1
|
Zhang F, Liu Y, Zhu Y, Wang Q, Zhao X, Wang Q, Chen Y, Chen S. Molecular, clinical, and prognostic implications of RAS pathway alterations in adult acute myeloid leukemia. Leuk Lymphoma 2025; 66:753-763. [PMID: 39743890 DOI: 10.1080/10428194.2024.2441855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
Alterations in the RAS pathway underscore the pathogenic complexity of acute myeloid leukemia (AML), yet the full spectrum, including CBL, NF1, PTPN11, KRAS, and NRAS, remains to be fully elucidated. In this retrospective study of 735 adult AML patients, the incidence of RAS pathway alterations was 32.4%, each with distinct clinical characteristics. Venetoclax combined with hypomethylating agents (VEN + HMA) did not significantly improve response rates compared to intensive chemotherapy (IC) group. In the IC group, PTPN11 mutations in the N-SH2 domain showed a trend toward poorer prognosis, though not statistically significant in multivariate analysis, while NRAS mutations correlated with improved outcomes. In the VEN + HMA group, PTPN11 mutations in the N-SH2 domain emerged as an independent adverse prognostic marker. NRAS or KRAS mutations showed no survival advantage compared to wild-type, aligning with their intermediate-risk classification in the 2024 ELN guidelines. These findings emphasize the need for treatment-specific risk stratification for RAS pathway mutations in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Male
- Female
- Middle Aged
- Adult
- Mutation
- Prognosis
- Aged
- Retrospective Studies
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Young Adult
- Aged, 80 and over
- Signal Transduction
- Biomarkers, Tumor/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- ras Proteins/metabolism
- ras Proteins/genetics
- Adolescent
- Proto-Oncogene Proteins p21(ras)/genetics
- GTP Phosphohydrolases/genetics
- Membrane Proteins
Collapse
Affiliation(s)
- Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yizi Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yiyan Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qingyuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiangyu Zhao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yu Chen
- Department of Hematology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
Guarnera L, Gurnari C, Bravo-Perez C, Durmaz A, Williams ND, Awada H, Kawashima N, Ahmed A, Unlu S, Ogbue OD, Haddad C, Mandala A, Kubota Y, Bodo J, Crane GM, Rogers HJ, Maciejewski JP, Visconte V. Non canonical c-CBL mutations define a specific phenotype of myeloid neoplasia. Leukemia 2025; 39:748-751. [PMID: 39755843 PMCID: PMC11879845 DOI: 10.1038/s41375-024-02429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Carmelo Gurnari
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER - Instituto de Salud Carlos III, Murcia, 30005, Spain
| | - Arda Durmaz
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Nakisha D Williams
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Hussein Awada
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Naomi Kawashima
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Arooj Ahmed
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Serhan Unlu
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Olisaemeka D Ogbue
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Christopher Haddad
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Aashray Mandala
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Yasuo Kubota
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Juraj Bodo
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland, OH, USA
| | - Genevieve M Crane
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland, OH, USA
| | - Heesun J Rogers
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA.
| |
Collapse
|
3
|
Cai J, Zhang N, Qiu L, Dou BT, Li MJ, Chen D, Ren SH, Ma L, Yao H, Fan FY. Rapid development of acute monocytic leukemia (AML-M5b) with t(9;11)(p22;q23) after chemotherapy for T-cell lymphoblastic lymphoma: A case report. Heliyon 2025; 11:e42537. [PMID: 40040976 PMCID: PMC11876885 DOI: 10.1016/j.heliyon.2025.e42537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 10/17/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Objective To investigate the diagnosis and treatment of T lymphoblastic lymphoma (T-LBL) progressing into acute monocytic leukemia (AML-M5b) and explore possible pathogenic mechanisms. Methods Comprehensive diagnosis and evaluation of the patient's disease status were conducted through lymph node biopsy, bone marrow aspiration and biopsy, PET/CT, immunohistochemistry, flow cytometry, fusion gene detection, and whole-exome sequencing (WES) based on the clinical manifestations at different stages. Results The lymph node biopsy revealed Ki67 positivity at 80 % and expression of TDT, CD4, CD8, CD3, and CD5. The PET/CT scan showed increased FDG metabolism at multiple sites. Based on relevant tests and examination results, the patient was diagnosed with T-LBL (stage IV; IPI score, 3). After three cycles of chemotherapy, abnormal immature monocytes were detected using bone marrow flow cytometry, suggesting an acute progression from T-LBL to AML-M5b. Chromosomal karyotype analysis revealed t(9; 11)(p22; q23) and the MLL-AF9 fusion gene. WES analysis identified mutations in several genes, among which mutations in SET domain-containing protein 2 and CBL may be associated with the occurrence of acute myeloid leukemia. The patient died 1 month after AML-M5b diagnosis. Conclusion Patients with T-LBL progression to AML have a poor prognosis and shorter overall survival. Hence, exploring the pathogenic mechanisms and reasons for disease progression has significant implications for finding effective treatment modalities and prolonging patient survival.
Collapse
Affiliation(s)
- Jiao Cai
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
| | - Nan Zhang
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
| | - Ling Qiu
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
| | - Bai-tao Dou
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, SiChuan, China
| | - Meng-jiao Li
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, SiChuan, China
| | - Dan Chen
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
| | - Shi-hui Ren
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
| | - Lei Ma
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
| | - Hao Yao
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, SiChuan, China
| | - Fang-yi Fan
- Department of Hematology, Chinese People's Liberation Army The General Hospital of Western Theater Command, Chengdu, SiChuan, 610083, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, SiChuan, China
| |
Collapse
|
4
|
Oster HS, Mittelman M. How we diagnose Myelodysplastic syndromes. Front Oncol 2024; 14:1415101. [PMID: 39346739 PMCID: PMC11427428 DOI: 10.3389/fonc.2024.1415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
The Myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by ineffective hematopoiesis that results in dysplasia in hematopoietic cells and peripheral cytopenias, especially anemia, and a propensity to leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for MDS diagnosis is still BM examination with the presence of uni-or multi-lineage dysplasia and increased blast percentage, together with exclusion of other reasons. Cytogenetics is also an essential part of the diagnostic and prognostic processes. Flow cytometry and full genetic characterization are helpful but not mandatory for MDS diagnosis. This review summarizes the current steps of diagnostic approach for a patient suspected of having MDS. We also express our hopes that within the near future, non-invasive technologies, especially digital and peripheral blood genetics, will mature and be introduced into practice.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| |
Collapse
|
5
|
Dillon LW, Gui G, Ravindra N, Andrew G, Mukherjee D, Wong ZC, Huang Y, Gerhold J, Holman M, D’Angelo J, Miller J, Higgins J, Salk JJ, Auletta JJ, El Chaer F, Devine SM, Jimenez-Jimenez AM, De Lima MJG, Litzow MR, Kebriaei P, Saber W, Spellman SR, Zeger SL, Page KM, Hourigan CS. Measurable Residual FLT3 Internal Tandem Duplication Before Allogeneic Transplant for Acute Myeloid Leukemia. JAMA Oncol 2024; 10:1104-1110. [PMID: 38696205 PMCID: PMC11066770 DOI: 10.1001/jamaoncol.2024.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 05/05/2024]
Abstract
Importance Persistence of FLT3 internal tandem duplication (ITD) in adults with acute myeloid leukemia (AML) in first complete remission (CR) prior to allogeneic hematopoietic cell transplant (HCT) is associated with increased relapse and death after transplant, but the association between the level of measurable residual disease (MRD) detected and clinical outcome is unknown. Objective To examine the association between pre-allogeneic HCT MRD level with relapse and death posttransplant in adults with AML in first CR. Design, Setting, and Participants In this cohort study, DNA sequencing was performed on first CR blood from patients with FLT3-ITD AML transplanted from March 2013 to February 2019. Clinical follow-up was through May 2022. Data were analyzed from October 2022 to December 2023. Exposure Centralized DNA sequencing for FLT3-ITD in pre-allogeneic HCT first CR blood using a commercially available kit. Main Outcomes and Measures The primary outcomes were overall survival and cumulative incidence of relapse, with non-relapse-associated mortality as a competing risk post-allogeneic HCT. Kaplan-Meier estimations (log-rank tests), Cox proportional hazards models, and Fine-Gray models were used to estimate the end points. Results Of 537 included patients with FLT3-ITD AML from the Pre-MEASURE study, 296 (55.1%) were female, and the median (IQR) age was 55.6 (42.9-64.1) years. Using the variant allele fraction (VAF) threshold of 0.01% or greater for MRD positivity, the results closely aligned with those previously reported. With no VAF threshold applied (VAF greater than 0%), 263 FLT3-ITD variants (median [range] VAF, 0.005% [0.0002%-44%]), and 177 patients (33.0%) with positive findings were identified. Multivariable analyses showed that residual FLT3-ITD was the variable most associated with relapse and overall survival, with a dose-dependent correlation. Patients receiving reduced-intensity conditioning without melphalan or nonmyeloablative conditioning had increased risk of relapse and death at any given level of MRD compared with those receiving reduced-intensity conditioning with melphalan or myeloablative conditioning. Conclusions and Relevance This study provides generalizable and clinically applicable evidence that the detection of residual FLT3-ITD in the blood of adults in first CR from AML prior to allogeneic HCT is associated with an increased risk of relapse and death, particularly for those with a VAF of 0.01% or greater. While transplant conditioning intensification, an intervention not available to all, may help mitigate some of this risk, alternative approaches will be necessary for this high-risk population of patients who are underserved by the current standard of care.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/blood
- Female
- Male
- Middle Aged
- Hematopoietic Stem Cell Transplantation/methods
- Adult
- Transplantation, Homologous
- Neoplasm, Residual
- Tandem Repeat Sequences
- Aged
- Gene Duplication
- Cohort Studies
Collapse
Affiliation(s)
- Laura W. Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gege Gui
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Niveditha Ravindra
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Georgia Andrew
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Devdeep Mukherjee
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zoë C. Wong
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | - Jesse J. Salk
- TwinStrand Biosciences, Seattle, Washington
- University of Washington School of Medicine, Seattle
| | - Jeffery J. Auletta
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- The Ohio State University College of Medicine, Columbus
| | | | - Steven M. Devine
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | | | | | | | | | - Wael Saber
- Medical College of Wisconsin, Milwaukee
- National Marrow Donor Program, Minneapolis, Minnesota
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- National Marrow Donor Program, Minneapolis, Minnesota
| | - Scott L. Zeger
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kristin M. Page
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- Medical College of Wisconsin, Milwaukee
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Virginia Tech Fralin Biomedical Research Institute Cancer Research Center, Washington, DC
| |
Collapse
|
6
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2024 update on diagnosis, risk stratification and management. Am J Hematol 2024; 99:1142-1165. [PMID: 38450850 PMCID: PMC11096042 DOI: 10.1002/ajh.27271] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, characterized by prominent monocytosis and an inherent risk for leukemic transformation (~15%-20% over 3-5 years). DIAGNOSIS Newly revised diagnostic criteria include sustained (>3 months) peripheral blood (PB) monocytosis (≥0.5 × 109/L; monocytes ≥10% of leukocyte count), consistent bone marrow (BM) morphology, <20% BM or PB blasts (including promonocytes), and cytogenetic or molecular evidence of clonality. Cytogenetic abnormalities occur in ~30% of patients, while >95% harbor somatic mutations: TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), RAS pathway (~30%), and others. The presence of ASXL1 and DNMT3A mutations and absence of TET2 mutations negatively impact overall survival (ASXL1WT/TET2MT genotype being favorable). RISK STRATIFICATION Several risk models serve similar purposes in identifying high-risk patients that are considered for allogeneic stem cell transplant (ASCT) earlier than later. Risk factors in the Mayo Molecular Model (MMM) include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109/L, hemoglobin <10 g/dL, platelet count <100 × 109/L, and the presence of circulating immature myeloid cells; the resulting 4-tiered risk categorization includes high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors); the corresponding median survivals were 16, 31, 59, and 97 months. CMML is also classified as being "myeloproliferative (MP-CMML)" or "myelodysplastic (MD-CMML)," based on the presence or absence of leukocyte count of ≥13 × 109/L. TREATMENT ASCT is the only treatment modality that secures cure or long-term survival and is appropriate for MMM high/intermediate-2 risk disease. Drug therapy is currently not disease-modifying and includes hydroxyurea and hypomethylating agents; a recent phase-3 study (DACOTA) comparing hydroxyurea and decitabine, in high-risk MP-CMML, showed similar overall survival at 23.1 versus 18.4 months, respectively, despite response rates being higher for decitabine (56% vs. 31%). UNIQUE DISEASE ASSOCIATIONS These include systemic inflammatory autoimmune diseases, leukemia cutis and lysozyme-induced nephropathy; the latter requires close monitoring of renal function during leukocytosis and is a potential indication for cytoreductive therapy.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Huang L, Thiex NW, Lou J, Ahmad G, An W, Low-Nam ST, Kerkvliet JG, Band H, Hoppe AD. The ubiquitin ligases Cbl and Cbl-b regulate macrophage growth by controlling CSF-1R import into macropinosomes. Mol Biol Cell 2024; 35:ar38. [PMID: 38170572 PMCID: PMC10916879 DOI: 10.1091/mbc.e23-09-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The ubiquitination of transmembrane receptors regulates endocytosis, intracellular traffic, and signal transduction. Bone marrow-derived macrophages from myeloid Cbl-/- and Cbl-b-/- double knockout (DKO) mice display sustained proliferation mirroring the myeloproliferative disease that these mice succumb to. Here, we found that the ubiquitin ligases Cbl and Cbl-b have overlapping functions for controlling the endocytosis and intracellular traffic of the CSF-1R. DKO macrophages displayed complete loss of ubiquitination of the CSF-1R whereas partial ubiquitination was observed for either single Cbl-/- or Cbl-b-/- macrophages. Unlike wild type, DKO macrophages were immortal and displayed slower CSF-1R internalization, elevated AKT signaling, and a failure to transport the CSF-1R into the lumen of nascent macropinosomes, leaving its cytoplasmic region available for signaling. CSF-1R degradation depended upon lysosomal vATPase activity in both WT and DKO macrophages, with this degradation confined to macropinosomes in WT but occurring in distributed/tubular lysosomes in DKO cells. RNA-sequencing comparison of Cbl-/-, Cbl-b-/- and DKO macrophages indicated that while the overall macrophage transcriptional program remained intact, DKO macrophages had alterations in gene expression associated with growth factor signaling, cell cycle, inflammation and senescence. Cbl-b-/- had minimal effect on the transcriptional program whereas Cbl-/- led to more alternations but only DKO macrophages demonstrated substantial changes in the transcriptome, suggesting overlapping but unique functions for the two Cbl-family members. Thus, Cbl/Cbl-b-mediated ubiquitination of CSF-1R regulates its endocytic fate, constrains inflammatory gene expression, and regulates signaling for macrophage proliferation.
Collapse
Affiliation(s)
- Lu Huang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Natalie W. Thiex
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Jieqiong Lou
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Wei An
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shalini T. Low-Nam
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Jason G. Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Hamid Band
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Adam D. Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| |
Collapse
|
8
|
Chen H, Bai Y, Kobayashi M, Xiao S, Barajas S, Cai W, Chen S, Miao J, Meke FN, Yao C, Yang Y, Strube K, Satchivi O, Sun J, Rönnstrand L, Croop JM, Boswell HS, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Sukhanova M, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 Phosphatase Promotes Oncogenic KIT Signaling in Leukemia Cells through Modulating CBL Phosphorylation. Mol Cancer Res 2024; 22:94-103. [PMID: 37756563 PMCID: PMC10841656 DOI: 10.1158/1541-7786.mcr-23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Northwestern University, Chicago, USA
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shiyu Xiao
- Department of Medicine, Northwestern University, Chicago, USA
| | - Sergio Barajas
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Wenjie Cai
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Sisi Chen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Chonghua Yao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Katherine Strube
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Odelia Satchivi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jianmin Sun
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - James M. Croop
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K. Altman
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Elizabeth A. Eklund
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | - Wei Tong
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| |
Collapse
|
9
|
Wang Y, Jiang Y, Wang J, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Retinopathy as an initial sign of hereditary immunological diseases: report of six families and challenges in eye clinic. Front Immunol 2023; 14:1239886. [PMID: 37711606 PMCID: PMC10498122 DOI: 10.3389/fimmu.2023.1239886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Retinal degenerative or inflammatory changes may occur with hereditary immunological disorders (HID) due to variants in approximately 20 genes. This study aimed to investigate if such retinopathy may present as an initial sign of immunological disorders in eye clinic. Methods The variants in the 20 genes were selected from in-house exome sequencing data from 10,530 individuals with different eye conditions. Potential pathogenic variants were assessed by multistep bioinformatic analysis. Pathogenic variants were defined according to the ACMG/AMP criteria and confirmed by Sanger sequencing, co-segregation analysis, and consistency with related phenotypes. Ocular clinical data were thoroughly reviewed, especially fundus changes. Results A total of seven pathogenic variants in four of the 20 genes were detected in six probands from six families, including three with hemizygous nonsense variants p.(Q308*), p.(Q416*), and p.(R550*) in MSN, one with homozygous nonsense variants p.(R257*) in AIRE, one with compound heterozygous nonsense variants p.(R176*) and p.(T902*) in LAMB2, and one with a known c.1222T>C (p.W408R) heterozygous variant in CBL. Ocular presentation, as the initial signs of the diseases, was mainly retinopathy mimicking other forms of hereditary retinal degeneration, including exudative vitreoretinopathy in the three patients with MSN variants or tapetoretinal degeneration in the other three patients. Neither extraocular symptoms nor extraocular manifestations were recorded at the time of visit to our eye clinic. However, of the 19 families in the literature with retinopathy caused by variants in these four genes, only one family with an AIRE homozygous variant had retinopathy as an initial symptom, while the other 18 families had systemic abnormalities that preceded retinopathy. Discussion This study, for the first time, identified six unrelated patients with retinopathy as their initial and only presenting sign of HID, contrary to the previous reports where retinopathy was the accompanying sign of systemic HID. Recognizing such phenotype of HID may facilitate the clinical care of these patients. Follow-up visits to such patients and additional studies are expected to validate and confirm our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
10
|
Chen H, Bai Y, Kobayashi M, Xiao S, Cai W, Barajas S, Chen S, Miao J, Meke FN, Vemula S, Ropa JP, Croop JM, Boswell HS, Wan J, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 phosphatase enhances oncogenic FLT3 signaling via dephosphorylation of the E3 ubiquitin ligase CBL at tyrosine 371. Blood 2023; 141:244-259. [PMID: 36206490 PMCID: PMC9936309 DOI: 10.1182/blood.2022016580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology and Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Shiyu Xiao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sergio Barajas
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sisi Chen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - James P. Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - James M. Croop
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Department of Medical Genetics, Indiana University, Indianapolis, IN
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jessica K. Altman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Elizabeth A. Eklund
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wei Tong
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, NB
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Yan Liu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
11
|
Qin Y, Zhang H, Feng L, Wei H, Wu Y, Jiang C, Xu Z, Zhu H, Liu T. Combining metaphase cytogenetics with single nucleotide polymorphism arrays can improve the diagnostic yield and identify prognosis more precisely in myelodysplastic syndromes. Ann Med 2022; 54:2627-2636. [PMID: 36148999 PMCID: PMC9518301 DOI: 10.1080/07853890.2022.2125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) encompass a group of heterogeneous haematopoietic stem cell malignancies characterised by ineffective haematopoiesis, cytological aberrations, and a propensity for progression to acute myeloid leukaemia. Diagnosis and disease prognostic stratification are much based on genomic abnormalities. The traditional metaphase cytogenetics analysis (MC) can detect about 40-60% aberrations. Single-nucleotide polymorphism arrays (SNP-A) karyotyping can detect copy number variations with a higher resolution and has a unique advantage in detection of copy number neutral loss of heterozygosity (CN-LOH). Combining these two methods may improve the diagnostic efficiency and accuracy for MDS. METHODS We retrospectively analysed the data of 110 MDS patients diagnosed from January 2012 to December 2019 to compare the detection yield of chromosomal abnormalities by MC with by SNP-A, and the relationship between chromosomal abnormalities and prognosis. RESULTS Our results showed that SNP-A improved the detection yield of chromosomal aberrations compared with MC (74.5 vs. 55.5%, p < .001). In addition, the positive yield could be further improved by combining MC with SNP-A to 77.3%, compared with MC alone. Univariate analysis showed that age >65 years, bone marrow blasts ≥5%, with acquired CN-LOH, new aberrations detected by SNP-A, TGA value > the median (81.435 Mb), higher risk by IPSS-R-MC, higher risk by IPSS-R-SNP-A all had poorer prognosis. More critically, multivariable analysis showed that age >65 years and higher risk by IPSS-R-SNP-A were independent predictors of inferior OS in MDS patients. CONCLUSION The combination of MC and SNP-A based karyotyping can further improve the diagnostic yield and provide more precise prognostic stratification in MDS patients. However, SNP-A may not completely replace MC because of its inability to detect balanced translocation and to detect different clones. From a practical point of view, we recommend the concurrent use of SNP-A and MC in the initial karyotypic evaluation for MDS patients on diagnosis and prognosis stratification.KEY MESSAGESSNP-A based karyotyping can further improve the MDS diagnostic yield and provide more precise prognostic stratification in MDS patients.Acquired CN-LOH is a characteristic chromosomal aberration of MDS, which should be integrated to the diagnostic project of MDS.The concurrent use of SNP-A and MC in the initial karyotypic evaluation for MDS patients can be recommended.
Collapse
Affiliation(s)
- Yao Qin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Hang Zhang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Lin Feng
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Haichen Wei
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yuling Wu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chaoran Jiang
- Sichuan Hua Xi Kindstar Medical Diagnostic Centre, Chengdu, Sichuan, P. R. China
| | - Zhihong Xu
- Sichuan Hua Xi Kindstar Medical Diagnostic Centre, Chengdu, Sichuan, P. R. China
| | - Huanling Zhu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
12
|
Zhan Q, Zhang H, Wu B, Zhang N, Zhang L. E3 ubiquitin ligases in the acute leukemic signaling pathways. Front Physiol 2022; 13:1004330. [PMID: 36439256 PMCID: PMC9691902 DOI: 10.3389/fphys.2022.1004330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute leukemia is a common hematologic tumor with highly genetic heterogeneity, and many factors are involved in the pathogenesis and drug-resistance mechanism. Emerging evidence proves that E3 ubiquitin ligases participate in the acute leukemic signaling pathways via regulating substrates. This review summarized the E3 ligases which can affect the leukemic signal. It is worth noting that the abnormal signal is often caused by a deficiency or a mutation of the E3 ligases. In view of this phenomenon, we envisioned perspectives associated with targeted agonists of E3 ligases and proteolysis-targeting chimera technology. Moreover, we emphasized the significance of research into the upstream factors regulating the expression of E3 ubiquitin ligases. It is expected that the understanding of the mechanism of leukemic signaling pathways with which that E3 ligases are involved will be beneficial to accelerating the process of therapeutic strategy improvement for acute leukemia.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| |
Collapse
|
13
|
The RING finger protein family in health and disease. Signal Transduct Target Ther 2022; 7:300. [PMID: 36042206 PMCID: PMC9424811 DOI: 10.1038/s41392-022-01152-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.
Collapse
|
14
|
Fardeau C, Alafaleq M, Ferchaud MA, Hié M, Besnard C, Meynier S, Rieux-Laucat F, Roos-Weil D, Cohen F, Meunier I. Casitas B-lineage lymphoma Gene Mutation Ocular Phenotype. Int J Mol Sci 2022; 23:ijms23147868. [PMID: 35887217 PMCID: PMC9318494 DOI: 10.3390/ijms23147868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/19/2022] Open
Abstract
This article describes the ocular phenotype associated with the identified Casitas B-lineage lymphoma (CBL) gene mutation and reviews the current literature. This work also includes the longitudinal follow-up of five unrelated cases of unexplained fundus lesions with visual loss associated with a history of hepatosplenomegaly. Wide repeated workup was made to rule out infections, inflammatory diseases, and lysosomal diseases. No variants in genes associated with retinitis pigmentosa, cone–rod dystrophy, and inherited optic neuropathy were found. Molecular analysis was made using next-generation sequencing (NGS) and whole-exome sequencing (WES). The results included two cases sharing ophthalmological signs including chronic macular edema, vascular leakage, visual field narrowing, and electroretinography alteration. Two other cases showed damage to the optic nerve head and a fifth young patient exhibited bilateral complicated vitreoretinal traction and carried a heterozygous mutation in the CBL gene associated with a mutation in the IKAROS gene. Ruxolitinib as a treatment for RASopathy did not improve eye conditions, whereas systemic lesions were resolved in one patient. Mutations in the CBL gene were found in all five cases. In conclusion, a detailed description may pave the way for the CBL mutation ocular phenotype. Genetic analysis using whole-exome sequencing could be useful in the diagnosis of unusual clinical features.
Collapse
Affiliation(s)
- Christine Fardeau
- Department of Ophthalmology, Reference Center for Rare Diseases, La Pitié-Salpêtrière Hospital, Paris-Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (M.A.); (M.-A.F.)
- Correspondence:
| | - Munirah Alafaleq
- Department of Ophthalmology, Reference Center for Rare Diseases, La Pitié-Salpêtrière Hospital, Paris-Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (M.A.); (M.-A.F.)
- Department of Ophthalmology, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Marie-Adélaïde Ferchaud
- Department of Ophthalmology, Reference Center for Rare Diseases, La Pitié-Salpêtrière Hospital, Paris-Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (M.A.); (M.-A.F.)
| | - Miguel Hié
- Department of Internal Medicine, La Pitié-Salpêtrière Hospital, Paris-Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (M.H.); (F.C.)
| | - Caroline Besnard
- Laboratory of Immunogenetics of Autoimmune Diseases in Children, INSERM UMR 1163, Imagine Institute, 24 Boulevard du Montparnasse, 75015 Paris, France; (C.B.); (S.M.); (F.R.-L.)
| | - Sonia Meynier
- Laboratory of Immunogenetics of Autoimmune Diseases in Children, INSERM UMR 1163, Imagine Institute, 24 Boulevard du Montparnasse, 75015 Paris, France; (C.B.); (S.M.); (F.R.-L.)
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Autoimmune Diseases in Children, INSERM UMR 1163, Imagine Institute, 24 Boulevard du Montparnasse, 75015 Paris, France; (C.B.); (S.M.); (F.R.-L.)
| | - Damien Roos-Weil
- Hematology Department, La Pitié-Salpêtrière Hospital, Paris-Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Fleur Cohen
- Department of Internal Medicine, La Pitié-Salpêtrière Hospital, Paris-Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (M.H.); (F.C.)
| | - Isabelle Meunier
- Department of Ophthalmology, Reference Centre for Genetic Sensory Diseases, Hôpital Gui de Chauliac, Montpellier University, 34295 Montpellier, France;
| |
Collapse
|
15
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
16
|
Genetic Background of Polycythemia Vera. Genes (Basel) 2022; 13:genes13040637. [PMID: 35456443 PMCID: PMC9027017 DOI: 10.3390/genes13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Polycythemia vera belongs to myeloproliferative neoplasms, essentially by affecting the erythroblastic lineage. JAK2 alterations have emerged as major driver mutations triggering PV-phenotype with the V617F mutation detected in nearly 98% of cases. That’s why JAK2 targeting therapeutic strategies have rapidly emerged to counter the aggravation of the disease. Over decades of research, to go further in the understanding of the disease and its evolution, a wide panel of genetic alterations affecting multiple genes has been highlighted. These are mainly involved in alternative splicing, epigenetic, miRNA regulation, intracellular signaling, and transcription factors expression. If JAK2 mutation, irrespective of the nature of the alteration, is known to be a crucial event for the disease to initiate, additional mutations seem to be markers of progression and poor prognosis. These discoveries have helped to characterize the complex genomic landscape of PV, resulting in potentially new adapted therapeutic strategies for patients concerning all the genetic interferences.
Collapse
|
17
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97:352-372. [PMID: 34985762 DOI: 10.1002/ajh.26455] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), usually with accompanying bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~30% of patients, while >90% have somatic gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), and the oncogenic RAS pathway (~30%) are frequent, while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact overall survival. RISK-STRATIFICATION Molecularly integrated prognostic models include the Groupe Français des Myélodysplasies, Mayo Molecular Model (MMM), and the CMML specific prognostic model. Risk factors incorporated into the MMM include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L, and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups: high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
18
|
Role of CBL Mutations in Cancer and Non-Malignant Phenotype. Cancers (Basel) 2022; 14:cancers14030839. [PMID: 35159106 PMCID: PMC8833995 DOI: 10.3390/cancers14030839] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CBL mutations are progressively being described as involved in different clinical manifestations. Somatic CBL mutations can be found in different type of cancer. The clinical spectrum of germline mutations configures the so-called CBL syndrome, a cancer-predisposing condition that includes multisystemic involvement characterized by variable phenotypic expression and expressivity. In this review we provide an up-to-date review of the clinical manifestation of CBL mutations and of the molecular mechanisms in which CBL exerts its pathogenic role. Abstract CBL plays a key role in different cell pathways, mainly related to cancer onset and progression, hematopoietic development and T cell receptor regulation. Somatic CBL mutations have been reported in a variety of malignancies, ranging from acute myeloid leukemia to lung cancer. Growing evidence have defined the clinical spectrum of germline CBL mutations configuring the so-called CBL syndrome; a cancer-predisposing condition that also includes multisystemic involvement characterized by variable phenotypic expression and expressivity. This review provides a comprehensive overview of the molecular mechanisms in which CBL exerts its function and describes the clinical manifestation of CBL mutations in humans.
Collapse
|
19
|
Lafage-Pochitaloff M, Gerby B, Baccini V, Largeaud L, Fregona V, Prade N, Juvin PY, Jamrog L, Bories P, Hébrard S, Lagarde S, Mansat-De Mas V, Dovey OM, Yusa K, Vassiliou GS, Jansen JH, Tekath T, Rombaut D, Ameye G, Barin C, Bidet A, Boudjarane J, Collonge-Rame MA, Gervais C, Ittel A, Lefebvre C, Luquet I, Michaux L, Nadal N, Poirel HA, Radford-Weiss I, Ribourtout B, Richebourg S, Struski S, Terré C, Tigaud I, Penther D, Eclache V, Fontenay M, Broccardo C, Delabesse, E. The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11. Blood Adv 2022; 6:386-398. [PMID: 34638130 PMCID: PMC8791575 DOI: 10.1182/bloodadvances.2021005311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies.
Collapse
Affiliation(s)
- Marina Lafage-Pochitaloff
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique Hématologique, Centre Hospitalier Universitaire (CHU) de Marseille, Aix-Marseille University, Marseille, France
| | - Bastien Gerby
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Véronique Baccini
- Groupe Francophone d’Hématologie Cellulaire (GFHC) and
- Laboratoire d’hématologie, CHU de Guadeloupe, Inserm Unité Mixte de Recherche 1134, Pointe à Pitre, France
| | - Laetitia Largeaud
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Department of Hematology, University Toulouse III, Toulouse, France
| | - Vincent Fregona
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Naïs Prade
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Pierre-Yves Juvin
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Laura Jamrog
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Pierre Bories
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Sylvie Hébrard
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Stéphanie Lagarde
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Véronique Mansat-De Mas
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 8, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Oliver M. Dovey
- Gene Editing, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - George S. Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, UK
- Wellcome-Medical Research Council Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - David Rombaut
- Institut Cochin, Université de Paris, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Paris, France
| | - Geneviève Ameye
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Belgium Cancer Registry, Brussels, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven and Universitair Ziekenhuis, Leuven, Belgium
| | - Carole Barin
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Tours, France
| | - Audrey Bidet
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, CHU de Bordeaux, Bordeaux, France
| | - John Boudjarane
- Laboratoire de Cytogénétique Hématologique, Centre Hospitalier Universitaire (CHU) de Marseille, Aix-Marseille University, Marseille, France
| | - Marie-Agnès Collonge-Rame
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Besançon, Besançon, France
| | - Carine Gervais
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Strasbourg, Strasbourg, France
| | - Antoine Ittel
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Département de Biopathologie, Institut Paoli-Calmettes, Marseille, France
| | - Christine Lefebvre
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Grenoble, Grenoble, France
| | - Isabelle Luquet
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Laboratoire de Cytogénétique, CHU de Reims, Reims, France
| | - Lucienne Michaux
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Department of Human Genetics, Katholieke Universiteit Leuven and Universitair Ziekenhuis, Leuven, Belgium
| | - Nathalie Nadal
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Saint-Etienne, Saint-Etienne, France
| | - Hélène A. Poirel
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Belgium Cancer Registry, Brussels, Belgium
| | - Isabelle Radford-Weiss
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Paris-Necker, Paris, France
| | - Bénédicte Ribourtout
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France
| | - Steven Richebourg
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Nantes, Nantes, France
| | - Stéphanie Struski
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Christine Terré
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CH de Versailles, Le Chesnay, France
| | - Isabelle Tigaud
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Lyon, Lyon, France
| | - Dominique Penther
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, Centre Henri-Becquerel, Rouen, France
| | - Virginie Eclache
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, CHU Avicenne, Bobigny, France
- Groupe Francophone des Myélodysplasies (GFM); and
| | - Michaela Fontenay
- Institut Cochin, Université de Paris, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Paris, France
- Groupe Francophone des Myélodysplasies (GFM); and
- Laboratoire d’hématologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Paris, France
| | - Cyril Broccardo
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Eric Delabesse,
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| |
Collapse
|
20
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
Melas M, Mathew MT, Mori M, Jayaraman V, Wilson SA, Martin C, Jacobson-Kelly AE, Kelly BJ, Magrini V, Mardis ER, Cottrell CE, Lee K. Somatic Variation as an Incidental Finding in the Pediatric Next Generation Sequencing Era. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006135. [PMID: 34716204 PMCID: PMC8751410 DOI: 10.1101/mcs.a006135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
The methodologic approach used in next-generation sequencing (NGS) affords a high depth of coverage in genomic analysis. Inherent in the nature of genomic testing, there exists potential for identifying genomic findings that are incidental or secondary to the indication for clinical testing, with the frequency dependent on the breadth of analysis and the tissue sample under study. The interpretation and management of clinically meaningful incidental genomic findings is a pressing issue particularly in the pediatric population. Our study describes a 16-mo-old male who presented with profound global delays, brain abnormality, progressive microcephaly, and growth deficiency, as well as metopic craniosynostosis. Clinical exome sequencing (ES) trio analysis revealed the presence of two variants in the proband. The first was a de novo variant in the PPP2R1A gene (c.773G > A, p.Arg258His), which is associated with autosomal dominant (AD) intellectual disability, accounting for the proband's clinical phenotype. The second was a recurrent hotspot variant in the CBL gene (c.1111T > C, p.Tyr371His), which was present at a variant allele fraction of 11%, consistent with somatic variation in the peripheral blood sample. Germline pathogenic variants in CBL are associated with AD Noonan syndrome–like disorder with or without juvenile myelomonocytic leukemia. Molecular analyses using a different tissue source, buccal epithelial cells, suggest that the CBL alteration may represent a clonal population of cells restricted to leukocytes. This report highlights the laboratory methodologic and interpretative processes and clinical considerations in the setting of acquired variation detected during clinical ES in a pediatric patient.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State Univ; Dept of Pediatrics, The Ohio State University
| | - Mari Mori
- Dept of Pediatrics, The Ohio State University; Genetic and Genomic Medicine, Nationwide Children's Hospital
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Sarah A Wilson
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | | | - Amanda E Jacobson-Kelly
- Dept of Pediatrics, The Ohio State University; Division of Hematology/Oncology/BMT, Nationwide Children's Hospital
| | - Ben J Kelly
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| | - Kristy Lee
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| |
Collapse
|
22
|
Geissler K. Molecular Pathogenesis of Chronic Myelomonocytic Leukemia and Potential Molecular Targets for Treatment Approaches. Front Oncol 2021; 11:751668. [PMID: 34660314 PMCID: PMC8514979 DOI: 10.3389/fonc.2021.751668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Numerous examples in oncology have shown that better understanding the pathophysiology of a malignancy may be followed by the development of targeted treatment concepts with higher efficacy and lower toxicity as compared to unspecific treatment. The pathophysiology of chronic myelomonocytic leukemia (CMML) is heterogenous and complex but applying different research technologies have yielded a better and more comprehensive understanding of this disease. At the moment treatment for CMML is largely restricted to the unspecific use of cytotoxic drugs and hypomethylating agents (HMA). Numerous potential molecular targets have been recently detected by preclinical research which may ultimately lead to treatment concepts that will provide meaningful benefits for certain subgroups of patients.
Collapse
Affiliation(s)
- Klaus Geissler
- Medical School, Sigmund Freud University, Vienna, Austria.,Department of Internal Medicine V with Hematology, Oncology and Palliative Care, Hospital Hietzing, Vienna, Austria
| |
Collapse
|
23
|
Aoyagi Y, Hayashi Y, Harada Y, Choi K, Matsunuma N, Sadato D, Maemoto Y, Ito A, Yanagi S, Starczynowski DT, Harada H. Mitochondrial Fragmentation Triggers Ineffective Hematopoiesis in Myelodysplastic Syndromes. Cancer Discov 2021; 12:250-269. [PMID: 34462274 DOI: 10.1158/2159-8290.cd-21-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/04/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Ineffective hematopoiesis is a fundamental process leading to the pathogenesis of myelodysplastic syndromes (MDS). However, the pathobiological mediators of ineffective hematopoiesis in MDS remain unclear. Here, we demonstrated that overwhelming mitochondrial fragmentation in mutant hematopoietic stem cells and progenitors (HSC/Ps) triggers ineffective hematopoiesis in MDS. Mouse modeling of CBL exon-deletion with RUNX1 mutants, previously unreported co-mutations in MDS patients, recapitulated not only clinically relevant MDS phenotypes but also a distinct MDS-related gene signature. Mechanistically, dynamin-related protein 1 (DRP1)-dependent excessive mitochondrial fragmentation in HSC/Ps led to excessive ROS production, induced inflammatory signaling activation, and promoted subsequent dysplasia formation and impairment of granulopoiesis. Mitochondrial fragmentation was generally observed in patients with MDS. Pharmacological inhibition of DRP1 attenuated mitochondrial fragmentation and rescued ineffective hematopoiesis phenotypes in MDS mice. These findings provide mechanistic insights into ineffective hematopoiesis and indicate that dysregulated mitochondrial dynamics could be a therapeutic target for bone marrow failure in MDS.
Collapse
Affiliation(s)
- Yasushige Aoyagi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Hayashi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences
| | - Yuka Harada
- Clinical Laboratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital
| | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Natsumi Matsunuma
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences
| | - Daichi Sadato
- Clinical Research Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences,, Tokyo University of Pharmacy and Life Sciences
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| | - Shigeru Yanagi
- School of Life Science, Tokyo University of Pharmacy and Life Sciences
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Hironori Harada
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
24
|
CBL mutations drive PI3K/AKT signaling via increased interaction with LYN and PIK3R1. Blood 2021; 137:2209-2220. [PMID: 33512474 DOI: 10.1182/blood.2020006528] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Casitas B-lineage lymphoma (CBL) encodes an E3 ubiquitin ligase and signaling adaptor that regulates receptor and nonreceptor tyrosine kinases. Recurrent CBL mutations occur in myeloid neoplasms, including 10% to 20% of chronic myelomonocytic leukemia (CMML) cases, and selectively disrupt the protein's E3 ubiquitin ligase activity. CBL mutations have been associated with poor prognosis, but the oncogenic mechanisms and therapeutic implications of CBL mutations remain incompletely understood. We combined functional assays and global mass spectrometry to define the phosphoproteome, CBL interactome, and mechanism of signaling activation in a panel of cell lines expressing an allelic series of CBL mutations. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced CBL phosphorylation, phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) recruitment, and downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling in CBL-mutant cells. Signaling adaptor domains of CBL, including the tyrosine kinase-binding domain, proline-rich region, and C-terminal phosphotyrosine sites, were all required for the oncogenic function of CBL mutants. Genetic ablation or dasatinib-mediated inhibition of LYN reduced CBL phosphorylation, CBL-PIK3R1 interaction, and PI3K/AKT signaling. Furthermore, we demonstrated in vitro and in vivo antiproliferative efficacy of dasatinib in CBL-mutant cell lines and primary CMML. Overall, these mechanistic insights into the molecular function of CBL mutations provide rationale to explore the therapeutic potential of LYN inhibition in CBL-mutant myeloid malignancies.
Collapse
|
25
|
Cheng Z, Vermeulen M, Rollins-Green M, DeVeale B, Babak T. Cis-regulatory mutations with driver hallmarks in major cancers. iScience 2021; 24:102144. [PMID: 33665563 PMCID: PMC7903341 DOI: 10.1016/j.isci.2021.102144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 01/25/2021] [Indexed: 12/05/2022] Open
Abstract
Despite the recent availability of complete genome sequences of tumors from thousands of patients, isolating disease-causing (driver) non-coding mutations from the plethora of somatic variants remains challenging, and only a handful of validated examples exist. By integrating whole-genome sequencing, genetic data, and allele-specific gene expression from TCGA, we identified 320 somatic non-coding mutations that affect gene expression in cis (FDR<0.25). These mutations cluster into 47 cis-regulatory elements that modulate expression of their subject genes through diverse molecular mechanisms. We further show that these mutations have hallmark features of non-coding drivers; namely, that they preferentially disrupt transcription factor binding motifs, are associated with a selective advantage, increased oncogene expression and decreased tumor suppressor expression. Enrichment of functional non-coding somatic mutations predicts drivers Elevated variant allele frequencies are consistent with roles in tumorigenesis Putative non-coding drivers disrupt transcription factor binding motifs Predicted drivers associate with increased oncogene and decreased TSG expression
Collapse
Affiliation(s)
- Zhongshan Cheng
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Vermeulen
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Brian DeVeale
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomas Babak
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
26
|
Wybenga-Groot LE, Tench AJ, Simpson CD, Germain JS, Raught B, Moran MF, McGlade CJ. SLAP2 Adaptor Binding Disrupts c-CBL Autoinhibition to Activate Ubiquitin Ligase Function. J Mol Biol 2021; 433:166880. [PMID: 33617900 DOI: 10.1016/j.jmb.2021.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
CBL is a RING type E3 ubiquitin ligase that functions as a negative regulator of tyrosine kinase signaling and loss of CBL E3 function is implicated in several forms of leukemia. The Src-like adaptor proteins (SLAP/SLAP2) bind to CBL and are required for CBL-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling. Despite the established role of SLAP/SLAP2 in regulating CBL activity, the nature of the interaction and the mechanisms involved are not known. To understand the molecular basis of the interaction between SLAP/SLAP2 and CBL, we solved the crystal structure of CBL tyrosine kinase binding domain (TKBD) in complex with SLAP2. The carboxy-terminal region of SLAP2 adopts an α-helical structure which binds in a cleft between the 4H, EF-hand, and SH2 domains of the TKBD. This SLAP2 binding site is remote from the canonical TKBD phospho-tyrosine peptide binding site but overlaps with a region important for stabilizing CBL in its autoinhibited conformation. In addition, binding of SLAP2 to CBL in vitro activates the ubiquitin ligase function of autoinhibited CBL. Disruption of the CBL/SLAP2 interface through mutagenesis demonstrated a role for this protein-protein interaction in regulation of CBL E3 ligase activity in cells. Our results reveal that SLAP2 binding to a regulatory cleft of the TKBD provides an alternative mechanism for activation of CBL ubiquitin ligase function.
Collapse
Affiliation(s)
- Leanne E Wybenga-Groot
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Andrea J Tench
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Craig D Simpson
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Jonathan St Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
27
|
Jafari D, Mousavi MJ, Keshavarz Shahbaz S, Jafarzadeh L, Tahmasebi S, Spoor J, Esmaeilzadeh A. E3 ubiquitin ligase Casitas B lineage lymphoma-b and its potential therapeutic implications for immunotherapy. Clin Exp Immunol 2021; 204:14-31. [PMID: 33306199 DOI: 10.1111/cei.13560] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
The distinction of self from non-self is crucial to prevent autoreactivity and ensure protection from infectious agents and tumors. Maintaining the balance between immunity and tolerance of immune cells is strongly controlled by several sophisticated regulatory mechanisms of the immune system. Among these, the E3 ligase ubiquitin Casitas B cell lymphoma-b (Cbl-b) is a newly identified component in the ubiquitin-dependent protein degradation system, which is thought to be an important negative regulator of immune cells. An update on the current knowledge and new concepts of the relevant immune homeostasis program co-ordinated by Cbl-b in different cell populations could pave the way for future immunomodulatory therapies of various diseases, such as autoimmune and allergic diseases, infections, cancers and other immunopathological conditions. In the present review, the latest findings are comprehensively summarized on the molecular structural basis of Cbl-b and the suppressive signaling mechanisms of Cbl-b in physiological and pathological immune responses, as well as its emerging potential therapeutic implications for immunotherapy in animal models and human diseases.
Collapse
Affiliation(s)
- D Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| | - M J Mousavi
- Department of Hematology, Faculty of Allied medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Jafarzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Tahmasebi
- Department of Immunology, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - J Spoor
- Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - A Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Hamada A, Akagi E, Obayashi F, Yamasaki S, Koizumi K, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Induction of Noonan syndrome-specific human-induced pluripotent stem cells under serum-, feeder-, and integration-free conditions. In Vitro Cell Dev Biol Anim 2020; 56:888-895. [PMID: 33140329 PMCID: PMC7723931 DOI: 10.1007/s11626-020-00515-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
Noonan syndrome is an autosomal dominant developmental disorder. Although it is relatively common, and its phenotypical variability is well documented, its pathophysiology is not fully understood. Previously, with the aim of revealing the pathogenesis of genetic disorders, we reported the induction of cleidocranial dysplasia-specific human-induced pluripotent stem cells (hiPSCs) from patient’s dental pulp cells (DPCs) under serum-free, feeder-free, and integration-free conditions. Notably, these cells showed potential for application to genetic disorder disease models. Furthermore, using similar procedures, we reported the induction of hiPSCs derived from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. These methods are beneficial, because they are carried out without invasive and painful biopsies. Using those procedures, we reprogrammed DPCs and PBMCs that were derived from a patient with Noonan syndrome (NS) to establish NS-specific hiPSCs (NS-DPC-hiPSCs and NS-PBMC-hiPSCs, respectively). The induction efficiency of NS-hiPSCs was higher than that of WT-hiPSCs. We hypothesize that this was caused by high NANOG expression. Here, we describe the experimental results and findings related to NS-hiPSCs. This is the first report on the establishment of NS-hiPSCs and their disease modeling.
Collapse
Affiliation(s)
- Atsuko Hamada
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Eri Akagi
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumitaka Obayashi
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Sachiko Yamasaki
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Koichi Koizumi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
29
|
Founder and subclonal mutations in myelodysplastic syndromes and related myeloid neoplasms. Best Pract Res Clin Haematol 2020; 33:101189. [PMID: 33038978 DOI: 10.1016/j.beha.2020.101189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 01/13/2023]
Abstract
Somatic mutations constitute key elements of the pathogenesis of myelodysplastic syndromes (MDS), a group of clonal hematologic neoplasms characterized by cytopenias, dysplasia and leukemic evolution. Whole exome sequencing followed by targeted deep sequencing in patients with MDS and related diseases has been performed cross-sectionally and serially. Bioinformatic analysis and confirmatory sequencing led to detection of in 1458 genes affected by somatic alterations, and identification of known and new driver events. For each patient, mutation spectrum as well as clonal hierarchy was determined and for each significantly mutated gene, its role in the clonal succession established. This approach allowed for a dynamic definition of MDS mutatome, including the spectrum of founding mutations and subsequent secondary mutational patterns. We demonstrate that certain founder events determine the mode and speed of disease progression, while secondary mutations may further modulate phenotypic features. Combinations of founder and secondary mutations further contribute to the phenotypic diversity but categorical grouping of cases based on the type of founder mutations may better define molecular subtypes of MDS and correlates with clinical parameters.
Collapse
|
30
|
Marneth AE, Mullally A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034876. [PMID: 31548225 DOI: 10.1101/cshperspect.a034876] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated JAK-STAT signaling is central to the pathogenesis of BCR-ABL-negative myeloproliferative neoplasms (MPNs) and occurs as a result of MPN phenotypic driver mutations in JAK2, CALR, or MPL The spectrum of concomitant somatic mutations in other genes has now largely been defined in MPNs. With the integration of targeted next-generation sequencing (NGS) panels into clinical practice, the clinical significance of concomitant mutations in MPNs has become clearer. In this review, we describe the consequences of concomitant mutations in the most frequently mutated classes of genes in MPNs: (1) DNA methylation pathways, (2) chromatin modification, (3) RNA splicing, (4) signaling pathways, (5) transcription factors, and (6) DNA damage response/stress signaling. The increased use of molecular genetics for early risk stratification of patients brings the possibility of earlier intervention to prevent disease progression in MPNs. However, additional studies are required to decipher underlying molecular mechanisms and effectively target them.
Collapse
Affiliation(s)
- Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Patnaik MM, Tefferi A. Chronic Myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol 2020; 95:97-115. [PMID: 31736132 DOI: 10.1002/ajh.25684] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~ 30% of patients, while >90% have gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%) and the oncogenic RAS pathway (~30%) are frequent; while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact over-all survival. RISK STRATIFICATION Molecularly integrated prognostic models include; the Groupe Français des Myélodysplasies (GFM), Mayo Molecular Model (MMM) and the CMML specific prognostic model (CPSS-Mol). Risk factors incorporated into the MMM include presence of nonsense or frameshift ASXL1 mutations, absolute monocyte count>10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor) and low (no risk factors), with median survivals of 16, 31, 59 and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| |
Collapse
|
32
|
Chapeau EA, Mandon E, Gill J, Romanet V, Ebel N, Powajbo V, Andraos-Rey R, Qian Z, Kininis M, Zumstein-Mecker S, Ito M, Hynes NE, Tiedt R, Hofmann F, Eshkind L, Bockamp E, Kinzel B, Mueller M, Murakami M, Baffert F, Radimerski T. A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression. PLoS One 2019; 14:e0221635. [PMID: 31600213 PMCID: PMC6786561 DOI: 10.1371/journal.pone.0221635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.
Collapse
Affiliation(s)
- Emilie A. Chapeau
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
- * E-mail:
| | - Emeline Mandon
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jason Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vincent Romanet
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolas Ebel
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Violetta Powajbo
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Rita Andraos-Rey
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zhiyan Qian
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Miltos Kininis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Moriko Ito
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph Tiedt
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Leonid Eshkind
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kinzel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matthias Mueller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabienne Baffert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
33
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol 2018; 93:824-840. [PMID: 29878489 DOI: 10.1002/ajh.25104] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (∼15%-20% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ∼ 30% of patients, while >90% have gene mutations. Mutations involving TET2 (∼60%), SRSF2 (∼50%), ASXL1 (∼40%) and the oncogenic RAS pathway (∼30%) are frequent; while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact over-all survival. RISK STRATIFICATION Molecularly integrated prognostic models include; the Groupe Français des Myélodysplasies (GFM), Mayo Molecular Model (MMM), and the CMML specific prognostic model (CPSS-Mol). Risk factors incorporated into the MMM include presence of nonsense or frameshift ASXL1 mutations, absolute monocyte count > 10 × 109 /L, hemoglobin <10 gm/dL, platelet count <100 × 109 /L and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into 4 groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ∼30%-40% and complete remission rates of ∼7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of MedicineMayo ClinicRochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of MedicineMayo ClinicRochester Minnesota
| |
Collapse
|
34
|
Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck MD, Meza J, Sheinin Y, Band V, Band H. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget 2018; 7:51107-51123. [PMID: 27276677 PMCID: PMC5239462 DOI: 10.18632/oncotarget.9812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
CBL-family ubiquitin ligases are critical negative regulators of tyrosine kinase signaling, with a clear redundancy between CBL and CBL-B evident in the immune cell and hematopoietic stem cell studies. Since CBL and CBL-B are negative regulators of immune cell activation, elimination of their function to boost immune cell activities could be beneficial in tumor immunotherapy. However, mutations of CBL are associated with human leukemias, pointing to tumor suppressor roles of CBL proteins; hence, it is critical to assess the tumor-intrinsic roles of CBL and CBL-B in cancers. This has not been possible since the only available whole-body CBL-B knockout mice exhibit constitutive tumor rejection. We engineered a new CBL-Bflox/flox mouse, combined this with an existing CBLflox/flox mouse to generate CBLflox/flox; CBL-Bflox/flox mice, and tested the tissue-specific concurrent deletion of CBL and CBL-B using the widely-used CD4-Cre transgenic allele to produce a T-cell-specific double knockout. Altered T-cell development, constitutive peripheral T-cell activation, and a lethal multi-organ immune infiltration phenotype largely resembling the previous Lck-Cre driven floxed-CBL deletion on a CBL-B knockout background establish the usefulness of the new model for tissue-specific CBL/CBL-B deletion. Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre for T-cell-restricted gene deletion. The establishment of a new model of concurrent tissue-selective CBL/CBL-B deletion should allow a clear assessment of the tumor-intrinsic roles of CBL/CBL-B in non-myeloid malignancies and help test the potential for CBL/CBL-B inactivation in immunotherapy of tumors.
Collapse
Affiliation(s)
- Benjamin Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fany Iseka
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuri Sheinin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
35
|
Luo P, Wang X, Zhou J, Li L, Jing Z. C-Cbl and Cbl-b expression in skull base chordomas is associated with tumor progression and poor prognosis. Hum Pathol 2018; 74:129-134. [PMID: 29317233 DOI: 10.1016/j.humpath.2017.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
Chordomas are rare, locally aggressive malignancies that are often difficult to eradicate. Surgery and radiotherapy are the first-line treatments, but the probability of local recurrence is high. According to our previous research, c-Cbl and Cbl-b have been linked to tumor progression and poor prognosis of glioma. However, their role in skull base chordomas is unclear. To clarify this issue, in the present study, we analyzed the expression of c-Cbl and Cbl-b in relation to the clinicopathological features and clinical outcome of skull base chordoma patients (n = 70). C-Cbl and Cbl-b expression was evaluated by immunohistochemistry, and a survival analysis was performed based on clinical data. We found that c-Cbl and Cbl-b were upregulated in 30 of 70 (42.9%) and 32 of 70 (45.7%) patients with skull base chordomas, respectively. A Kaplan-Meier analysis and log-rank test indicated that high c-Cbl and Cbl-b levels were significantly associated with overall survival (P = .003 and P = .008, respectively) and progression-free survival (P < .001 and P = .022, respectively). These data indicated that c-Cbl and Cbl-b expression in skull base chordomas can predict tumor invasion and poor prognosis and is therefore a potential therapeutic target for chordoma treatment.
Collapse
Affiliation(s)
- Peng Luo
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xin Wang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jinpeng Zhou
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Long Li
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhitao Jing
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
36
|
|
37
|
Dong Q, Ma Y, Zhang Y, Qu X, Li Z, Qi Y, Liu Y, Li C, Li K, Yang X, Che X. Cbl-b predicts postoperative survival in patients with resectable pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:57163-57173. [PMID: 28915662 PMCID: PMC5593633 DOI: 10.18632/oncotarget.18714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 05/21/2017] [Indexed: 12/17/2022] Open
Abstract
Casitas B-lineage lymphoma b (Cbl-b) is a ubiquitin-protein ligase and a signal transducing adaptor protein involved in immune regulation, and it may be involved in the development and progression of cancer. We investigated the association between Cbl-b expression and prognosis in patients with resectable pancreatic ductal adenocarcinoma (PDAC). The clinicopathological characteristics and survival data of 134 patients with surgery for PDAC between January 2009 and February 2012 were retrospectively evaluated, and Cbl-b expression was assayed by immunohistochemical staining. The association of Cbl-b expression with clinicopathological features and postoperative prognosis was analyzed. Cbl-b expression was strongly associated with the pathological primary tumor (pT) category (P = 0.005) and pathological TNM (pTNM) stage (P = 0.035), but not with other clinicopathological characteristics (all P > 0.05). In addition to current markers including pathological regional lymph nodes (pN) category, CA19-9, and histological differentiation, univariate and multivariate analysis found that Cbl-b was independently associated with overall survival (OS) of patients with resectable PDAC. Cbl-b was predictive of OS in a subgroup of patients with serum CA19-9 ≥ 37 U/mL. Cbl-b expression combined with pN, histological differentiation, and CA19-9 level could be used as a novel clinical model predictive of OS for patients with resectable PDAC. In conclusion, Cbl-b in resectable PDAC was an independent predictor of adverse prognosis. Cbl-b expression together with pN, histological differentiation, and CA19-9 level might lead to improved risk stratification and prognosis for patients with resectable PDAC.
Collapse
Affiliation(s)
- Qian Dong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing 100142, China
| | - Yao Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yafei Qi
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kai Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
38
|
Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, Rozenova K, An W, Mohapatra BC, Goetz BT, Pillai V, Han X, Todd EA, Jeschke GR, Langdon WY, Kumar S, Hexner EO, Band H, Tong W. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev 2017; 31:1007-1023. [PMID: 28611190 PMCID: PMC5495118 DOI: 10.1101/gad.297135.117] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Here, Lv et al. report that the CBL family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. Their results reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vemika Chandra
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Krasimira Rozenova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily A Todd
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Grace R Jeschke
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Suresh Kumar
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Elizabeth O Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Genomic determinants of chronic myelomonocytic leukemia. Leukemia 2017; 31:2815-2823. [PMID: 28555081 DOI: 10.1038/leu.2017.164] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
The biology, clinical phenotype and progression rate of chronic myelomonocytic leukemia (CMML) are highly variable due to diverse initiating and secondary clonal genetic events. To determine the effects of molecular features including clonal hierarchy in CMML, we studied whole-exome and targeted next-generation sequencing data from 150 patients with robust clinical and molecular annotation assessed cross-sectionally and at serial time points of disease evolution. To identify molecular lesions unique to CMML, we compared it to the related myeloid neoplasms (N=586), including juvenile myelomonocytic leukemia, myelodysplastic syndromes (MDS) and primary monocytic acute myeloid leukemia and discerned distinct molecular profiles despite similar pathomorphological features. Within CMML, mutations in certain pathways correlated with clinical classification, for example, proliferative vs dysplastic features. While most CMML patients (59%) had ancestral (dominant/co-dominant) mutations involving TET2, SRSF2 or ASXL1 genes, secondary subclonal hierarchy correlated with clinical phenotypes or outcomes. For example, progression was associated with acquisition of new expanding clones carrying biallelic TET2 mutations or RAS family, or spliceosomal gene mutations. In contrast, dysplastic features correlated with mutations usually encountered in MDS (for example, SF3B1 and U2AF1). Classification of CMML based on hierarchies of ancestral and subclonal mutational events may correlate strongly with clinical features and prognosis.
Collapse
|
40
|
Grinfeld J, Godfrey AL. After 10 years of JAK2V617F: Disease biology and current management strategies in polycythaemia vera. Blood Rev 2017; 31:101-118. [DOI: 10.1016/j.blre.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
41
|
Modeling CBL activating mutations in vivo. Blood 2017; 129:2046-2048. [DOI: 10.1182/blood-2017-03-770222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Coe RR, McKinnon ML, Tarailo-Graovac M, Ross CJ, Wasserman WW, Friedman JM, Rogers PC, van Karnebeek CDM. A case of splenomegaly in CBL syndrome. Eur J Med Genet 2017; 60:374-379. [PMID: 28414188 DOI: 10.1016/j.ejmg.2017.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
INTRODUCTION We present a child with unexplained splenomegaly to highlight this feature as a presenting sign of the RASopathy CBL syndrome and to draw attention to the power and utility of next generation genomic sequencing for providing rapid diagnosis and critical information to guide care in the pediatric clinical setting. CLINICAL REPORT A 7-year-old boy presented with unexplained splenomegaly, attention deficit hyperactivity disorder, mild learning difficulties, easy bruising, mild thrombocytopenia, and subtle dysmorphic features. Extensive haematological testing including a bone marrow biopsy showed mild megaloblastoid erythropoiesis and borderline fibrosis. There were no haematological cytogenetic anomalies or other haematological pathology to explain the splenomegaly. Metabolic testing and chromosomal microarray were unremarkable. Trio whole-exome sequencing (WES) identified a pathogenic de novo heterozygous germline CBL variant (c.1111T > C, p.Y371H), previously reported to cause CBL syndrome and implicated in development of juvenile myelomonocytic leukemia (JMML). DISCUSSION CBL syndrome (more formally known as "Noonan-syndrome-like disorder with or without juvenile myelomonocytic leukemia") has overlapping features to Noonan syndrome with significant variability. CBL syndrome and other RASopathy disorders-including Noonan syndrome, neurofibromatosis 1, and Costello syndrome-are important to recognize as these are associated with a cancer-predisposition. CBL syndrome carries a very high risk for JMML, thus accurate diagnosis is of utmost importance. The diagnosis of CBL syndrome in this patient would not have been possible based on clinical features alone. Through WES, a specific genetic diagnosis was made, allowing for an optimized management and surveillance plan, illustrating the power of genomics in clinical practice.
Collapse
Affiliation(s)
- Rachel R Coe
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Margaret L McKinnon
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada; Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia
| | - Colin J Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Paul C Rogers
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplantation, B.C. Children's Hospital and University of British Columbia, Vancouver, Canada
| | - Clara D M van Karnebeek
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Department of Pediatrics, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Gallo LH, Ko J, Donoghue DJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 2017; 16:634-648. [PMID: 28166483 PMCID: PMC5397262 DOI: 10.1080/15384101.2017.1288326] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular processes such as activation of NFκB inflammatory response and DNA damage repair. We highlight the E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis.
Collapse
Affiliation(s)
- L. H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - J. Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - D. J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
44
|
Kim N, Kim IS, Chang CL, Lee EY, Kim HH, Song MK, Shin HJ, Chung JS. Mutational analysis of SH2B3 in Korean patients with BCR-ABL1 negative myeloproliferative neoplasm. Ann Lab Med 2017; 36:67-9. [PMID: 26522763 PMCID: PMC4697347 DOI: 10.3343/alm.2016.36.1.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Affiliation(s)
- Namhee Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - In Suk Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea.,Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.
| | - Chulhun Ludgerus Chang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea.,Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.
| | - Eun Yup Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Hyung Hoi Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Moo Kon Song
- Department of Internal Medicine, Division of Hematology-Oncology, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Ho Jin Shin
- Department of Internal Medicine, Division of Hematology-Oncology, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Joo Seop Chung
- Department of Internal Medicine, Division of Hematology-Oncology, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
45
|
Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer 2017; 17:5-19. [PMID: 27834397 PMCID: PMC5470392 DOI: 10.1038/nrc.2016.112] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal disease that arises from the expansion of mutated haematopoietic stem cells. In a spectrum of myeloid disorders ranging from clonal haematopoiesis of indeterminate potential (CHIP) to secondary acute myeloid leukaemia (sAML), MDS is distinguished by the presence of peripheral blood cytopenias, dysplastic haematopoietic differentiation and the absence of features that define acute leukaemia. More than 50 recurrently mutated genes are involved in the pathogenesis of MDS, including genes that encode proteins involved in pre-mRNA splicing, epigenetic regulation and transcription. In this Review we discuss the molecular processes that lead to CHIP and further clonal evolution to MDS and sAML. We also highlight the ways in which these insights are shaping the clinical management of MDS, including classification schemata, prognostic scoring systems and therapeutic approaches.
Collapse
Affiliation(s)
- Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Christopher J Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
46
|
Abstract
Cytogenetic analysis has an essential role in diagnosis, classification, and prognosis of myelodysplastic syndromes (MDS). Some cytogenetic abnormalities are sufficiently characteristic of MDS to be considered MDS defining in the appropriate clinical context. MDS with isolated del(5q) is the only molecularly defined MDS subtype. The genes responsible for many aspects of 5q- syndrome, the distinct clinical phenotype associated with this condition, have now been identified. Cytogenetics forms the cornerstone of the most widely adopted prognostic scoring systems in MDS, the international prognostic scoring system (IPSS) and the revised international prognostic scoring system (IPPS-R). Cytogenetic parameters also have utility in chronic myelomonocytic leukemia (CMML) and have been incorporated into specific prognostic scoring systems for this condition. More recently, it has been appreciated that submicroscopic copy number changes and gene mutations play a significant part in MDS pathogenesis. Integration of molecular genetics and cytogenetics holds much promise for improving clinical care and outcomes for patients with MDS.
Collapse
Affiliation(s)
- Meaghan Wall
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia.
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
47
|
Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet 2016; 49:204-212. [PMID: 27992414 DOI: 10.1038/ng.3742] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
To elucidate differential roles of mutations in myelodysplastic syndromes (MDS), we investigated clonal dynamics using whole-exome and/or targeted sequencing of 699 patients, of whom 122 were analyzed longitudinally. Including the results from previous reports, we assessed a total of 2,250 patients for mutational enrichment patterns. During progression, the number of mutations, their diversity and clone sizes increased, with alterations frequently present in dominant clones with or without their sweeping previous clones. Enriched in secondary acute myeloid leukemia (sAML; in comparison to high-risk MDS), FLT3, PTPN11, WT1, IDH1, NPM1, IDH2 and NRAS mutations (type 1) tended to be newly acquired, and were associated with faster sAML progression and a shorter overall survival time. Significantly enriched in high-risk MDS (in comparison to low-risk MDS), TP53, GATA2, KRAS, RUNX1, STAG2, ASXL1, ZRSR2 and TET2 mutations (type 2) had a weaker impact on sAML progression and overall survival than type-1 mutations. The distinct roles of type-1 and type-2 mutations suggest their potential utility in disease monitoring.
Collapse
|
48
|
Genetic analysis of B-cell lymphomas associated with hemophagocytic lymphohistiocytosis. Blood Adv 2016; 1:205-207. [PMID: 29296936 DOI: 10.1182/bloodadvances.2016002006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
|
49
|
Morotti A, Rocca S, Carrà G, Saglio G, Brancaccio M. Modeling myeloproliferative neoplasms: From mutations to mouse models and back again. Blood Rev 2016; 31:139-150. [PMID: 27899218 DOI: 10.1016/j.blre.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are defined according to the 2008 World Health Organization (WHO) classification and the recent 2016 revision. Over the years, several genetic lesions have been associated with the development of MPNs, with important consequences for identifying unique biomarkers associated with specific neoplasms and for developing targeted therapies. Defining the genotype-phenotype relationship in MPNs is essential to identify driver somatic mutations that promote MPN development and maintenance in order to develop curative targeted therapies. While studies with human samples can identify putative driver mutations, murine models are mandatory to demonstrate the causative role of mutations and for pre-clinical testing of specific therapeutic interventions. This review focuses on MPN mouse models specifically developed to assess the pathogenetic roles of gene mutations found in human patients, as well as murine MPN-like phenotypes identified in genetically modified mice.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
50
|
Palau A, Mallo M, Palomo L, Rodríguez-Hernández I, Diesch J, Campos D, Granada I, Juncà J, Drexler HG, Solé F, Buschbeck M. Immunophenotypic, cytogenetic, and mutational characterization of cell lines derived from myelodysplastic syndrome patients after progression to acute myeloid leukemia. Genes Chromosomes Cancer 2016; 56:243-252. [PMID: 27750403 DOI: 10.1002/gcc.22430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Leukemia cell lines have been widely used in the hematology field to unravel mechanistic insights and to test new therapeutic strategies. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of diseases that are characterized by ineffective hematopoiesis and frequent progress to acute myeloid leukemia (AML). A few cell lines have been established from MDS patients after progression to AML but their characterization is incomplete. Here we provide a detailed description of the immunophenotypic profile of the MDS-derived cell lines SKK-1, SKM-1, F-36P; and MOLM-13. Specifically, we analyzed a comprehensive panel of markers that are currently applied in the diagnostic routine for myeloid disorders. To provide high-resolution genetic data comprising copy number alterations and losses of heterozygosity we performed whole genome single nucleotide polymorphism-based arrays and included the cell line OHN-GM that harbors the frequent chromosome arm 5q deletion. Furthermore, we assessed the mutational status of 83 disease-relevant genes. Our results provide a resource to the MDS and AML field that allows researchers to choose the best-matching cell line for their functional studies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Palau
- Josep Carreras Leukaemia Research Institute, Campus ICO - Germans Trias i Pujol, Badalona, Spain
| | - Mar Mallo
- Josep Carreras Leukaemia Research Institute, Campus ICO - Germans Trias i Pujol, Badalona, Spain
| | - Laura Palomo
- Josep Carreras Leukaemia Research Institute, Campus ICO - Germans Trias i Pujol, Badalona, Spain
| | - Ines Rodríguez-Hernández
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jeannine Diesch
- Josep Carreras Leukaemia Research Institute, Campus ICO - Germans Trias i Pujol, Badalona, Spain
| | - Diana Campos
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Isabel Granada
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jordi Juncà
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Francesc Solé
- Josep Carreras Leukaemia Research Institute, Campus ICO - Germans Trias i Pujol, Badalona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, Campus ICO - Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|