P, Popper B, Shayan P, Goel A, Buhrmann C. Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer 2015; 15:250. [PMID: 25884903 PMCID: PMC4406109 DOI: 10.1186/s12885-015-1291-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/30/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To overcome the limitations of animal-based experiments, 3D culture models mimicking the tumor microenvironment in vivo are gaining attention. Herein, we investigated an alginate-based 3D scaffold for screening of 5-fluorouracil (5-FU) or/and curcumin on malignancy of colorectal cancer cells (CRC). METHODS The potentiation effects of curcumin on 5-FU against proliferation and metastasis of HCT116 cell and its corresponding isogenic 5-FU-chemoresistant cells (HCT116R) were examined in a 3D-alginate tumor model. RESULTS CRC cells encapsulated in alginate were able to proliferate in 3D-colonospheres in a vivo-like phenotype and invaded from alginate. During cultivation of cells in alginate, we could isolate 3 stages of cells, (1) alginate proliferating (2) invasive and (3) adherent cells. Tumor-promoting factors (CXCR4, MMP-9, NF-κB) were significantly increased in the proliferating and invasive compared to the adherent cells, however HCT116R cells overexpressed factors in comparison to the parental HCT116, suggesting an increase in malignancy behavior. In alginate, curcumin potentiated 5-FU-induced decreased capacity for proliferation, invasion and increased more sensitivity to 5-FU of HCT116R compared to the HCT116 cells. IC50 for HCT116 to 5-FU was 8nM, but co-treatment with 5 μM curcumin significantly reduced 5-FU concentrations in HCT116 and HCT116R cells (0.8nM, 0.1nM, respectively) and these effects were accompanied by down-regulation of NF-κB activation and NF-κB-regulated gene products. CONCLUSIONS Our results demonstrate that the alginate provides an excellent tumor microenvironment and indicate that curcumin potentiates and chemosensitizes HCT116R cells to 5-FU-based chemotherapy that may be useful for the treatment of CRC and to overcome drug resistance.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany.
| | - Patricia Kraehe
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany.
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Ludwig-Maximilian-University Munich, D-80336, Munich, Germany.
| | - Parviz Shayan
- Investigating Institute of Molecular Biological System Transfer, Tehran, 1417863171, Iran.
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, 141556453, Iran.
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Constanze Buhrmann
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany.
| |
Collapse
|
34
|
Delaney C, Frank S, Huang RS. Pharmacogenomics of EGFR-targeted therapies in non-small cell lung cancer: EGFR and beyond. CHINESE JOURNAL OF CANCER 2015; 34:149-60. [PMID: 25962919 PMCID: PMC4593375 DOI: 10.1186/s40880-015-0007-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023]
Abstract
Commonly observed aberrations in epidermal growth factor receptor (EGFR) signaling have led to the development of EGFR-targeted therapies for various cancers, including non–small cell lung cancer (NSCLC). EGFR mutations and overexpression have further been shown to modulate sensitivity to these EGFR-targeted therapies in NSCLC and several other types of cancers. However, it is clear that mutations and/or genetic variations in EGFR alone cannot explain all of the variability in the responses of patients with NSCLC to EGFR-targeted therapies. For instance, in addition to EGFR genotype, genetic variations in other members of the signaling pathway downstream of EGFR or variations in parallel receptor tyrosine kinase (RTK) pathways are now recognized to have a significant impact on the efficacy of certain EGFR-targeted therapies. In this review, we highlight the mutations and genetic variations in such genes downstream of EGFR and in parallel RTK pathways. Specifically, the directional effects of these pharmacogenetic factors are discussed with a focus on two commonly prescribed EGFR inhibitors: cetuximab and erlotinib. The results of this comprehensive review can be used to optimize the treatment of NSCLC with EGFR inhibitors. Furthermore, they may provide the rationale for the design of subsequent combination therapies that involve the inhibition of EGFR.
Collapse
Affiliation(s)
- Christopher Delaney
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| | - Samuel Frank
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| | - R Stephanie Huang
- Department of Medicine, University of Chicago, 900 E 57th street, KCBD room 7148, Chicago, IL, 60637, USA. .,The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| |
Collapse
|
35
|
Lou C, Takahashi K, Irimura T, Saiki I, Hayakawa Y. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation. Int J Oncol 2014; 45:2085-91. [PMID: 25175557 DOI: 10.3892/ijo.2014.2624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-κB (NF-κB) activation has been implicated not only in carcinogenesis but also in cancer cell invasion and metastatic process; therefore, targeting the NF-κB pathway is an attractive strategy for controlling meta-stasis. Amongst 56 chemically defined compounds derived from natural products, we have identified a new phytochemical compound Hirsutine, which strongly suppresses NF-κB activity in murine 4T1 breast cancer cells. In accordance with the NF-κB inhibition, Hirsutine reduced the metastatic potential of 4T1 cells, as seen in the inhibition of the migration and invasion capacity of 4T1 cells. Hirsutine further inhibited the constitutive expression of MMP-2 and MMP-9 in 4T1 cells, and reduced the in vivo lung metastatic potential of 4T1 cells in the experimental model. Given that the migration of human breast cancer cells was also inhibited, our present study implies that Hirsutine is an attractive phytochemical compound for reducing metastasis potential of cancer cells by regulating tumor-promoting NF-κB activity.
Collapse
Affiliation(s)
- Chenghua Lou
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kei Takahashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
36
|
Hosseinpour B, Bakhtiarizadeh MR, Mirabbassi SM, Ebrahimie E. Comparison of hematopoietic cancer stem cells with normal stem cells leads to discovery of novel differentially expressed SSRs. Gene 2014; 550:10-7. [PMID: 25084127 DOI: 10.1016/j.gene.2014.07.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
Tandem repeat expansion in the transcriptomics level has been considered as one of the underlying causes of different cancers. Cancer stem cells are a small portion of cancer cells within the main neoplasm and can remain alive during chemotherapy and re-induce tumor growth. The EST-SSR background of cancer stem cells and possible roles of expressed SSRs in altering normal stem cells to cancer ones have not been investigated yet. Here, SSR distributions in hematopoietic normal and cancer stem cells were compared based on the expressed EST-SSR. One hundred eighty nine and 223 EST-SSRs were identified in cancer and normal stem cells, respectively. The EST-SSR expression pattern was significantly different between normal and cancer stem cells. The frequencies of AC/GT and TA/TA EST-SSRs were about 10% higher in cancer than normal stem cells. Remarkably, the number of triplets in cancer stem cells was 1.5 times higher than that in normal stem cells. GAT EST-SSR was frequent in cancer stem cells, but, conversely, normal stem cells did not express GAT EST-SSR. We suggest this EST-SSR as a novel triplet in cancer stem cell induction. Translating EST-SSRs to amino acids demonstrated that Asp and Ile were more abundant in cancer stem cells compared to normal stem cells. Finally, Gene Ontology (GO) enrichment analysis was carried out on genes containing triplet SSRs and showed that SSRs intentionally visit some specific GO classes. Interestingly, a NF-kappa (nuclear factor-kB) binding transcription factor was significantly hit by SSR instability which is a hallmark for leukemia stem cells. NF-kappa is an over represented transcription factor during cancer progression. It seems that there is a crosstalk between the NF-kB transcription factor and expressed GAT tandem repeat which negatively regulate apoptosis. In addition to better understanding of tumorigenesis, the findings of this study offer new DNA markers for diagnostic purposes and identifying at risk populations. In addition, a new approach for gene discovery in cancer by target analysis of differentially expressed EST-SSRs between cancer and normal stem cells is presented here.
Collapse
Affiliation(s)
| | | | | | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
37
|
Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L, Chan AT, Goode EL, Ulrich CM, Hung RJ. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev 2014; 23:1729-51. [PMID: 24962838 DOI: 10.1158/1055-9965.epi-14-0064] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. Department of Cancer Epidemiology and Prevention, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | | | | | - Andrew T Chan
- Dana Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Luo HY, Xu RH. Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer. World J Gastroenterol 2014; 20:3858-3874. [PMID: 24744578 PMCID: PMC3983442 DOI: 10.3748/wjg.v20.i14.3858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignant diseases and the second leading cause of cancer-related deaths worldwide. The treatment of advanced CRC has improved significantly in recent years. With the emergence of two targeted antibodies, cetuximab (Erbitux), an anti-epidermal growth factor receptor monoclonal antibody and bevacizumab (Avastin), a vascular endothelial growth factor monoclonal antibody, the treatment of metastatic CRC has entered the era of personalized therapy. Predictive and prognostic biomarkers have, and will continue to, facilitate the selection of suitable patients and the personalization of treatment for metastatic CRC (mCRC). In this review, we will focus primarily on the important progresses made in the personalized treatment of mCRC and discuss the potentially novel predictive and prognostic biomarkers for improved selection of patients for anti-cancer treatment in the future.
Collapse
|
39
|
Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial. Br J Cancer 2014; 110:1148-54. [PMID: 24407191 PMCID: PMC3950852 DOI: 10.1038/bjc.2013.813] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/21/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022] Open
Abstract
Background: This trial evaluated the feasibility and efficacy of combined sorafenib and irinotecan (NEXIRI) as second- or later-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC), who had progressed after irinotecan-based chemotherapy. Methods: In Phase I, in a 3+3 dose escalation schedule, patients received irinotecan (125, 150 or 180 mg m−2 every 2 weeks), in combination with 400 mg sorafenib b.d. The primary end point was the maximum-tolerated dose of irinotecan. In Phase II, the primary end point was disease control rate (DCR). Secondary end points were progression-free survival (PFS), overall survival (OS) and toxicity. Results: Phase I included 10 patients (median age 63 (49–73)); no dose-limiting toxicity was seen. In Phase II, 54 patients (median age 60 (43–80) years) received irinotecan 180 mg m−2 every 2 weeks with sorafenib 400 mg b.d. Nine patients (17%) remained on full-dose sorafenib. The DCR was 64.9% (95% CI, 51–77). Median PFS and OS were 3.7 (95% CI, 3.2–4.7) and 8.0 (95% CI, 4.8–9.7) months, respectively. Toxicities included Grade 3 diarrhoea (37%), neutropenia (18%), hand-foot syndrome (13%) and Grade 4 neutropenia (17%). Conclusion: The NEXIRI regimen showed promising activity as second- or later-line treatment in this heavily pretreated mCRC population (ClinicalTrials.gov NCT00989469).
Collapse
|
40
|
Han L, Wu Z, Zhao Q. Revealing the molecular mechanism of colorectal cancer by establishing LGALS3-related protein-protein interaction network and identifying signaling pathways. Int J Mol Med 2014; 33:581-8. [PMID: 24398765 DOI: 10.3892/ijmm.2014.1620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/06/2013] [Indexed: 01/27/2023] Open
Abstract
LGALS3 plays a role in colorectal cancer, however, the detailed molecular mechanism remains to be determined, while signaling pathways provide valuable information for understanding the underlying mechanism of the cancer. The purpose of this study was to explore the roles of LGALS3 and signaling pathways in the pathogenesis of colorectal cancer. In this study, microarray data GSE8671 were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) in colorectal cancer were identified by Significant Analysis of Microarray. Gene ontology (GO) analysis was performed on the top 500 upregulated and 500 downregulated genes using DAVID. The signaling pathways were predicted by the signaling pathway impact analysis (SPIA) with pGFdr<0.05 and transcription factors were identified by TFats. The LGALS3-related protein-protein interaction network (PPI) was established by STRING and Cytoscape. In total, 6,593 upregulated and 5,897 downregulated DEGs were identified and 41 downregulated genes, including CLND8 and CLND23 were enriched in cell adhesion. In addition, 21 pathways, such as the cell cycle, p53 signaling pathway and NF-κB signaling pathway, were selected. MYC and TCF7L2 were found to be activated while FOXO3 was suppressed in colorectal cancer. Eight downregulated and 10 upregulated genes were identified in the LGALS3 PPI network. Results of the present study shed new light on the molecular mechanism of colorectal cancer and these findings have the potential to be used in colorectal cancer treatment.
Collapse
Affiliation(s)
- Lu Han
- Economics Division, School of Social and International Studies, University of Bradford, Bradford BD7 1DP, UK
| | - Zhixiong Wu
- Department of Oncology, Chongqing Cancer Institute, Shapingba, Chongqing 400030, P.R. China
| | - Qicheng Zhao
- Department of Oncology, Chongqing Cancer Institute, Shapingba, Chongqing 400030, P.R. China
| |
Collapse
|
41
|
Abo El-Magd GH, Abd El-Fattah O, Saied EM. Immunohistochemical expression of nuclear factor kappa-B/p65 and cyclooxygenase-2 in non-small cell lung cancer patients: Prognostic value and impact on survival. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Chen H, Zhang J, Luo J, Lai F, Wang Z, Tong H, Lu D, Bu H, Zhang R, Lin S. Antiangiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol Rep 2013; 30:589-95. [PMID: 23754270 DOI: 10.3892/or.2013.2529] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/29/2013] [Indexed: 11/05/2022] Open
Abstract
Oxymatrine, the main alkaloid component in the traditional Chinese herbal medicine Sophora japonica (Sophora flavescens Ait), has been reported to have antitumor properties. However, the mechanisms of action in human pancreatic cancer are not well established to date. In the present study, we investigated the antiangiogenic effects of oxymatrine on human pancreatic cancer as well as the possible mechanisms involved. The results of the cell viability assay showed that treatment of PANC-1 pancreatic cancer cells with oxymatrine resulted in cell growth inhibition in a dose- and time-dependent manner. To investigate the possible mechanisms involved in these events, we performed western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis. The results revealed that oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the antiproliferative and antiangiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice. In conclusion, our studies for the first time suggest that oxymatrine has potential antitumor effects on pancreatic cancer via suppression of angiogenesis, probably through regulation of the expression of the NF-κB-mediated VEGF signaling pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325027, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu WK, Wang XJ, Cheng AS, Luo MX, Ng SS, To KF, Chan FK, Cho CH, Sung JJ, Yu J. Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit Rev Oncol Hematol 2013; 86:251-77. [PMID: 23287077 DOI: 10.1016/j.critrevonc.2012.11.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 02/06/2023] Open
|
44
|
Bonavida B, Jazirehi A, Vega MI, Huerta-Yepez S, Baritaki S. Roles Each of Snail, Yin Yang 1 and RKIP in the Regulation of Tumor Cells Chemo-immuno-resistance to Apoptosis. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2013; 4:10.1615/ForumImmunDisTher.2013008299. [PMID: 24187651 PMCID: PMC3811117 DOI: 10.1615/forumimmundisther.2013008299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current anti-cancer therapeutic armamentarium consists of surgery, chemotherapy, radiation, hormonal therapy, immunotherapy, and combinations thereof. Initial treatments usually result in objective clinical responses with prolongation of overall survival (OS) and progression-free survival (PFS) in a large subset of the treated patients. However, at the onset, there is a subset of patients who does not respond and another subset that initially responded but experiences relapses and recurrences. These latter subsets of patients develop a state of cross-resistance to a variety of unrelated therapies. Therefore, there is an urgent need to first unravel the underlying mechanisms of resistance and associated gene products that regulate the cross-resistance. Such gene products are potential therapeutic targets as well as potential prognostic/diagnostic biomarkers. In this context, we have identified three interrelated gene products involved in resistance, namely, Snail, YY1, and RKIP that are components of the dysregulated NF-κB/Snail/YY1/RKIP loop in many cancers. In this review, we will discuss the roles each of Snail, YY1 and RKIP in the regulation of tumor cell resistance to chemo and immunotherapies. Since these same gene products have also been shown to be involved in the regulation of the EMT phenotype and metastasis, we suggest that targeting any of these three gene products can simultaneously inhibit tumor cell resistance and metastasis.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Ali Jazirehi
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Mario I. Vega
- Oncology Research Unit, Oncology Hospital Siglo XXI National Medical Center, IMSS
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, SSA, México City, Mexico
| | - Stavroula Baritaki
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
45
|
Abstract
Activation of NF-κB has been linked to various cellular processes in cancer, including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance, and radioresistance. Although acute inflammation mediates innate and humoral immunity, chronic inflammation has been linked to tumorigenesis. Thus, inhibition of NF-κB has therapeutic potential in sensitization of tumors to chemotherapeutic agents; however, generalized suppression of NF-κB can result in serious host toxicity with minimum effect on the tumor.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
46
|
MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet 2012; 205:545-51. [PMID: 23098991 DOI: 10.1016/j.cancergen.2012.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 02/07/2023]
Abstract
Anti-EGFR monoclonal antibodies (anti-EGFRmAb) serve in the treatment of metastatic colorectal cancer (mCRC), but patients with a mutation in KRAS/BRAF and nearly one-half of those without the mutation fail to respond. We performed microRNA (miRNA) analysis to find miRNAs predicting anti-EGFRmAb efficacy. Of the 99 mCRC patients, we studied differential miRNA expression by microarrays from primary tumors of 33 patients who had wild-type KRAS/BRAF and third- to sixth-line anti-EGFRmAb treatment, with/without irinotecan. We tested the association of each miRNA with overall survival (OS) by the Cox proportional hazards regression model. Significant miR-31* up-regulation and miR-592 down-regulation appeared in progressive disease versus disease control. miR-31* expression and down-regulation of its target genes SLC26A3 and ATN1 were verified by quantitative reverse transcriptase polymerase chain reaction. Clustering of patients based on miRNA expression revealed a significant difference in OS between patient clusters. Members of the let-7 family showed significant up-regulation in the patient cluster with poor OS. Additionally, miR-140-5p up-regulation and miR-1224-5p down-regulation were significantly associated with poor OS in both cluster analysis and the Cox proportional hazards regression model. In mCRC patients with wild-type KRAS/BRAF, miRNA profiling can efficiently predict the benefits of anti-EGFRmAb treatment. Larger series of patients are necessary for application of these miRNAs as predictive/prognostic markers.
Collapse
|
47
|
Pu X, Pan Z, Huang Y, Tian Y, Guo H, Wu L, He X, Chen X, Zhang S, Lin T. Comparison of KRAS/BRAF mutations between primary tumors and serum in colorectal cancer: Biological and clinical implications. Oncol Lett 2012; 5:249-254. [PMID: 23255930 DOI: 10.3892/ol.2012.963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/14/2012] [Indexed: 12/29/2022] Open
Abstract
In colorectal cancer (CRC), KRAS and BRAF mutations in primary tumors are associated with resistance to anti-epidermal growth factor receptor (anti-EGFR)-based therapies. However, the correlation between KRAS/BRAF mutation in primary tumors and serum has not been well studied. To evaluate the degree of concordance of KRAS/BRAF mutations between the primary tumors and the matched serum samples in CRC, serum and tumor tissues were collected from 115 patients with CRC and KRAS/BRAF mutations were examined by nested polymerase chain reaction (PCR) and direct sequencing. BRAF mutations were present in 3.5% (4/115) of the primary tumor tissue samples and 0.87% (1/115) of the serum samples. In the 4 primary tumors with BRAF mutations, identical mutations were not observed in the corresponding serum samples (κ=-0.016). KRAS mutations were observed in 32.2% (37/115) of the primary tumors and 11.3% (13/115) of the serum samples. Of the 37 tumor cases with KRAS mutations, 9 had identical mutations in the corresponding serum sample, with a concordance rate of 24.3% (9/37). Discordance was observed in 32 (27.8%) patients. The concordance between KRAS mutations in the primary tumors and KRAS mutations in the matched serums was low (κ=0.231). The results of the present study suggest that the possibility of differences in the mutational status of KRAS/BRAF between primary tumors and matched serum samples should be considered when patients are selected for anti-EGFR-based therapies.
Collapse
Affiliation(s)
- Xingxiang Pu
- Department of Medical Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
KRAS mutation and NF-κB activation indicates tolerance of chemotherapy and poor prognosis in colorectal cancer. Dig Dis Sci 2012; 57:2325-33. [PMID: 22526587 DOI: 10.1007/s10620-012-2172-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/03/2012] [Indexed: 01/31/2023]
Abstract
BACKGROUND Evidence shows a strong relationship between KRAS mutations and the NF-κB signaling pathway. In colorectal cancer, however, the study of this subject has been very limited and results are inconsistent. AIMS To examine the relationship between KRAS mutations and NF-κB activation and their effect on chemotherapy response and survival of colorectal cancer patients. MATERIALS AND METHODS NF-κB activation was analyzed by immunohistochemistry in 167 primary colorectal cancer specimens in which the KRAS mutation status was confirmed. Clinical and pathologic data were extracted from the medical records and reviewed. RESULTS Of 167 tumors screened, 63 (37.7 %) had NF-κB activation, 59 (35.3 %) had KRAS mutations, and 30 (18.0 %) had both NF-κB activation and KRAS mutations. The frequency of NF-κB activation in tumors with KRAS mutations was significantly higher than in tumors with wild type KRAS; 50.8 versus 30.6 %, P = 0.012. Patients with both KRAS mutations and NF-κB activation had a lower objective response to first-line chemotherapy than patients with other tumors, 23.8 versus 49.4 % (P = 0.035). Compared to patients with both KRAS mutations and NF-κB activation, overall survival of patients in other groups was significantly higher; median overall survival was 28.4 months (95 % CI 21.0-35.8) versus 46.3 months (95 % CI 39.4-53.2), hazard ratio 0.259 (95 % CI 0.125-0.538), P = 0.005. CONCLUSIONS NF-κB activation was associated with KRAS mutation, and both KRAS mutation and NF-κB activation were indicative of high tolerance of chemotherapy and poor prognosis for colorectal cancer patients. Tumors with KRAS mutations and NF-κB activation may be a unique subtype of colorectal cancer.
Collapse
|
49
|
Ishida K, Nishizuka SS, Chiba T, Ikeda M, Kume K, Endo F, Katagiri H, Matsuo T, Noda H, Iwaya T, Yamada N, Fujiwara H, Takahashi M, Itabashi T, Uesugi N, Maesawa C, Tamura G, Sugai T, Otsuka K, Koeda K, Wakabayashi G. Molecular marker identification for relapse prediction in 5-FU-based adjuvant chemotherapy in gastric and colorectal cancers. PLoS One 2012; 7:e43236. [PMID: 22905237 PMCID: PMC3419205 DOI: 10.1371/journal.pone.0043236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
To confirm the clinical significance of NF-κB and JNK protein expression from experimentally identified candidates for predicting prognosis for patients with 5-FU treatment, we evaluated the protein expression of surgically removed specimens. A total of 79 specimens were obtained from 30 gastric and 49 colorectal cancer patients who underwent R0 resection followed by postoperative 5-FU based adjuvant chemotherapy. Immunohistochemical examinations of NF-κB and JNK on tissue microarrays (TMAs) revealed that significantly shorter time-to-relapse (TTR) in both NF-κB(+) and JNK(−) subgroups in both gastric (NF-κB(+), p = 0.0002, HR11.7. 95%CI3 3.2–43.4; JNK(−), p = 0.0302, HR4.4, 95%CI 1.2–16.6) and colon (NF-κB(+), p = 0.0038, HR36.9, 95%CI 3.2–426.0; JNK(−), p = 0.0098, HR3.2, 95%CI 1.3–7.7) cancers. These protein expression patterns also show strong discriminately power in gastric cancer patients for overall survival rate, suggesting a potential utility as prognostic or chemosensitivity markers. Baseline expression of these proteins using gastric cancer cell lines demonstrated the reciprocal patterns between NF-κB and JNK, while 5-FU exposure of these cell lines only induced NF-κB, suggesting that NF-κB plays a dominant role in the response to 5-FU. Subsequent siRNA experiments confirmed that gene knockdown of NF-κB increased 5-FU-specific sensitivity, whereas that of JNK did not affect the chemosensitivity. These results suggest that the expression of these proteins may aid in the decisions involved with adjuvant chemotherapy for gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Kazushige Ishida
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Satoshi S. Nishizuka
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- * E-mail:
| | - Takehiro Chiba
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Miyuki Ikeda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kohei Kume
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- Department of Tumor Biology, Center for Advanced Medical Science, Iwate Medical University, Yahaba, Japan
| | - Fumitaka Endo
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hirokatsu Katagiri
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Teppei Matsuo
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hironobu Noda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Takeshi Iwaya
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | - Noriyuki Yamada
- Division of Diagnostic Molecular Pathology, Department of Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hisataka Fujiwara
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Masanori Takahashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Tetsuya Itabashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Noriyuki Uesugi
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- Division of Diagnostic Molecular Pathology, Department of Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Chihaya Maesawa
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- Department of Tumor Biology, Center for Advanced Medical Science, Iwate Medical University, Yahaba, Japan
| | - Gen Tamura
- Department of Pathology and Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Tamotsu Sugai
- Division of Diagnostic Molecular Pathology, Department of Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Koki Otsuka
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Keisuke Koeda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Go Wakabayashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
| |
Collapse
|
50
|
Berardi R, Maccaroni E, Mandolesi A, Mantello G, Onofri A, Biscotti T, Pierantoni C, Siquini W, Marmorale C, Guerrieri M, Bearzi I, Cascinu S. Nuclear factor-κB predicts outcome in locally advanced rectal cancer patients receiving neoadjuvant radio-chemotherapy. Dig Liver Dis 2012; 44:617-622. [PMID: 22440241 DOI: 10.1016/j.dld.2012.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND NF-κB expression has been shown to be responsible for resistance to antineoplastic agents. AIMS The aim of our study was to investigate the importance of NF-κB expression as prognostic factor in locally advanced rectal cancer patients receiving neoadjuvant radiochemotherapy. METHODS We retrospectively analysed the immunoreactivity for NF-κB in patients with locally advanced rectal cancer who underwent neoadjuvant treatment (chemotherapy and/or radiotherapy) in our Institution between March 2003 and June 2006. RESULTS Seventy-four consecutive patients were enrolled into this study. Immunohistochemistry analysis for NF-κB was performed both in biopsies and in primary tumour samples. NF-κB was considered positive when at least 1% of the tumour cells showed nuclear positivity. A significant correlation between a positive NF-κB nuclear expression, both in biopsies and in tumour samples, and a worse overall survival was observed. Moreover, median time to progression was significantly shorter in the NF-κB-positive subgroup of patients. CONCLUSION Globally, our findings seem to suggest that NF-κB could represent an important parameter able to predict the outcome in patients receiving neoadjuvant treatment for rectal cancer. It also could be useful in order to select patients to receive adjuvant chemotherapy, intensifying the adjuvant therapy and, in the next future, obviating the use of drugs involving NF-κB system in their mechanism of action in NF-κB-positive patients.
Collapse
Affiliation(s)
- Rossana Berardi
- Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|