1
|
Lim JH, Shin HT, Park S, Ryu WK, Kim L, Lee KH, Ko SM, Lee SJ, Kim JS, Ryu JS. Bronchial washing fluid sequencing is useful in the diagnosis of lung cancer with necrotic tumor. Transl Oncol 2024; 50:102134. [PMID: 39353233 PMCID: PMC11472095 DOI: 10.1016/j.tranon.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Early-stage lung cancers detected by low-dose computed tomography (CT) often require confirmation through invasive procedures due to the absence of endobronchial lesions. This study assesses the diagnostic utility of bronchial washing fluid (BW) sequencing, a less invasive alternative, aiming to identify patient characteristics most suited for this approach. METHODS From June 2017 to March 2018, we conducted a prospective cohort study by enrolling patients with incidental lung lesions suspected of early-stage lung cancer at two independent hospitals, and 114 were diagnosed with lung cancer while 50 were diagnosed with benign lesions. BW sequencing was performed using a targeted gene panel, and the clinical characteristics of patients detected with cancer through sequencing were identified. RESULTS Malignant cells were detected in 33 patients (28.9 %) through BW cytology. By applying specificity-focused mutation criteria, BW sequencing classified 42 patients (36.8 %) as having cancer. Among the cancer patients who were BW sequencing positive and BW cytology negative, 15 patients (75.0 %) showed necrosis on CT. The sensitivity of BW sequencing was particularly enhanced in patients with necrotic tumors, reaching 75 %. CONCLUSIONS BW sequencing presents a viable, non-invasive diagnostic option for early-stage lung cancer, especially valuable in patients with necrotic lesions. By potentially reducing the reliance on more invasive diagnostic procedures, this method could streamline clinical workflows, decrease patient burden, and improve overall diagnostic efficiency.
Collapse
Affiliation(s)
- Jun Hyeok Lim
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Hyun-Tae Shin
- Research Center for Controlling Intercellular Communication (RCIC), Inha University School of Medicine, Inha University, Incheon, South Korea; Department of Dermatology, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Sunmin Park
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Woo Kyung Ryu
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Lucia Kim
- Department of Pathology, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Kyung-Hee Lee
- Department of Radiology, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Sung Min Ko
- Department of Radiology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | | | - Jung Soo Kim
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Jeong-Seon Ryu
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea.
| |
Collapse
|
2
|
Gristina V, Russo G, Bazan Russo TD, Busuito G, Iannì G, Pisapia P, Scimone C, Palumbo L, Incorvaia L, Badalamenti G, Galvano A, Bazan V, Russo A, Troncone G, Malapelle U, Pepe F. Recent advances in the use of liquid biopsy for the diagnosis and treatment of lung cancer. Expert Rev Respir Med 2024:1-11. [PMID: 39491533 DOI: 10.1080/17476348.2024.2423824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION In the era of precision medicine, liquid biopsy rapidly emerges as an integrative diagnostic tool to successfully stratify solid tumor patients in accordance with molecular fingerprinting. As the matter of fact, a plethora of analytes may be isolated from liquid biosources supporting the potential application of liquid biopsy in several clinical scenarios. Despite this promising role, liquid biopsy is drastically affected by low abundance of analytes in biological matrix requiring highly sensitive technologies, trained personnel, and optimized diagnostic procedures to successfully administrate this revolutionary diagnostic tool in clinical practice. AREAS COVERED This review aims to investigate the recent advancements in technical approaches available to manage liquid biopsy samples, particularly focusing on their application in LC diagnosis and treatment. EXPERT OPINION The rapidly evolving scenario of liquid biopsy-based approaches is revolutionizing clinical administration of lung cancer patients. Of note, the integration of genomic, epigenomic, and transcriptomic markers lays the basis for 'comprehensive' molecular fingerprinting of lung cancer patients. Here, the next-generation technologies are fundamental in molecular profiling in diagnostic routine biofluids.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Gianluca Russo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giulia Busuito
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuliana Iannì
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Pasquale Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Claudia Scimone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Lucia Palumbo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| |
Collapse
|
3
|
Alexander EM, Miller HA, Egger ME, Smith ML, Yaddanapudi K, Linder MW. The Correlation between Plasma Circulating Tumor DNA and Radiographic Tumor Burden. J Mol Diagn 2024; 26:952-961. [PMID: 39181324 PMCID: PMC11524323 DOI: 10.1016/j.jmoldx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional blood-based biomarkers and radiographic imaging are excellent for use in monitoring different aspects of malignant disease, but given their specific shortcomings, their integration with other, complementary markers such as plasma circulating tumor DNA (ctDNA) will be beneficial toward a precision medicine-driven future. Plasma ctDNA analysis utilizes the measurement of cancer-specific molecular alterations in a variety of bodily fluids released by dying tumor cells to monitor and profile response to therapy, and is being employed in several clinical scenarios. Plasma concentrations of ctDNA have been reported to correlate with tumor burden. However, the strength of this association is generally poor and highly variable, confounding the interpretation of longitudinal plasma ctDNA measurements in conjunction with routine radiographic assessments. Herein is discussed what is currently understood with respect to the fundamental characteristics of tumor growth that dictate plasma ctDNA concentrations, with a perspective on its interpretation in conjunction with radiographically determined tumor burden assessments.
Collapse
Affiliation(s)
- Evan M Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Hunter A Miller
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Michael E Egger
- Hiram C. Polk, Jr, MD, Department of Surgery, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Melissa L Smith
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Kavitha Yaddanapudi
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
4
|
Aden D, Zaheer S, Khan S, Jairajpuri ZS, Jetley S. Navigating the landscape of HPV-associated cancers: From epidemiology to prevention. Pathol Res Pract 2024; 263:155574. [PMID: 39244910 DOI: 10.1016/j.prp.2024.155574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Human Papillomavirus (HPV) is a widespread infection associated with various cancers, including cervical, oropharyngeal, anal, and genital cancers. This infection contributes to 5 % of global cancer cases annually, affecting approximately 625,600 women and 69,400 men. Cervical cancer remains the most prevalent HPV-linked cancer among females, with the highest incidence seen in low and middle-income countries (LMICs). While most HPV infections are transient, factors such as HPV variants, age, gender, and socioeconomic status influence transmission risks. HPV is categorized into high-risk (HR-HPV) and low-risk types, with strains like HPV 16 and 18 displaying distinct demographic patterns. The intricate pathogenesis of HPV involves genetic and epigenetic interactions, with HPV oncogenes (E6 and E7) and integration into host DNA playing a pivotal role in driving malignancies. Early diagnostics, utilizing HPV DNA testing with surrogate markers such as p16, and advanced molecular techniques like PCR, liquid biopsy, and NGS, significantly impact the management of HPV-induced cancers. Effectively managing HPV-related cancers demands a multidisciplinary approach, including immunotherapy, integrating current therapies, ongoing trials, and evolving treatments. Prevention via HPV vaccination and the inclusion of cervical cancer screening in national immunization programs by conventional Pap smear examination and HPV DNA testing remains fundamental.Despite the preventability of HPV-related cancers, uncertainties persist in testing, vaccination, and treatment. This review article covers epidemiology, pathogenesis, diagnostics, management, prevention strategies, challenges, and future directions. Addressing issues like vaccine hesitancy, healthcare disparities, and advancing therapies requires collaboration among researchers, healthcare providers, policymakers, and the public. Advancements in understanding the disease's molecular basis and clinical progression are crucial for early detection, proper management, and improved outcomes.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, VMMC and Safdarjang Hospital, New Delhi, India.
| | - Sabina Khan
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| | | | - Sujata Jetley
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Sirajee AS, Kabiraj D, De S. Cell-free nucleic acid fragmentomics: A non-invasive window into cellular epigenomes. Transl Oncol 2024; 49:102085. [PMID: 39178576 PMCID: PMC11388671 DOI: 10.1016/j.tranon.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Clinical genomic profiling of cell-free nucleic acids (e.g. cell-free DNA or cfDNA) from blood and other body fluids has ushered in a new era in non-invasive diagnostics and treatment monitoring strategies for health conditions and diseases such as cancer. Genomic analysis of cfDNAs not only identifies disease-associated mutations, but emerging findings suggest that structural, topological, and fragmentation characteristics of cfDNAs reveal crucial information about the location of source tissues, their epigenomes, and other clinically relevant characteristics, leading to the burgeoning field of fragmentomics. The field has seen rapid developments in computational and genomics methodologies for conducting large-scale studies on health conditions and diseases - that have led to fundamental, mechanistic discoveries as well as translational applications. Several recent studies have shown the clinical utilities of the cfDNA fragmentomics technique which has the potential to be effective for early disease diagnosis, determining treatment outcomes, and risk-free continuous patient monitoring in a non-invasive manner. In this article, we outline recent developments in computational genomic methodologies and analysis strategies, as well as the emerging insights from cfNA fragmentomics. We conclude by highlighting the current challenges and opportunities.
Collapse
Affiliation(s)
- Ahmad Salman Sirajee
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Debajyoti Kabiraj
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
6
|
Seung BJ, Sur JH. Detection of PIK3CA hotspot mutations in canine mammary tumors using droplet digital PCR: tissue validation and liquid biopsy feasibility. Sci Rep 2024; 14:25587. [PMID: 39462049 PMCID: PMC11512996 DOI: 10.1038/s41598-024-76820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Domestic dogs (Canis lupus familiaris) serve as valuable translational models for human cancer research due to their biological similarities. Canine mammary tumors (CMTs), frequently diagnosed in female dogs, share various characteristics with human breast cancers. This study investigates the PIK3CA (H1047R) mutation in CMTs using droplet digital PCR (ddPCR) and explores the potential of liquid biopsy for non-invasive detection. We analyzed 80 formalin-fixed, paraffin-embedded (FFPE) CMT tissue samples and compared ddPCR results with next-generation sequencing (NGS) data, achieving high concordance. Plasma and serum samples were also assessed for mutation concordance with tissue results. Our findings indicate a higher frequency of the PIK3CA (H1047R) mutations in benign and grade I malignant CMTs compared to more aggressive malignancies. The ddPCR assay demonstrated high sensitivity and specificity, with plasma testing showing 78.6% sensitivity and 87.5% specificity, and serum testing showing 66.7% sensitivity and 90.0% specificity. These results highlight the viability of liquid biopsy as a minimally invasive method for monitoring PIK3CA mutations in canine patients. The study suggests that liquid biopsy techniques hold significant promise for improving the early detection and monitoring of canine cancers, warranting further research to refine these methods and explore their applications in canine cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Byung-Joon Seung
- Department of Veterinary Pathology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- Komipharm International Co., Ltd., Siheung-si, Gyonggi-do, 15094, South Korea.
| |
Collapse
|
7
|
Stewart TF, Chalfin H, Simon N, Tan A, Apolo A, McKay RR. Perioperative Use of ctDNA to Guide Treatment for Urothelial Carcinoma: The Future is Now. Bladder Cancer 2024; 10:183-198. [PMID: 39493820 PMCID: PMC11530029 DOI: 10.3233/blc-230105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/29/2024] [Indexed: 11/05/2024]
Abstract
Muscle-invasive bladder cancer represents a potentially curable disease, yet often disease recurs and is ultimately fatal. Outcomes for patients with localized urothelial carcinoma are heterogeneous with some patients cured with surgery alone, deriving no benefit from perioperative systemic therapy, while others are left with residual disease and may benefit from additional therapy. Neoadjuvant chemotherapy increases cure rates but comes with significant toxicity. Recently, adjuvant nivolumab has demonstrated significant improvement in disease free survival (DFS), and overall survival analysis is pending. With more therapies approved for urothelial cancer within the last 5 years than ever before, there is incredible potential to improve clinical outcomes and potentially cure more patients with integrated multimodal therapy. Biomarkers are needed to dichotomize those most likely to benefit from perioperative systemic therapy for residual disease, and de-escalate therapy for those likely to be cured with surgery alone. Ultrasensitive assays for circulating tumor DNA (ctDNA) have emerged as a method to identify patients at high risk of recurrence after definitive therapy and may benefit from escalated therapy, while also identifying those least likely to benefit from systemic therapy. Studies have demonstrated that the presence of ctDNA after surgery is prognostic of disease recurrence across multiple cancer types, including bladder cancer, but questions remain as to the utility of these tests, and whether they can be predictive of benefit of adjuvant therapy. Although these liquid biopsies hold significant promise to transform perioperative treatment, prospective studies are needed to validate their utility as prognostic and predictive biomarkers. To bridge this knowledge gap, contemporary clinical trials are incorporating ctDNA as an integral biomarker to guide therapy for MIBC.
Collapse
Affiliation(s)
- Tyler F. Stewart
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | | - Alan Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea Apolo
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rana R. McKay
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Overs A, Peixoto P, Hervouet E, Molimard C, Monnien F, Durand J, Guittaut M, Vienot A, Viot J, Herfs M, Borg C, Feugeas JP, Selmani Z. COL25A1 and METAP1D DNA methylation are promising liquid biopsy epigenetic biomarkers of colorectal cancer using digital PCR. Clin Epigenetics 2024; 16:146. [PMID: 39425144 PMCID: PMC11490026 DOI: 10.1186/s13148-024-01748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Colorectal cancer is a public health issue and was the third leading cause of cancer-related death worldwide in 2022. Early diagnosis can improve prognosis, making screening a central part of colorectal cancer management. Blood-based screening, diagnosis and follow-up of colorectal cancer patients are possible with the study of cell-free circulating tumor DNA. This study aimed to identify novel DNA methylation biomarkers of colorectal cancer that can be used for the follow-up of patients with colorectal cancer. METHODS A DNA methylation profile was established in the Gene Expression Omnibus (GEO) database (n = 507) using bioinformatics analysis and subsequently confirmed using The Cancer Genome Atlas (TCGA) database (n = 348). The in silico profile was then validated on local tissue and cell-free DNA samples using methylation-specific digital PCR in colorectal cancer patients (n = 35) and healthy donors (n = 35). RESULTS The DNA methylation of COL25A1 and METAP1D was predicted to be a colorectal cancer biomarker by bioinformatics analysis (ROC AUC = 1, 95% CI [0.999-1]). The two biomarkers were confirmed with tissue samples, and the combination of COL25A1 and METAP1D yielded 49% sensitivity and 100% specificity for cell-free DNA. CONCLUSION Bioinformatics analysis of public databases revealed COL25A1 and METAP1D DNA methylation as clinically applicable liquid biopsies DNA methylation biomarkers. The specificity implies an excellent positive predictive value for follow-up, and the high sensitivity and relative noninvasiveness of a blood-based test make these biomarkers compatible with colorectal cancer screening. However, the clinical impact of these biomarkers in colorectal cancer screening and follow-up needs to be established in further prospective studies.
Collapse
Affiliation(s)
- Alexis Overs
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France.
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France.
| | - Paul Peixoto
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Chloé Molimard
- Department of Pathology, University Hospital of Besançon, 25000, Besancon, France
| | - Franck Monnien
- Department of Pathology, University Hospital of Besançon, 25000, Besancon, France
| | - Jules Durand
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Michael Guittaut
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Angélique Vienot
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Julien Viot
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liège, Belgium
| | - Christophe Borg
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Jean-Paul Feugeas
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Zohair Selmani
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
9
|
Fu SW, Tang C, Tan X, Srivastava S. Liquid biopsy for early cancer detection: technological revolutions and clinical dilemma. Expert Rev Mol Diagn 2024:1-19. [PMID: 39360748 DOI: 10.1080/14737159.2024.2408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.
Collapse
Affiliation(s)
- Sidney W Fu
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xiaohui Tan
- Division of LS Research, LSBioscience, LLC, Frederick, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
10
|
Tran QT, Breuer A, Lin T, Tatevossian R, Allen SJ, Clay M, Furtado LV, Chen M, Hedges D, Michael T, Robinson G, Northcott P, Gajjar A, Azzato E, Shurtleff S, Ellison DW, Pounds S, Orr BA. Comparison of DNA methylation based classification models for precision diagnostics of central nervous system tumors. NPJ Precis Oncol 2024; 8:218. [PMID: 39358389 PMCID: PMC11447224 DOI: 10.1038/s41698-024-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
As part of the advancement in therapeutic decision-making for brain tumor patients at St. Jude Children's Research Hospital (SJCRH), we developed three robust classifiers, a deep learning neural network (NN), k-nearest neighbor (kNN), and random forest (RF), trained on a reference series DNA-methylation profiles to classify central nervous system (CNS) tumor types. The models' performance was rigorously validated against 2054 samples from two independent cohorts. In addition to classic metrics of model performance, we compared the robustness of the three models to reduced tumor purity, a critical consideration in the clinical utility of such classifiers. Our findings revealed that the NN model exhibited the highest accuracy and maintained a balance between precision and recall. The NN model was the most resistant to drops in performance associated with a reduction in tumor purity, showing good performance until the purity fell below 50%. Through rigorous validation, our study emphasizes the potential of DNA-methylation-based deep learning methods to improve precision medicine for brain tumor classification in the clinical setting.
Collapse
Affiliation(s)
- Quynh T Tran
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alex Breuer
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tong Lin
- Clinical Biomarkers Lab, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruth Tatevossian
- Clinical Biomarkers Lab, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sariah J Allen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Clay
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark Chen
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Tylman Michael
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giles Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth Azzato
- Section of Molecular Genetic Pathology, Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sheila Shurtleff
- Section of Molecular Genetic Pathology, Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
11
|
Sun Y, Zhang X, Yang X, Ma J. Clinical Utility of Circulating Tumor DNA for Detecting Lung Cancer Mutations by Targeted Next-Generation Sequencing With Insufficient Tumor Samples. J Clin Lab Anal 2024; 38:e25099. [PMID: 39315762 PMCID: PMC11520943 DOI: 10.1002/jcla.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Circulating tumor deoxyribonucleic acid (ctDNA) is increasingly applied in clinical practice. This study aimed to explore clinical utility of a minimal invasive and sensitive way of ctDNA for next-generation sequencing in non-small cell lung cancer (NSCLC) with inadequate tumor samples. METHODS Targeted DNA sequencing was performed on tissue biopsies and matched plasma samples from 60 patients with NSCLC. RESULTS A total of 13 driving genes were detected in 60 matched tissue DNA (tDNA) and ctDNA samples. Overall concordance rate was 75.47%, with 77.55% sensitivity and 50% specificity. Epidermal growth factor receptor (EGFR) mutations were the most common in both tDNA and ctDNA samples. Among other mutated genes were tumor protein p53 (TP53), erb-b2 receptor tyrosine kinase 2 (ERBB2), anaplastic lymphoma kinase (ALK), cyclin-dependent kinase inhibitor 2A (CDKN2A), ros proto-oncogene 1, and receptor tyrosine kinase (ROS1). Mutations in b-raf proto-oncogene, serine/threonine kinase (BRAF), cluster of differentiation 274 (CD274), neurotrophin receptor tyrosine kinase 1 (NTRK1), and rearranged during transfection (RET) occurred only in plasma. The majority of mutations in both samples were single-nucleotide variants. Deletions were found in EGFR, BRAF, and TP53 in ctDNA, whereas in tDNA, deletions were only found in EGFR. In ALK, single nucleic acid-site amplification occurred simultaneously in tissue and plasma, but insertions and copy number variations were detected only in plasma. CONCLUSIONS Identifying ctDNA mutations by targeted sequencing in plasma is feasible, showing the clinical value of ctDNA-targeted sequencing in NSCLC patients when tumor tissue sampling is insufficient or even impossible.
Collapse
Affiliation(s)
- Yi Sun
- Pediatric, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xu Zhang
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| | - Xinhua Yang
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| |
Collapse
|
12
|
Reina C, Šabanović B, Lazzari C, Gregorc V, Heeschen C. Unlocking the future of cancer diagnosis - promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res 2024; 272:41-53. [PMID: 38838851 DOI: 10.1016/j.trsl.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The advent of liquid biopsies has brought significant changes to the diagnosis and monitoring of non-small cell lung cancer (NSCLC), presenting both promise and challenges. Molecularly targeted drugs, capable of enhancing survival rates, are now available to around a quarter of NSCLC patients. However, to ensure their effectiveness, precision diagnosis is essential. Circulating tumor DNA (ctDNA) analysis as the most advanced liquid biopsy modality to date offers a non-invasive method for tracking genomic changes in NSCLC. The potential of ctDNA is particularly rooted in its ability to furnish comprehensive (epi-)genetic insights into the tumor, thereby aiding personalized treatment strategies. One of the key advantages of ctDNA-based liquid biopsies in NSCLC is their ability to capture tumor heterogeneity. This capability ensures a more precise depiction of the tumor's (epi-)genomic landscape compared to conventional tissue biopsies. Consequently, it facilitates the identification of (epi-)genetic alterations, enabling informed treatment decisions, disease progression monitoring, and early detection of resistance-causing mutations for timely therapeutic interventions. Here we review the current state-of-the-art in ctDNA-based liquid biopsy technologies for NSCLC, exploring their potential to revolutionize clinical practice. Key advancements in ctDNA detection methods, including PCR-based assays, next-generation sequencing (NGS), and digital PCR (dPCR), are discussed, along with their respective strengths and limitations. Additionally, the clinical utility of ctDNA analysis in guiding treatment decisions, monitoring treatment response, detecting minimal residual disease, and identifying emerging resistance mechanisms is examined. Liquid biopsy analysis bears the potential of transforming NSCLC management by enabling non-invasive monitoring of Minimal Residual Disease and providing early indicators for response to targeted treatments including immunotherapy. Furthermore, considerations regarding sample collection, processing, and data interpretation are highlighted as crucial factors influencing the reliability and reproducibility of ctDNA-based assays. Addressing these challenges will be essential for the widespread adoption of ctDNA-based liquid biopsies in routine clinical practice, ultimately paving the way toward personalized medicine and improved outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy;.
| |
Collapse
|
13
|
Mazzeo R, Sears J, Palmero L, Bolzonello S, Davis AA, Gerratana L, Puglisi F. Liquid biopsy in triple-negative breast cancer: unlocking the potential of precision oncology. ESMO Open 2024; 9:103700. [PMID: 39288656 PMCID: PMC11421323 DOI: 10.1016/j.esmoop.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
In the era of precision oncology, the management of triple-negative breast cancer (TNBC) is rapidly changing and becoming more complicated with a variety of chemotherapy, immunotherapy, and targeted treatment options. Currently, TNBC treatment is based on prognostic and predictive factors including immunohistochemical biomarkers [e.g. programmed death-ligand 1 (PD-L1)] and germline BRCA mutations. Given the current limitation of existing biomarkers, liquid biopsies may serve as clinically useful tools to determine treatment efficacy and response in both the (neo)adjuvant and metastatic settings, for detecting early relapse, and for monitoring clonal evolution during treatment. In this review, we comprehensively summarize current and future liquid biopsy applications. Specifically, we highlight the role of circulating tumor cell characterization, circulating tumor DNA, and other preclinical liquid biopsy technologies including circulating exosomes, RNA liquid biopsy, and circulating immune-based biomarkers. In the near future, these biomarkers may serve to identify early disease relapse, therapeutic targets, and disease clonality for patients with TNBC in the clinical setting.
Collapse
Affiliation(s)
- R Mazzeo
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| | - J Sears
- Department of Medicine, Washington University in St. Louis, St. Louis
| | - L Palmero
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| | - S Bolzonello
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano
| | - A A Davis
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, USA
| | - L Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy.
| | - F Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
14
|
Goldkorn A, Tangen C, Plets M, Bsteh D, Xu T, Pinski JK, Ingles S, Triche TJ, MacVicar GR, Vaena DA, Crispino AW, McConkey DJ, Lara PN, Hussain MHA, Quinn DI, Dorff TB, Lerner SP, Thompson I, Agarwal N. Circulating Tumor Cell Count and Overall Survival in Patients With Metastatic Hormone-Sensitive Prostate Cancer. JAMA Netw Open 2024; 7:e2437871. [PMID: 39374015 DOI: 10.1001/jamanetworkopen.2024.37871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Importance In metastatic hormone-sensitive prostate cancer (mHSPC), new first-line combination therapies have enhanced overall survival (OS), but clinical outcomes for individual patients vary greatly and are difficult to predict. Peripheral blood circulating tumor cell (CTC) count is the most extensively validated prognostic liquid biomarker in metastatic castration-resistant prostate cancer (mCRPC), and recent studies have suggested that it may also be informative in mHSPC. Objective To examine the prognostic value of CTC count in men with mHSPC. Design, Setting, and Participants In this prognostic study, peripheral blood was drawn at registration (baseline) and at progression to mCRPC in the S1216 study (March 1, 2013, to July 15, 2017), a phase 3, prospective, randomized clinical trial in men with mHSPC. The CTCs were enumerated using a US Food and Drug Administration-cleared isolation platform. Counts were categorized as 0, 1 to 4, or 5 or more CTCs per 7.5 mL based on the prognostic value of these cut points in prior studies. The data analysis was performed between October 28, 2022, and June 15, 2023. Exposure Metastatic hormone-sensitive prostate cancer. Main Outcomes and Measures Circulating tumor cell count was evaluated for an association with 3 prespecified trial end points: OS, progression-free survival, and 7-month prostate-specific antigen, after adjusting for other baseline covariates using proportional hazards and logistic regression models. Results Of 1313 S1216 participants (median [IQR] age, 68 [44-92] years), evaluable samples from 503 (median [IQR] age, 69 [46-90] years) with newly diagnosed mHSPC were collected at baseline, and 93 samples were collected at progression. Baseline counts were 5 or more CTCs per 7.5 mL in 60 samples (11.9%), 1 to 4 CTCs per 7.5 mL in 107 samples (21.3%), and 0 CTCs per 7.5 mL in 336 samples (66.8%). Median OS for men with 5 or more CTCs per 7.5 mL was 27.9 months (95% CI, 24.1-31.2 months) compared with 56.2 months (95% CI, 45.7-69.8 months) for men with 1 to 4 CTCs per 7.5 mL and not reached at 78.0 months follow-up for men with 0 CTCs per 7.5 mL. After adjusting for baseline clinical covariates, men with 5 or more CTCs per 7.5 mL at baseline had a significantly higher hazard of death (hazard ratio, 3.22; 95% CI, 2.22-4.68) and disease progression (hazard ratio, 2.46; 95% CI, 1.76-3.43) and a lower likelihood of prostate-specific antigen complete response (odds ratio, 0.26; 95% CI, 0.12-0.54) compared with men with 0 CTCs per 7.5 mL at baseline. Adding baseline CTC count to other known prognostic factors (covariates only: area under the curve, 0.73; 95% CI, 0.67-0.79) resulted in an increased prognostic value for 3-year survival (area under the curve, 0.79; 95% CI, 0.73-0.84). Conclusions and Relevance In this prognostic study, the findings validate CTC count as a prognostic biomarker that improved upon existing prognostic factors and estimated vastly divergent survival outcomes regardless of subsequent lines of therapy. As such, baseline CTC count in mHSPC may serve as a valuable noninvasive biomarker to identify men likely to have poor survival who may benefit from clinical trials of intensified or novel regimens.
Collapse
Affiliation(s)
- Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Catherine Tangen
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Melissa Plets
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Daniel Bsteh
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Tong Xu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Jacek K Pinski
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Sue Ingles
- Keck School of Medicine of USC, Los Angeles, California
| | | | | | - Daniel A Vaena
- Holden Comprehensive Cancer Center, University of Iowa Health Care, Iowa City
| | | | | | - Primo N Lara
- UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Maha H A Hussain
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David I Quinn
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Tanya B Dorff
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Seth Paul Lerner
- Scott Department of Urology, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City
| |
Collapse
|
15
|
Hewitt DB, Wolfgang CL. The Role of Surgery in "Oligometastatic" Pancreas Cancer. Surg Clin North Am 2024; 104:1065-1081. [PMID: 39237164 DOI: 10.1016/j.suc.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The majority of patients diagnosed with pancreatic cancer already have metastatic disease at the time of presentation, which results in a 5-year survival rate of only 13%. However, multiagent chemotherapy regimens can stabilize the disease in select patients with limited metastatic disease. For such patients, a combination of curative-intent therapy and systemic therapy may potentially enhance outcomes compared to using systemic therapy alone. Of note, the evidence supporting this approach is primarily derived from retrospective studies and may carry a significant selection bias. Looking ahead, ongoing prospective trials are exploring the efficacy of curative-intent therapy in managing oligometastatic pancreatic cancer and the implementation of treatment strategies based on specific biomarkers. The emergence of these trials, coupled with the development of less invasive therapeutic modalities, provides hope for patients with oligometastatic pancreatic cancer.
Collapse
Affiliation(s)
- D Brock Hewitt
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The NYU Grossman School of Medicine, 577 1st Avenue, 2nd Floor, New York, NY 10016, USA.
| | - Christopher L Wolfgang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The NYU Grossman School of Medicine, 577 1st Avenue, 2nd Floor, New York, NY 10016, USA
| |
Collapse
|
16
|
Yang H, Gu X, Wang Z, Liu G, Niu Y, Pan X, Yao F. Predicting non-small cell lung cancer lymph node metastasis: integrating ctDNA mutation/methylation profiling with positron emission tomography-computed tomography (PET-CT) scan: protocol for a prospective clinical trial (LUNon-invasive Study). J Thorac Dis 2024; 16:6272-6285. [PMID: 39444874 PMCID: PMC11494533 DOI: 10.21037/jtd-24-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/02/2024] [Indexed: 10/25/2024]
Abstract
Background Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases and remains a leading cause of cancer-related death. Lymph node metastasis (LNM) significantly affects recurrence, survival rates, and treatment options. While lymph node sampling is standard for surgically removing operable NSCLC, it can lead to complications. Positron emission tomography-computed tomography (PET-CT) helps assess preoperative LNM despite false positive or negative rates. Additionally, circulating tumor DNA (ctDNA) detects minimal residual disease with high sensitivity and specificity. Whether ctDNA can predict LNM in operable NSCLC remains uncertain. Our goal is to develop a precise model for predicting NSCLC LNM using non-invasive ctDNA/methylation profiling combined with PET-CT imaging. Methods This is a prospective study conducted in three stages. We will enroll patients with clinical stage I-IIIB [8th tumor, node, metastasis (TNM) staging] NSCLC requiring lobectomy plus lymph node sampling/dissection. The distribution of clinical stages in the enrolled population is as follows: clinical stage cN0 (n=100) and cN1/cN2 (n=100). During Stage 1, we will establish LNMs-specific ctDNA methylation signatures and compare negative predictive value (NPV) rates of LNMs using preoperative blood ctDNA somatic mutation/methylation alone or combined with PET-CT across different groups. For Stage 2, we will compare detection rates between ctDNA somatic mutation/methylation profiles alone or combined with PET-CT and traditional mediastinoscopy/endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). As for Stage 3, ctDNA-free interval (CFI) and disease-free survival between systematic lymph node presence and absence in patients will be compared with preoperative negative ctDNA profiling and/or PET-CT. In Stage 3, patients will be followed up for 5 years to collect recurrence and survival data. Post-surgery follow-up ctDNA tests will be conducted every 3 months for the first 2 years, every 6 months for years 3-4, and annually in year five. Demographics and baseline data will be summarized with mean, standard deviation, median, max, and min values. Tests will include t-tests, Welch/Behren-Fisher test, and Wilcoxon rank-sum test for continuous variables. Categorical data will be presented as counts/percentages and compared using χ2 test or Fisher's exact test. Discussion By utilizing preoperative ctDNA/methylation profiling in conjunction with PET-CT, this study is expected to yield substantial evidence for accurately predicting LNM before surgery. This will help inform surgeons in selecting the appropriate intraoperative lymph node dissection strategy for operable NSCLC patients. Trial Registration This study is registered on www.clinicaltrials.gov (NCT06358222).
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoran Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhexin Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongliang Niu
- Department of Respiratory and Critical Care Medicine, No.2 People’s Hospital of Fuyang City, Infectious Disease Clinical College of Anhui Medical University, Fuyang, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
18
|
Hsu PC, Chang JWC, Chiu LC, Yang CT, Kuo SCH, Fang YF, Wu CE. Analysis of genomic alternations in epidermal growth factor receptor (EGFR)-T790M-mutated non-small cell lung cancer (NSCLC) patients with acquired resistance to osimertinib therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03727-7. [PMID: 39317868 DOI: 10.1007/s12094-024-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Genomic alterations after resistance to osimertinib therapy in advanced T790M-mutated non-small cell lung cancer (NSCLC) are complex and poorly understood. In this study, we aimed to detect these genomic alternations via comprehensive next-generation sequencing (NGS) of tissue and liquid biopsies. PATIENTS AND METHODS From September 2020 to June 2021, 31 stage IIIB/IV T790M-mutated NSCLC patients who exhibited progressive disease after osimertinib therapy and provided written informed consent were recruited. Liquid and tissue biopsy samples for NGS testing were collected from 31 and 18 patients, respectively. Eighteen study patients had paired NGS data from tissue and liquid biopsies. RESULTS With respect to the T790M mutation status, the preservation and loss rates were 33% and 67%, respectively, in both liquid and tissue biopsy samples. Five patients (16.1%) had the C797S mutation (4 liquid samples and 1 tissue sample). Two (6.5%) had MET mutations, 3 (9.7%) had BRAF-V600E mutations, and 1 (3.2%) had a KRAS-G12C mutation. Among the 18 patients who underwent tissue rebiopsies, those with preserved T790M mutation had significantly longer progression-free survival (PFS) with osimertinib therapy than those with T790M mutation loss (10.8 vs. 5.0 months, P = 0.045). Among all patients, those with T790M mutation loss in liquid biopsy samples had longer PFS after osimertinib therapy (10.8 vs. 7.5 months, P = 0.209) and postprogression survival (17.7 vs. 9.6 months, P = 0.132) than those with preserved T790M mutation based on liquid biopsies. CONCLUSIONS NGS using either tissue or liquid biopsy samples from advanced T790M-mutated NSCLC patients with acquired resistance to osimertinib therapy can detect various genomic alternations. Future studies focusing on subsequent tailored therapies on the basis of NGS results are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - John Wen-Cheng Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan
| | - Li-Chung Chiu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan, 33378, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Scott Chih-Hsi Kuo
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yueh-Fu Fang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Chiao-En Wu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan.
| |
Collapse
|
19
|
Chrenková E, Študentová H, Holá K, Kahounová Z, Hendrychová R, Souček K, Bouchal J. Castration-resistant prostate cancer monitoring by cell-free circulating biomarkers. Front Oncol 2024; 14:1394292. [PMID: 39319053 PMCID: PMC11420116 DOI: 10.3389/fonc.2024.1394292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Background Prostate cancer is the second leading cause of male cancer-related deaths in Western countries, which is predominantly attributed to the metastatic castration-resistant stage of the disease (CRPC). There is an urgent need for better prognostic and predictive biomarkers, particularly for androgen receptor targeted agents and taxanes. Methods We have searched the PubMed database for original articles and meta-analyses providing information on blood-based markers for castration-resistant prostate cancer monitoring, risk group stratification and prediction of therapy response. Results The molecular markers are discussed along with the standard clinical parameters, such as prostate specific antigen, lactate dehydrogenase or C-reactive protein. Androgen receptor (AR) alterations are commonly associated with progression to CRPC. These include amplification of AR and its enhancer, point mutations and splice variants. Among DNA methylations, a novel 5-hydroxymethylcytosine activation marker of TOP2A and EZH2 has been identified for the aggressive disease. miR-375 is currently the most promising candidate among non-coding RNAs and sphingolipid analysis has recently emerged as a novel approach. Conclusions The promising biomarkers have the potential to improve the care of metastatic prostate cancer patients, however, they need further validation for routine implementation.
Collapse
Affiliation(s)
- Eva Chrenková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Kateřina Holá
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Romana Hendrychová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| |
Collapse
|
20
|
Arai M, Hamad A, Almasry Y, Alamer A, Rasheed W, Aljurf M, El Fakih R. Minimal residual disease testing for classical Hodgkin lymphoma: A comprehensive review. Crit Rev Oncol Hematol 2024; 204:104503. [PMID: 39245298 DOI: 10.1016/j.critrevonc.2024.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a common lymphoma that affects young patients. Fortunately, the disease is highly curable as it is susceptible to the currently available treatment modalities. Disease monitoring with Positron Emission Tomography and Computed Tomography (PET/ CT) is an integral part of managing these patients. PET guided protocols are currently used to adjust treatment according to the response. The pivotal idea behind the use of response-adapted approaches is to preserve efficacy while decreasing the toxicity. It also helps to intensify therapy in patients in need because of suboptimal response. However, imaging techniques are limited by their sensitivity and specificity. Minimal Residual Disease (MRD) assessment is a newly emerging concept in many hematologic malignancies. It utilizes various molecular techniques such as polymerase chain reaction (PCR), and next-generation sequencing (NGS) as well as flow cytometry, to detect disease traces. This review looks into MRD detection techniques, its current applications, and the evidence in the literature for its use in cHL.
Collapse
Affiliation(s)
- Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alaa Hamad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Yazan Almasry
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Abdullah Alamer
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Walid Rasheed
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Mahmoud Aljurf
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Riad El Fakih
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
21
|
Assaf I, Bregni G, Anthoine G, Aparicio T, Artru P, Abdelghani MB, Buyse M, Chibaudel B, Coart E, Diaz M, Evrard C, Geboes K, Ghiringhelli F, Puleo F, Raimbourg J, Vandamme T, Van den Eynde M, Hendlisz A, Sclafani F. Rationale and Design of the COPERNIC Trial: A Study of On-treatment ctDNA Changes in Chemo-refractory Colorectal Cancer Patients. Clin Colorectal Cancer 2024:S1533-0028(24)00081-1. [PMID: 39341700 DOI: 10.1016/j.clcc.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Evidence suggests that ctDNA may be a reliable biomarker to monitor metastatic colorectal cancer (CRC) evolution. Nevertheless, evidence on the potential of liquid biopsy in this setting is still low quality, mostly consisting of retrospective studies. METHODS COPERNIC is an international, multicenter clinical trial. The pilot study aims to confirm the predictive potential of early on-treatment ctDNA dynamics, and inform the design of a larger ctDNA-driven trial. Advanced CRC patients who are candidates for ≥3rd lines of systemic therapy undergo longitudinal blood sample collection during treatment (day 1, 15 and 29 for 2- or 4-weekly treatment regimens; day 1, 22 and 43 for 3-weekly treatment regimens) and at each imaging assessment. ctDNA analyses are carried out with the FoundationOne Liquid CDx and FoundationOneMonitor assays, and ctDNA changes during treatment are correlated with radiologic response (as assessed every 8-12 weeks by RECIST v1.1). The primary objective is to select the optimal timepoint and cut-off value for early ctDNA changes (at day 15/22) to predict progressive disease as best radiological response with a high positive predictive value. The cut-off value for ctDNA will be defined based on nonparametric ROC-curves with bootstrapping. Based on the expected rate of progressive disease and statistical assumptions, 109 patients are needed to be screened to have 87 assessable patients. COPERNIC is sponsored by the Institut Jules Bordet, and supported by Roche and Foundation Medicine. Recruitment is open in 13 centres across Belgium and France. The study is registered with clinicaltrials.gov (NCT05487248).
Collapse
Affiliation(s)
- Irene Assaf
- Service d'Oncologie Digestive, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Giacomo Bregni
- Service d'Oncologie Digestive, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Geraldine Anthoine
- Service d'Oncologie Digestive, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Thomas Aparicio
- Service de Gastroentérologie et Cancérologie Digestive, Hôpital Saint Louis, Paris, France
| | - Pascal Artru
- Service de Gastroentérologie et Oncologie Digestive, Hôpital Privé Jean Mermoz, Lyon, France
| | - Meher Ben Abdelghani
- Service d'Oncologie Médicale, Institut de cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Marc Buyse
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
| | - Benoist Chibaudel
- Service d'Oncologie Médicale, Hôpital Franco Britannique - Fondation Cognacq-Jay, Cancérologie Paris Ouest, Levallois-Perret, France
| | - Elisabeth Coart
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
| | - Marie Diaz
- Service d'Oncologie Médicale, Centre Hospitalier Universitaire (CHU) Ambroise Paré, Mons, Belgium
| | - Camille Evrard
- Service d'Oncologie Médicale, Centre Hospitalier Universitaire (CHU) de Poitiers, Poitiers, France
| | - Karen Geboes
- Department of Gastrointestinal and intestinal diseases, Universitair Ziekenhuis (UZ) Gent, Gent, Belgium
| | | | - Francesco Puleo
- Service d'Oncologie Digestive, Hôpital Chirec Delta, Brussels, Belgium
| | - Judith Raimbourg
- Service d'Oncologie Médicale, Institut de Cancérologie de l'Ouest (ICO), Saint-Herblain, France
| | - Timon Vandamme
- Department of Molecular Imaging - Pathology - Radiotherapy - Oncology, Antwerp University Hospital, Edegem, Belgium; Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Marc Van den Eynde
- Service d'Oncologie Médicale. Service d'hépato - Gastroentérologie, Cliniques universitaires Saint-Luc, Institut Roi Albert II, UCLouvain, Brussels, Belgium
| | - Alain Hendlisz
- Service d'Oncologie Digestive, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Francesco Sclafani
- Service d'Oncologie Digestive, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
22
|
Lan M, Ren Z, Cheng C, Li G, Yang F. Small extracellular vesicles detection using dielectrophoresis-based microfluidic chip for diagnosis of breast cancer. Biosens Bioelectron 2024; 259:116382. [PMID: 38749284 DOI: 10.1016/j.bios.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/22/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Small extracellular vesicles (sEVs) reflect the genotype and phenotype of original cells and are biomarkers for early diagnosis and treatment monitoring of tumors. Yet, their small size and low density make them difficult to isolate and detect in body fluid samples. This study proposes a novel acDEP-Exo chip filled with transparent micro-beads, which formed a non-uniform electrical field, and finally achieved rapid, sensitive, and tunable sEVs capture and detection. The method requires only 20-50 μL of sample, achieved a limit of detection (LOD) of 161 particles/μL, and can detect biomarkers within 13 min. We applied the chip to analyze the two markers of sEV's EpCAM and MUC1 in clinical plasma samples from breast cancer (BC) patients and healthy volunteers and found that the combined evaluation of sEV's biomarkers has extremely high sensitivity, specificity and accuracy. The present study introduces an alternative approach to sEVs isolation and detection, has a great potential in real-time sEVs-based liquid biopsy.
Collapse
Affiliation(s)
- Mei Lan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Cheng Cheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
23
|
Marinello A, Tagliamento M, Pagliaro A, Conci N, Cella E, Vasseur D, Remon J, Levy A, Dall'Olio FG, Besse B. Circulating tumor DNA to guide diagnosis and treatment of localized and locally advanced non-small cell lung cancer. Cancer Treat Rev 2024; 129:102791. [PMID: 38963991 DOI: 10.1016/j.ctrv.2024.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Liquid biopsy is a minimally invasive method for biomarkers detection in body fluids, particularly in blood, which offers an elevated and growing number of clinical applications in oncology. As a result of the improvement in the techniques for DNA analysis, above all next-generation sequencing (NGS) assays, circulating tumor DNA (ctDNA) has become the most informing tumor-derived material for most types of cancer, including non-small cell lung cancer (NSCLC). Although ctDNA concentration is higher in patients with advanced tumors, it can be detected even in patients with early-stage disease. Therefore, numerous clinical applications of ctDNA in the management of early-stage lung cancer are emerging, such as lung cancer screening, the identification of minimal residual disease (MRD), and the prediction of relapse before radiologic progression. Moreover, a high number of clinical trials are ongoing to better define the impact of ctDNA evaluation in this setting. Aim of this review is to offer a comprehensive overview of the most relevant implementations in using ctDNA for the management of early-stage lung cancer, addressing available data, technical aspects, limitations, and future perspectives.
Collapse
Affiliation(s)
- Arianna Marinello
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; INSERM Unit 1030 - Molecular Radiotherapy and Therapeutic Innovation, Gustave Roussy, Villejuif, France
| | - Marco Tagliamento
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy.
| | - Arianna Pagliaro
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Department of Medical Oncology, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | - Nicole Conci
- Department of Medical Oncology, IRCCS Sant'Orsola-Malpighi, Bologna, Italy
| | - Eugenia Cella
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy
| | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Antonin Levy
- Department of Radiotherapy, Gustave Roussy, Villejuif, France
| | | | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| |
Collapse
|
24
|
Park W, Gwack J, Park J. Implementing Massive Parallel Sequencing into Biliary Samples Obtained through Endoscopic Retrograde Cholangiopancreatography for Diagnosing Malignant Bile Duct Strictures. Int J Mol Sci 2024; 25:9461. [PMID: 39273408 PMCID: PMC11395203 DOI: 10.3390/ijms25179461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Despite advancements in radiologic, laboratory, and pathological evaluations, differentiating between benign and malignant bile duct strictures remains a diagnostic challenge. Recent developments in massive parallel sequencing (MPS) have introduced new opportunities for early cancer detection and management, but these techniques have not yet been rigorously applied to biliary samples. We prospectively evaluated the Oncomine Comprehensive Assay (OCA) and the Oncomine Pan-Cancer Cell-Free Assay (OPCCFA) using biliary brush cytology and bile fluid obtained via endoscopic retrograde cholangiopancreatography from patients with bile duct strictures. The diagnostic performance of MPS testing was assessed and compared to the pathological findings of biliary brush cytology and primary tissue. Mutations in TP53, BRAF, CTNNB1, SMAD4, and K-/N-RAS identified in biliary brush cytology samples were also detected in the corresponding bile fluid samples from patients with extrahepatic cholangiocarcinoma. These mutations were also identified in the bile fluid samples, but with variant allele frequencies lower than those in the corresponding biliary brush cytology samples. In control patients diagnosed with gallstones, neither the biliary brush cytology samples nor the bile fluid samples showed any pathogenic mutations classified as tier 1 or 2. Our study represents a prospective investigation into the role of MPS-based molecular testing in evaluating bile duct strictures. MPS-based molecular testing shows promise in identifying actionable genomic alterations, potentially enabling the stratification of patients for targeted chemotherapeutic treatments. Future research should focus on integrating OCA and OPCCFA testing, as well as similar MPS-based assays, into existing surveillance and management protocols for patients with bile duct strictures.
Collapse
Affiliation(s)
- Wonsuk Park
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
25
|
Pu W, Chen F, Tang Y, Qu Y, Han Y, Zha J, Jin J, Kong F. Potential value of detection of minimal residual disease in colorectal cancer following radical resection. Chin J Cancer Res 2024; 36:442-454. [PMID: 39246709 PMCID: PMC11377885 DOI: 10.21147/j.issn.1000-9604.2024.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Although there has been significant advancement in the identification and management of colorectal cancer (CRC) in recent years, there is still room for improvement in the current standard treatment regimen. One area of concern is the lack of reliable tumor markers to predict treatment efficacy and guide tailored care. Due to its dynamic, effective, and non-invasive benefits over tissue biopsy, the detection of minimal or molecular residual lesions (MRD) based on circulating tumor DNA (ctDNA) is beneficial to the clinical development of drugs for patients with CRC after radical treatment, as well as for continuous monitoring of tumor recurrence and malignancy molecular gene evolution. The detection of ctDNA can currently be used to guide individual postoperative auxiliary treatment decisions (upgrade or downgrade treatment) in CRC, stratify the risk of clinical recurrence more precisely, and predict the risk of recurrence in advance of imaging examination, according to a large number of observational or prospective clinical studies. With increasing clarity comes the possibility of selecting a regimen of treatment based on postoperative ctDNA, which also improves the accuracy of clinical recurrence risk assessment for CRC. Therefore, it is anticipated that the identification of ctDNA would alter the current framework for dealing with CRC and lead to individualized, stratified precision therapy; however, additional confirmation will require subsequent high-quality, prospective, large-scale randomized controlled studies. This article will provide an overview of the definition and clinical significance of MRD, the primary indications and technological challenges for MRD detection, along with the advancement in clinical research about ctDNA detection following radical resection of the CRC.
Collapse
Affiliation(s)
- Wenji Pu
- Medical Department of Shenzhen University/General Hospital of Shenzhen University/Academy of Clinical Medicine of Shenzhen University, Shenzhen 518055, China
- Department of Clinical Oncology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Radiotherapy, National Cancer Center/National Cancer Clinical Medical Research Center/Shenzhen Hospital, Cancer Hospital of Peking Union Medical College, Chinese Academy of Medical Sciences, Shenzhen 518116, China
| | - Fang Chen
- Department of Clinical Oncology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yuan Tang
- Department of Radiotherapy, National Cancer Center/National Cancer Clinical Medical Research Center/Shenzhen Hospital, Cancer Hospital of Peking Union Medical College, Chinese Academy of Medical Sciences, Shenzhen 518116, China
| | - Yanling Qu
- Department of Clinical Oncology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yunzhu Han
- Department of Clinical Oncology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Jiandong Zha
- Department of Clinical Oncology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Jing Jin
- Department of Radiotherapy, National Cancer Center/National Cancer Clinical Medical Research Center/Shenzhen Hospital, Cancer Hospital of Peking Union Medical College, Chinese Academy of Medical Sciences, Shenzhen 518116, China
| | - Fengming Kong
- Department of Clinical Oncology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
26
|
Dadam MN, Hien LT, Makram EM, Sieu LV, Morad A, Khalil N, Tran L, Makram AM, Huy NT. Role of cell-free DNA levels in the diagnosis and prognosis of sepsis and bacteremia: A systematic review and meta-analysis. PLoS One 2024; 19:e0305895. [PMID: 39208340 PMCID: PMC11361684 DOI: 10.1371/journal.pone.0305895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sepsis remains a major cause of mortality in intensive care units (ICUs). Prompt diagnosis and effective management are imperative for better outcomes. In this systematic review and meta-analysis, we explore the potential of circulating cell-free DNA (cfDNA), as a promising tool for early sepsis detection and prognosis assessment, aiming to address limitations associated with traditional diagnostic methods. METHODS Following PRISMA guidelines, we collected relevant literature from thirteen databases. Studies were included if they analyzed quantitative diagnostic or prognostic cfDNA levels in humans in case of sepsis. We collected data on basic study characteristics, baseline patient demographics (e.g. age and sex), and cfDNA levels across different stages of sepsis. Pooled SMD with 95%-CI was calculated, and Comprehensive Meta-Analysis (CMA) software facilitated meta-analysis. Receiver operating characteristic (ROC) curves were generated to assess cfDNA's combined sensitivity and specificity in diagnostics and prognostics. RESULTS We included a final of 44 studies, of which, only 32 with 2950 participants were included in the meta-analysis. cfDNA levels were higher in septic patients compared to healthy controls (SMD = 3.303; 95%-CI [2.461-4.145], p<0.01). Furthermore, cfDNA levels were higher in non-survivors than survivors (SMD = 1.554; 95%-CI [0.905-2.202], p<0.01). Prognostic studies demonstrated a pooled sensitivity and specificity of 0.78, while diagnostic studies showed a sensitivity of 0.81 and a specificity of 0.87. CONCLUSION These findings show that cfDNA levels are significantly higher in sepsis patients compared to control groups and non-survivors in comparison to survivors among both adult and pediatric populations.
Collapse
Affiliation(s)
- Mohammad Najm Dadam
- Department of Geriatrics, Helios Clinic Schwelm, Schwelm, Germany
- Online Research Club, Nagasaki, Japan
| | - Le Thanh Hien
- Online Research Club, Nagasaki, Japan
- Department of Obstetrics and Gynecology, Ho Chi Minh City Medicine and Pharmacy University, Ho Chi Minh City, Vietnam
| | - Engy M. Makram
- Online Research Club, Nagasaki, Japan
- College of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Lam Vinh Sieu
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Moscow State University of Medicine and Dentistry Named After A.I. Yevdokimov, Moscow, Russia
| | - Ahmad Morad
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nada Khalil
- Online Research Club, Nagasaki, Japan
- School of Medicine, New Giza University, Giza, Egypt
| | - Linh Tran
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Abdelrahman M. Makram
- Online Research Club, Nagasaki, Japan
- School of Public Health, Imperial College London, London, United Kingdom
| | - Nguyen Tien Huy
- Online Research Club, Nagasaki, Japan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
27
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
28
|
Jiang H. Latest Research Progress of Liquid Biopsy in Tumor-A Narrative Review. Cancer Manag Res 2024; 16:1031-1042. [PMID: 39165347 PMCID: PMC11335005 DOI: 10.2147/cmar.s479338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Human life expectancy is significantly impacted by cancer, with liquid biopsy emerging as an advantageous method for cancer detection because of its noninvasive nature, high accuracy, ease of sampling, and cost-effectiveness compared with conventional tissue biopsy techniques. Liquid biopsy shows promise in early cancer detection, real-time monitoring, and personalized treatment for various cancers, including lung, cervical, and prostate cancers, and offers innovative approaches for cancer diagnosis and management. By utilizing circulating tumor DNA, circulating tumor cells, and exosomes as biomarkers, liquid biopsy enables the tracking of cancer progression. Various techniques commonly used in life sciences research, such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and droplet digital PCR, are employed to assess cancer progression on the basis of different indicators. This review examines the latest advancements in liquid biopsy markers-circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes-for cancer diagnosis over the past three years, with a focus on their detection methodologies and clinical applications. It encapsulates the pivotal aims of liquid biopsy, including early detection, therapy response prediction, treatment monitoring, prognostication, and its relevance in minimal residual disease, while also addressing the challenges facing routine clinical adoption. By combining the latest research advancements and practical clinical experiences, this work focuses on discussing the clinical significance of DNA methylation biomarkers and their applications in tumor screening, auxiliary diagnosis, companion diagnosis, and recurrence monitoring. These discussions may help enhance the application of liquid biopsy throughout the entire process of tumor diagnosis and treatment, thereby providing patients with more precise and effective treatment plans.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, The Fifth Affiliated Hospital of Zunyi Medical University (Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| |
Collapse
|
29
|
Ashouri K, Wong A, Mittal P, Torres-Gonzalez L, Lo JH, Soni S, Algaze S, Khoukaz T, Zhang W, Yang Y, Millstein J, Lenz HJ, Battaglin F. Exploring Predictive and Prognostic Biomarkers in Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:2796. [PMID: 39199569 PMCID: PMC11353018 DOI: 10.3390/cancers16162796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors have significantly improved patient outcomes, their effectiveness is mostly limited to tumors with microsatellite instability (MSI-H/dMMR) or an increased tumor mutational burden, which comprise 10% of cases. Advancing personalized medicine in CRC hinges on identifying predictive biomarkers to guide treatment decisions. This comprehensive review examines established tissue markers such as KRAS and HER2, highlighting their roles in resistance to anti-EGFR agents and discussing advances in targeted therapies for these markers. Additionally, this review summarizes encouraging data on promising therapeutic targets and highlights the clinical utility of liquid biopsies. By synthesizing current evidence and identifying knowledge gaps, this review provides clinicians and researchers with a contemporary understanding of the biomarker landscape in CRC. Finally, the review examines future directions and challenges in translating promising biomarkers into clinical practice, with the goal of enhancing personalized medicine approaches for colorectal cancer patients.
Collapse
Affiliation(s)
- Karam Ashouri
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Alexandra Wong
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Pooja Mittal
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Lesly Torres-Gonzalez
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Sandra Algaze
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Taline Khoukaz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Yan Yang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| |
Collapse
|
30
|
Al-Ruwishan A, Amer B, Salem A, Abdi A, Chimpandu N, Esa A, Melemenis A, Saleem MZ, Mathew R, Gamallat Y. Advancements in Understanding the Hide-and-Seek Strategy of Hibernating Breast Cancer Cells and Their Implications in Oncology from a Broader Perspective: A Comprehensive Overview. Curr Issues Mol Biol 2024; 46:8340-8367. [PMID: 39194709 DOI: 10.3390/cimb46080492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Despite recent advancements in technology, breast cancer still poses a significant threat, often resulting in fatal consequences. While early detection and treatments have shown some promise, many breast cancer patients continue to struggle with the persistent fear of the disease returning. This fear is valid, as breast cancer cells can lay dormant for years before remerging, evading traditional treatments like a game of hide and seek. The biology of these dormant breast cancer cells presents a crucial yet poorly understood challenge in clinical settings. In this review, we aim to explore the mysterious world of dormant breast cancer cells and their significant impact on patient outcomes and prognosis. We shed light on the elusive role of the G9a enzyme and many other epigenetic factors in breast cancer recurrence, highlighting its potential as a target for eliminating dormant cancer cells and preventing disease relapse. Through this comprehensive review, we not only emphasise the urgency of unravelling the dynamics of dormant breast cancer cells to improve patient outcomes and advance personalised oncology but also provide a guide for fellow researchers. By clearly outlining the clinical and research gaps surrounding dormant breast cancer cells from a molecular perspective, we aim to inspire further exploration of this critical area, ultimately leading to improved patient care and treatment strategies.
Collapse
Affiliation(s)
- Aiman Al-Ruwishan
- Space for Research Initiative, Research Horizons, London NW10 2PU, UK
| | - Bushra Amer
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ahmed Salem
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Ahmed Abdi
- Independent Researcher, Uxbridge UB9 6JH, UK
| | | | | | | | - Muhammad Zubair Saleem
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Roselit Mathew
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yaser Gamallat
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
31
|
Ratti M, Orlandi E, Toscani I, Vecchia S, Anselmi E, Hahne JC, Ghidini M, Citterio C. Emerging Therapeutic Targets and Future Directions in Advanced Gastric Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:2692. [PMID: 39123420 PMCID: PMC11311890 DOI: 10.3390/cancers16152692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Metastatic gastric cancer (GC) still represents a critical clinical challenge, with limited treatment options and a poor prognosis. Most patients are diagnosed at advanced stages, limiting the chances of surgery and cure. The identification of molecular targets and the possibility of combining immune checkpoint inhibitors with chemotherapy have recently reshaped the therapeutic landscape of metastatic gastric cancer. The new classification of gastric cancer, mainly based on immunologic and molecular criteria such as programmed cell death 1 (PD-1), microsatellite instability (MSI), and human epidermal growth factor receptor 2 (HER2), has made it possible to identify and differentiate patients who may benefit from immunotherapy, targeted therapy, or chemotherapy alone. All relevant and available molecular and immunological targets in clinical practice for the systemic treatment of this disease are presented. Particular attention is given to possible future approaches, including circulating tumor DNA (ctDNA) for therapeutic monitoring, new targeting agents against molecular pathways such as fibroblast growth factor receptor (FGFR) and MET, chimeric antigen receptor (CAR)-T cells, and cancer vaccines. This review aims to provide a comprehensive understanding of current targets in advanced gastric cancer and to offer valuable insights into future directions of research and clinical practice in this challenging disease.
Collapse
Affiliation(s)
- Margherita Ratti
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Elena Orlandi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Ilaria Toscani
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Stefano Vecchia
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Elisa Anselmi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, London SM2 5NG, UK;
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Chiara Citterio
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| |
Collapse
|
32
|
Raei M, Heydari K, Tabarestani M, Razavi A, Mirshafiei F, Esmaeily F, Taheri M, Hoseini A, Nazari H, Shamshirian D, Alizadeh-Navaei R. Diagnostic accuracy of ESR1 mutation detection by cell-free DNA in breast cancer: a systematic review and meta-analysis of diagnostic test accuracy. BMC Cancer 2024; 24:908. [PMID: 39069608 DOI: 10.1186/s12885-024-12674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Estrogen receptors express in nearly 70% of breast cancers (ER-positive). Estrogen receptor alpha plays a fundamental role as a significant factor in breast cancer progression for the early selection of therapeutic approaches. Accordingly, there has been a surge of attention to non-invasive techniques, including circulating Cell-free DNA (ccfDNA) or Cell-Free DNA (cfDNA), to detect and track ESR1 genotype. Therefore, this study aimed to examine the diagnosis accuracy of ESR1 mutation detection by cell-free DNA in breast cancer patientsthrough a systematic review and comprehensive meta-analysis. METHODS PubMed, Embase, and Web of Science databases were searched up to 6 April 2022. Diagnostic studies on ESR1 measurement by cfDNA, which was confirmed using the tumour tissue biopsy, have been included in the study. The sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were considered to analyse the data. RESULTS Out of 649 papers, 13 papers with 15 cohorts, including 389 participants, entered the meta-analyses. The comprehensive meta-analysis indicated a high sensitivity (75.52, 95% CI 60.19-90.85), specificity (88.20, 95% CI 80.99-95.40), and high accuracy of 88.96 (95% CI 83.23-94.69) for plasma ESR1. We also found a moderate PPV of 56.94 (95% CI 41.70-72.18) but a high NPV of 88.53 (95% CI 82.61-94.44). We also found an NLR of 0.443 (95% CI 0.09-0.79) and PLR of 1.60 (95% CI 1.20-1.99). CONCLUSION This systematic review and comprehensive meta-analysis reveal that plasma cfDNA testing exhibits high sensitivity and specificity in detecting ESR1 mutations in breast cancer patients. This suggests that the test could be a valuable diagnostic tool. It may serve as a dependable and non-invasive technique for identifying ESR1 mutations in breast cancer patients. However, more extensive research is needed to confirm its prognostic value.
Collapse
Affiliation(s)
- Maedeh Raei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Moallem Sq, Sari, Sari, 44817844718, Iran
| | - Keyvan Heydari
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Moallem Sq, Sari, Sari, 44817844718, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Tabarestani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Razavi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Mirshafiei
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Esmaeily
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Taheri
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Moallem Sq, Sari, Sari, 44817844718, Iran.
| |
Collapse
|
33
|
Rathor A, Malik PS, Tanwar P, Khurana S, Baskarane H, Pushpam D, Nambirajan A, Jain D. 'Plasma first' approach for detecting epidermal growth factor receptor mutation in advanced non-small cell lung carcinoma. J Cancer Res Clin Oncol 2024; 150:371. [PMID: 39066920 PMCID: PMC11283418 DOI: 10.1007/s00432-024-05828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The treatment approach for recently diagnosed advanced non-small cell lung cancer (NSCLC) with EGFR mutations primarily relies on confirming the tissue diagnosis as non-squamous NSCLC. This routine clinical practice of tissue diagnosis imposes several barriers and delays in turnaround time (TAT) for biomarker testing, significantly delaying the time to treatment. The objective of this study is to investigate the 'plasma first' approach for detection of EGFR mutation in advanced stage treatment naïve NSCLC patients. METHODS We prospectively collected blood samples of treatment naïve patients with clinical and radiological suspicion of advanced stage NSCLC prior to obtaining tissue biopsy. Plasma cfDNA was tested for EGFR mutation using two different methods. We compared the sensitivity and TAT of liquid biopsy with tissue biopsy. RESULTS In total, we analyzed plasma cell-free DNA (cfDNA) of 236 patients suspected of having advanced NSCLC for EGFR mutations. We observed a notably shorter turnaround time (TAT) of 3 days, which was significantly quicker compared to the 12-day TAT for tissue biopsy (p < 0.05). The ddPCR method had a sensitivity of 82.8%, which was higher than 66.34% sensitivity of ARMS-PCR. The current study also highlights that there is no significant difference in the clinical outcome of the patients whether treated based on liquid biopsy only or tissue biopsy (median progression-free survival of 11.56 vs. 11.9 months; p = 0.94). CONCLUSIONS Utilizing a 'plasma first' strategy, given its shorter turnaround time, strong positive concordance and comparable outcomes to tissue biopsy, emerges as a highly specific and reliable method for detecting EGFR mutations in advanced-stage NSCLC.
Collapse
Affiliation(s)
- Amber Rathor
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Khurana
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Hemavathi Baskarane
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Deepam Pushpam
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
34
|
Liu Y, Liu J, Zhang S, Wang J, Sun Z, Sun H, Yang Y, Zheng G, Huang Y, Li M, Zhang Z, Xiao J, Zeng C, Sun C, Qu H, Fang X. A panel sequencing dataset of peripheral blood gene variations in pan-cancer. Sci Data 2024; 11:805. [PMID: 39033182 PMCID: PMC11271301 DOI: 10.1038/s41597-024-03620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Circulating cell-free DNA (cfDNA) in the peripheral blood is a promising biomarker for cancer diagnosis and prognosis. Somatic mutations identified in cancers have been used to detect therapeutic targets for clinical transformation and individualize drug selection, while germline variants can predict a patient's risk of developing cancer and drug sensitivity. However, no platform has been developed to analyze, calculate, integrate, and friendly visualize these pan-cancer cfDNA mutations deeply. In this work, we performed panel sequencing encompassing 1,115 cancer-related genes across 16,659 cancer patients, spanning 27 cancer types. We detected 496 germline variants in leukocytes and 11,232 somatic mutations in the cfDNA of all patients. CPGV (Cancer Peripheral blood Gene Variations), a database constructed from this dataset, is the first pan-cancer cfDNA database that encompasses somatic mutations, germline variants, and further comparative analyses of mutations across different cancer types. It bears great promise to serve as a valuable resource for cancer research.
Collapse
Affiliation(s)
- Yanxia Liu
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Liu
- Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Shouwei Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Jinyue Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
| | - Zhihong Sun
- Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Guangmin Zheng
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Huang
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Meng Li
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Zhaojun Zhang
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Jingfa Xiao
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changqing Zeng
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Hongzhu Qu
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| | - Xiangdong Fang
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| |
Collapse
|
35
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Yamaguchi H, Hsu JM, Sun L, Wang SC, Hung MC. Advances and prospects of biomarkers for immune checkpoint inhibitors. Cell Rep Med 2024; 5:101621. [PMID: 38906149 PMCID: PMC11293349 DOI: 10.1016/j.xcrm.2024.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Immune checkpoint inhibitors (ICIs) activate anti-cancer immunity by blocking T cell checkpoint molecules such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Although ICIs induce some durable responses in various cancer patients, they also have disadvantages, including low response rates, the potential for severe side effects, and high treatment costs. Therefore, selection of patients who can benefit from ICI treatment is critical, and identification of biomarkers is essential to improve the efficiency of ICIs. In this review, we provide updated information on established predictive biomarkers (tumor programmed death-ligand 1 [PD-L1] expression, DNA mismatch repair deficiency, microsatellite instability high, and tumor mutational burden) and potential biomarkers currently under investigation such as tumor-infiltrated and peripheral lymphocytes, gut microbiome, and signaling pathways related to DNA damage and antigen presentation. In particular, this review aims to summarize the current knowledge of biomarkers, discuss issues, and further explore future biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Graduate Institute of Cell Biology, China Medical University, Taichung City 406040, Taiwan; Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Linlin Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan.
| |
Collapse
|
37
|
Parikh AR, Chee BH, Tsai J, Rich TA, Price KS, Patel SA, Zhang L, Ibrahim F, Esquivel M, Van Seventer EE, Jarnagin JX, Raymond VM, Corvera CU, Hirose K, Nakakura EK, Corcoran RB, Van Loon K, Atreya CE. Minimal Residual Disease using a Plasma-Only Circulating Tumor DNA Assay to Predict Recurrence of Metastatic Colorectal Cancer Following Curative Intent Treatment. Clin Cancer Res 2024; 30:2964-2973. [PMID: 38695832 PMCID: PMC11247320 DOI: 10.1158/1078-0432.ccr-23-3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Minimal residual disease (MRD) detection can identify the recurrence in patients with colorectal cancer (CRC) following definitive treatment. We evaluated a plasma-only MRD assay to predict recurrence and survival in patients with metastatic CRC who underwent curative intent procedures (surgery and/or radiotherapy), with or without (neo)adjuvant chemotherapy. The primary objective of this study was to assess the correlation of postprocedure tumor cell-free DNA detection status with radiographic disease recurrence. EXPERIMENTAL DESIGN Preprocedure and postprocedure longitudinal samples were collected from 53 patients and analyzed with a multiomic MRD assay detecting circulating tumor DNA (ctDNA) from genomic and epigenomic signals. Preprocedure and postprocedure ctDNA detection correlated with recurrence-free and overall survival (OS). RESULTS From 52 patients, 230/233 samples were successfully analyzed. At the time of data cutoff, 36 (69.2%) patients recurred with median follow-up of 31 months. Detectable ctDNA was observed in 19/42 patients (45.2%) with ctDNA analyzed 3 weeks postprocedure. ctDNA detection 3 weeks postprocedure was associated with shorter median recurrence-free survival (RFS; HR, 5.27; 95% CI, 2.31-12.0; P < 0.0001) and OS (HR, 12.83; 95% CI, 3.6-45.9; P < 0.0001). Preprocedure ctDNA detection status was not associated with RFS but was associated with improved OS (HR, 4.65; 95% CI, 1.4-15.2; P = 0.0111). Undetectable ctDNA preprocedure had notable long-term OS, >90% 3 years postprocedure. CONCLUSIONS In this cohort of oligometastatic CRC, detection of ctDNA preprocedure or postprocedure was associated with inferior outcomes even after accounting for known prognostic clinicopathologic variables. This suggests ctDNA may enhance current risk stratification methods helping the evaluation of novel treatments and surveillance strategies toward improving patient outcomes.
Collapse
Affiliation(s)
- Aparna R Parikh
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Bryant H Chee
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
| | - Jill Tsai
- Guardant Health, Palo Alto, California
| | | | | | | | - Li Zhang
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Faaiz Ibrahim
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
| | - Mikaela Esquivel
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
| | - Emily E Van Seventer
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Joy X Jarnagin
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Victoria M Raymond
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Carlos U Corvera
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Kenzo Hirose
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Eric K Nakakura
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Ryan B Corcoran
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Katherine Van Loon
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Chloe E Atreya
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
38
|
He D, Cui B, Lv H, Lu S, Zhu Y, Cheng Y, Dang L, Zhang H. Blood-Derived Extracellular Vesicles as a Promising Liquid Biopsy Diagnostic Tool for Early Cancer Detection. Biomolecules 2024; 14:847. [PMID: 39062561 PMCID: PMC11275243 DOI: 10.3390/biom14070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a significant public health challenge worldwide, and timely screening has the potential to mitigate cancer progression and reduce mortality rates. Currently, early identification of most tumors relies on imaging techniques and tissue biopsies. However, the use of low-cost, highly sensitive, non-invasive detection methods for early cancer screening has become more attractive. Extracellular Vesicles (EVs) released by all living cells contain distinctive biological components, such as nucleic acids, proteins, and lipids. These vesicles play crucial roles in the tumor microenvironment and intercellular communication during tumor progression, rendering liquid biopsy a particularly suitable method for diagnosis. Nevertheless, challenges related to purification methods and validation of efficacy currently hinder its widespread clinical implementation. These limitations underscore the importance of refining isolation techniques and conducting comprehensive investigations on EVs. This study seeks to evaluate the potential of liquid biopsy utilizing blood-derived EVs as a practical, cost-effective, and secure approach for early cancer detection.
Collapse
Affiliation(s)
- Dan He
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Hongkai Lv
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Shuxian Lu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuan Zhu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuqiang Cheng
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Lin Dang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| |
Collapse
|
39
|
Matsukuma K, Nishio S, Tasaki S, Park J, Nasu H, Yoshimitsu T, Tasaki K, Katsuda T, Terada A, Tsuda N, Sanada S, Ushijima K. Association of Chemotherapy Response Score with Multidrug Resistance 1 and CA125 ELIMination Rate Constant K in Patients with Advanced Ovarian Cancer Treated with Neoadjuvant Chemotherapy. Kurume Med J 2024; 70:29-37. [PMID: 38556270 DOI: 10.2739/kurumemedj.ms7012004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
AIM The relationship between chemotherapy response score (CRS), a widely used response predictor of neoadjuvant chemotherapy-interval debulking surgery (NAC-IDS), and multidrug resistance 1 (MDR1) and CA125 ELIMination rate constant K (KELIM), is undetermined. We evaluated CRS in advanced ovarian cancer patients undergoing NAC and looked for associations between CRS and MDR1 and CA125 KELIM. Our aim was to predict the therapeutic effect of NAC before interval debulking surgery (IDS) by examining its association with CRS. METHODS This retrospective cohort study included patients who underwent NAC-IDS (first-line treatment) at Kurume University Hospital, Japan, between 2004 and 2017. CRS association with MDR1 and CA125 KELIM was examined using Cox proportional hazard regression analyses. Survival curves used Kaplan-Meier method, and survival differences between groups used log-rank test. RESULTS Overall, 55 patients were classified into CRS1 (n=22), CRS2 (n=19), and CRS3 (n=14). The CRS3 group had a significantly better prognosis than the CRS1 or CRS2 group. CRS, age, and IDS status were clinical prognostic factors for ovarian cancer. MDR1 positivity for excision repair cross-complementing group 1, β-tubulin, and Y-box binding protein-1 occurred in 15, 17, and 11 patients, respectively, but these were not associated with CRS. CA125 KELIM was <0.5 (n=8), 0.5-1.0 (n=30), and ≥ 1.0 (n=17) but not associated with CRS. CONCLUSION CRS is reconfirmed as a treatment response predictor for NAC-IDS, but its association with drug resistance factors remains unconfirmed.
Collapse
Affiliation(s)
- Ken Matsukuma
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Shingo Tasaki
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Jongmyung Park
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Hiroki Nasu
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Teruyuki Yoshimitsu
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Kazuto Tasaki
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Takahiro Katsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Atsumu Terada
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Naotake Tsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Sakiko Sanada
- Department of Pathology, Kurume University School of Medicine
| | - Kimio Ushijima
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| |
Collapse
|
40
|
Yoon SE, Shin SH, Nam DK, Cho J, Kim WS, Kim SJ. Feasibility of Circulating Tumor DNA Analysis in Patients with Follicular Lymphoma. Cancer Res Treat 2024; 56:920-935. [PMID: 38228081 PMCID: PMC11261198 DOI: 10.4143/crt.2023.869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/15/2024] [Indexed: 01/18/2024] Open
Abstract
PURPOSE The feasibility of sequencing circulating tumor DNA (ctDNA) in plasma as a biomarker to predict early relapse or poor prognosis in patients with follicular lymphoma (FL) receiving systemic immunochemotherapy is not clear. MATERIALS AND METHODS We sequenced DNA from cell-free plasma that was serially obtained from newly diagnosed FL patients undergoing systemic immunochemotherapy. The mutation profiles of ctDNA at the time of diagnosis and at response evaluation and relapse and/or progression were compared with clinical course and treatment outcomes. RESULTS Forty samples from patients receiving rituximab-containing immunochemotherapy were analyzed. Baseline sequencing detected mutations in all cases, with the major detected mutations being KMT2C (50%), CREBBP (45%), and KMT2D (45%). The concentration of ctDNA and tumor mutation burden showed a significant association with survival outcome. In particular, the presence of mutations in CREBBP and TP53 showed poor prognosis compared with patients without them. Longitudinal analysis of ctDNA using serially collected plasma samples showed an association between persistence or reappearance of ctDNA mutations and disease relapse or progression. CONCLUSION Analysis of ctDNA mutations in plasma at diagnosis might help predict outcome of disease, while analysis during follow-up may help to monitor disease status of patients with advanced FL. However, the feasibility of ctDNA measurement must be improved in order for it to become an appropriate and clinically relevant test in FL patients.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Trevisi E, Sessa C, Colombo I. Clinical relevance of circulating tumor DNA in ovarian cancer: current issues and future opportunities. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:627-640. [PMID: 38966171 PMCID: PMC11220313 DOI: 10.37349/etat.2024.00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 07/06/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. Due to the lack of effective screening and early detection strategies, many patients with OC are diagnosed with advanced disease, where treatment is rarely curative. Moreover, OC is characterized by high intratumor heterogeneity, which represents a major barrier to the development of effective treatments. Conventional tumor biopsy and blood-based biomarkers, such as cancer antigen 125 (CA125), have different limitations. Liquid biopsy has recently emerged as an attractive and promising area of investigation in oncology, due to its minimally invasive, safe, comprehensive, and real-time dynamic nature. Preliminary evidence suggests a potential role of liquid biopsy to refine OC management, by improving screening, early diagnosis, assessment of response to treatment, detection, and profiling of drug resistance. The current knowledge and the potential clinical value of liquid biopsy in OC is discussed in this review to provide an overview of the clinical settings in which its use might support and improve diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Trevisi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Cristiana Sessa
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Ilaria Colombo
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| |
Collapse
|
42
|
Heydari Z, Moeinvaziri F, Mirazimi SMA, Dashti F, Smirnova O, Shpichka A, Mirzaei H, Timashev P, Vosough M. Alteration in DNA methylation patterns: Epigenetic signatures in gastrointestinal cancers. Eur J Pharmacol 2024; 973:176563. [PMID: 38593929 DOI: 10.1016/j.ejphar.2024.176563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Abnormalities in epigenetic modifications can cause malignant transformations in cells, leading to cancers of the gastrointestinal (GI) tract, which accounts for 20% of all cancers worldwide. Among the epigenetic alterations, DNA hypomethylation is associated with genomic instability. In addition, CpG methylation and promoter hypermethylation have been recognized as biomarkers for different malignancies. In GI cancers, epigenetic alterations affect genes responsible for cell cycle control, DNA repair, apoptosis, and tumorigenic-specific signaling pathways. Understanding the pattern of alterations in DNA methylation in GI cancers could help scientists discover new molecular-based pharmaceutical treatments. This study highlights alterations in DNA methylation in GI cancers. Understanding epigenetic differences among GI cancers may improve targeted therapies and lead to the discovery of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Zahra Heydari
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Farideh Moeinvaziri
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Kashan University of Medical Sciences, Kashan, Iran
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
43
|
Li X, Li X, Zhang K, Guan Y, Fan M, Wu Q, Li Y, Holmdahl R, Lu S, Zhu W, Wang X, Meng L. Autoantibodies against Endophilin A2 as a novel biomarker are beneficial to early diagnosis of breast cancer. Clin Chim Acta 2024; 560:119748. [PMID: 38796051 DOI: 10.1016/j.cca.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Due to the lack of early symptoms, breast cancer is frequently overlooked, leading to distant metastases and multi-organ lesions that directly threaten patients' lives. We have identified a novel tumor marker, antibodies to endophilin A2 (EA2), to improve early diagnosis of breast cancer. METHODS Antibody levels of EA2 were analyzed in sera of patients with cancers of different origins and stages by indirect enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and reference range were determined by the area under the receiver operating curve and distribution curve. The levels of EA2 antigen in sera were determined by sandwich ELISA. RESULTS The levels of antibodies against EA2 were higher in sera of patients with breast cancer (P < 0.0001), liver cancer (P = 0.0005), gastric cancer (P = 0.0026), and colon cancer (P = 0.0349) than those in healthy controls, but not in patients with rectal cancer (P = 0.1151), leukemia (P = 0.7508), or lung cancer (P = 0.2247). The highest diagnostic value was for breast cancer, particularly in early cases (AUC = 0.8014) and those with distant metastases (AUC = 0.7885). The titers of EA2 antibodies in sera were correlated with levels of EA2 antigen in breast cancer patients. CONCLUSION Antibodies to EA2 are novel blood biomarkers for early diagnosis of breast cancer that warrants further study in larger-scale cohort studies.
Collapse
Affiliation(s)
- Xiaomeng Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaowei Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kaige Zhang
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan 453003, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanglong Guan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Qian Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Li
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rikard Holmdahl
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Wenhua Zhu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Xiaoqin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Liesu Meng
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| |
Collapse
|
44
|
Klocker EV, Hasenleithner S, Bartsch R, Gampenrieder SP, Egle D, Singer CF, Rinnerthaler G, Hubalek M, Schmitz K, Bago-Horvath Z, Petzer A, Heibl S, Heitzer E, Balic M, Gnant M. Clinical applications of next-generation sequencing-based ctDNA analyses in breast cancer: defining treatment targets and dynamic changes during disease progression. Mol Oncol 2024. [PMID: 38867388 DOI: 10.1002/1878-0261.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
The advancements in the detection and characterization of circulating tumor DNA (ctDNA) have revolutionized precision medicine and are likely to transform standard clinical practice. The non-invasive nature of this approach allows for molecular profiling of the entire tumor entity, while also enabling real-time monitoring of the effectiveness of cancer therapies as well as the identification of resistance mechanisms to guide targeted therapy. Although the field of ctDNA studies offers a wide range of applications, including in early disease, in this review we mainly focus on the role of ctDNA in the dynamic molecular characterization of unresectable locally advanced and metastatic BC (mBC). Here, we provide clinical practice guidance for the rapidly evolving field of molecular profiling of mBC, outlining the current landscape of liquid biopsy applications and how to choose the right ctDNA assay. Additionally, we underline the importance of exploring the clinical relevance of novel molecular alterations that potentially represent therapeutic targets in mBC, along with mutations where targeted therapy is already approved. Finally, we present a potential roadmap for integrating ctDNA analysis into clinical practice.
Collapse
Affiliation(s)
- Eva Valentina Klocker
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Simon P Gampenrieder
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Austria
| | - Christian F Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Austria
| | - Gabriel Rinnerthaler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Michael Hubalek
- Department of Gynecology, Breast Health Center Schwaz, Austria
| | - Katja Schmitz
- Institute of Pathology, University Medical Center Göttingen, Germany
- Tyrolpath Obrist Brunhuber GmbH and Krankenhaus St. Vinzenz, Zams, Austria
| | | | - Andreas Petzer
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Barmherzige Schwestern, Elisabethinen, Ordensklinikum Linz GmbH, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen GmbH, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Christian Doppler Laboratory for Liquid Biopsies for early Detection of Cancer, Medical University of Graz, Austria
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
- Division of Hematology and Medical Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
45
|
Hao MJ, Cheng ZY, Gao Y, Xin L, Yu CT, Wang TL, Li ZS, Wang LW. Liquid biopsy of oesophageal squamous cell carcinoma: implications in diagnosis, prognosis, and treatment monitoring. Scand J Gastroenterol 2024; 59:698-709. [PMID: 38466190 DOI: 10.1080/00365521.2024.2310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/20/2024] [Indexed: 03/12/2024]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a common malignant tumour of the gastrointestinal tract. Early detection and access to appropriate treatment are crucial for the long-term survival of patients. However, limited diagnostic and monitoring methods are available for identifying early stage ESCC. Endoscopic screening and surgical resection are commonly used to diagnose and treat early ESCC. However, these methods have disadvantages, such as high recurrence, lethality, and mortality rates. Therefore, methods to improve early diagnosis of ESCC and reduce its mortality rate are urgently required. In 1961, Gary et al. proposed a novel liquid biopsy approach for clinical diagnosis. This involved examining exosomes, circulating tumour cells, circulating free DNA, and circulating free RNA in body fluids. The ability of liquid biopsy to obtain samples repeatedly, wide detection range, and fast detection speed make it a feasible option for non-invasive tumour detection. In clinical practice, liquid biopsy technology has gained popularity for early screening, diagnosis, treatment efficacy monitoring, and prognosis assessment. Thus, this is a highly promising examination method. However, there have been no comprehensive reviews on the four factors of liquid biopsy in the context of ESCC. This review aimed to analyse the progress of liquid biopsy research for ESCC, including its classification, components, and potential future applications.
Collapse
Affiliation(s)
- Mei-Juan Hao
- University of Shanghai for Science and Technology, Shanghai, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Anaesthesia and Surgery, Guiyang Fourth People's Hospital, Guiyang, China
| | - Zhi-Yuan Cheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Xin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chu-Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ting-Lu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Luo-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
46
|
Kudriavtsev A, Pastor B, Mirandola A, Pisareva E, Gricourt Y, Capdevila X, Thierry AR, Cuvillon P. Association of the immediate perioperative dynamics of circulating DNA levels and neutrophil extracellular traps formation in cancer patients. PRECISION CLINICAL MEDICINE 2024; 7:pbae008. [PMID: 38699382 PMCID: PMC11062027 DOI: 10.1093/pcmedi/pbae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives Elevated circulating DNA (cirDNA) concentrations were found to be associated with trauma or tissue damage which suggests involvement of inflammation or cell death in post-operative cirDNA release. We carried out the first prospective, multicenter study of the dynamics of cirDNA and neutrophil extracellular trap (NETs) markers during the perioperative period from 24 h before surgery up to 72 h after curative surgery in cancer patients. Methods We examined the plasma levels of two NETs protein markers [myeloperoxidase (MPO) and neutrophil elastase (NE)], as well as levels of cirDNA of nuclear (cir-nDNA) and mitochondrial (cir-mtDNA) origin in 29 colon, prostate, and breast cancer patients and in 114 healthy individuals (HI). Results The synergistic analytical information provided by these markers revealed that: (i) NETs formation contributes to post-surgery conditions; (ii) post-surgery cir-nDNA levels were highly associated with NE and MPO in colon cancer [r = 0.60 (P < 0.001) and r = 0.53 (P < 0.01), respectively], but not in prostate and breast cancer; (iii) each tumor type shows a specific pattern of cir-nDNA and NETs marker dynamics, but overall the pre- and post-surgery median values of cir-nDNA, NE, and MPO were significantly higher in cancer patients than in HI. Conclusion Taken as a whole, our work reveals the association of NETs formation with the elevated cir-nDNA release during a cancer patient's perioperative period, depending on surgical procedure or cancer type. By contrast, cir-mtDNA is poorly associated with NETs formation in the studied perioperative period, which would appear to indicate a different mechanism of release or suggest mitochondrial dysfunction.
Collapse
Affiliation(s)
- Andrei Kudriavtsev
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Brice Pastor
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Alexia Mirandola
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Ekaterina Pisareva
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Yann Gricourt
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| | - Xavier Capdevila
- Division of Anaesthesia Intensive Care, Pain and Emergency Medicine, Montpellier University Hospital, Montpellier 34090, France
- Montpellier NeuroSciences Institute, INSERM U1298, University of Montpellier, Montpellier 34295, France
| | - Alain R Thierry
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Philippe Cuvillon
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| |
Collapse
|
47
|
Santos L, Moreira JN, Abrunhosa A, Gomes C. Brain metastasis: An insight into novel molecular targets for theranostic approaches. Crit Rev Oncol Hematol 2024; 198:104377. [PMID: 38710296 DOI: 10.1016/j.critrevonc.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.
Collapse
Affiliation(s)
- Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal
| | - João Nuno Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal
| | - Antero Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal
| | - Célia Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-075, Portugal.
| |
Collapse
|
48
|
Hassan F, Wang JH, O'Leary DP, Corrigan M, Redmond HP. Association of preoperative and postoperative circulating tumour DNA (ctDNA) with PIK3CA gene mutation with risk of recurrence in patients with non-metastatic breast cancer. Surg Oncol 2024; 54:102060. [PMID: 38603927 DOI: 10.1016/j.suronc.2024.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Circulating tumour DNA (ctDNA), contains tumour-specific gene mutation in blood circulation and could aid in postoperative risk stratification of non-metastatic breast cancer. In this study, we investigated the feasibility of detecting PIK3CA gene mutations in ctDNA in the preoperative (preop) and postoperative period (postop), and its prognostic significance in patients with breast cancer. METHODS A cohort of patients with breast cancer undergoing curative surgery with available blood samples preoperatively and postoperatively (Post op) at either Post op time period; week 1-2, week 3-4 or weeks 5-12 were enrolled. PIK3CA gene mutations at exons 9 and 20 were detected in ctDNA with High resolution melting (HRM) PCR and Allele specific fluorescence probe-based PCR. RESULTS A total of 62 patients (age, median (IQR), 51.50 (45.0-65.0) years), with a median follow-up of 90 months (interquartile range (IQR),60-120 months) were enrolled. In total, 25 (40.3%) and 22 (35%) patients with breast cancer had detectable PIK3CA gene mutations in ctDNA in preoperative and postoperative period, respectively. PIK3CA gene mutations in ctDNA in postoperative period (hazard ratio (H.R: 18.05, p = 0.001) were a negative prognostic factor for recurrencefree survival (RFS) and overall survival (OS) (H.R: 11.9, p = 0.01) in patients with breast cancer. Subgroup analysis of ctDNA indicate that positive ctDNA in both preoperative/postoperative period and post op period only were found to have prognostic effect on RFS and OS (RFS; p < 0.0001, O·S; p = 0.0007). Moreover, ctDNA-based detection preceded clinical detection of recurrence in patients with an average lead time of 12 months (IQR:20-28.5 months) across all the breast cancer subtypes. CONCLUSION We highlighted the prognostic ability of ctDNA in patients with breast cancer in perioperative period. However, future prospective studies are needed to assess the utility of ctDNA in clinical practice.
Collapse
Affiliation(s)
- Fara Hassan
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland; SURGUVANT Research Lab, University College Cork, Cork, Ireland.
| | - Jiang Huai Wang
- SURGUVANT Research Lab, University College Cork, Cork, Ireland
| | | | - Mark Corrigan
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland; SURGUVANT Research Lab, University College Cork, Cork, Ireland; Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Henry Paul Redmond
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland; SURGUVANT Research Lab, University College Cork, Cork, Ireland
| |
Collapse
|
49
|
Peruhova M, Banova-Chakarova S, Miteva DG, Velikova T. Genetic screening of liver cancer: State of the art. World J Hepatol 2024; 16:716-730. [PMID: 38818292 PMCID: PMC11135278 DOI: 10.4254/wjh.v16.i5.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, remains a global health challenge with rising incidence and limited therapeutic options. Genetic factors play a pivotal role in the development and progression of liver cancer. This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer. We discuss the genetic underpinnings of liver cancer, emphasizing the critical role of risk-associated genetic variants, somatic mutations, and epigenetic alterations. We also explore the intricate interplay between environmental factors and genetics, highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy, and advancements in high-throughput sequencing technologies. By synthesizing the latest research findings, we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer, shedding light on their potential to revolutionize early detection, risk assessment, and targeted therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria
| | - Sonya Banova-Chakarova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria.
| | - Dimitrina Georgieva Miteva
- Department of Genetics, Faculty of Biology, Sofia University" St. Kliment Ohridski, Sofia 1164, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
50
|
Tanemura M, Furukawa K, Mikamori M, Asaoka T, Yasuoka H, Marukawa D, Urata Y, Yamada D, Kobayashi S, Eguchi H. Clinical impact of high-quality testing for peritoneal lavage cytology in pancreatic cancer. Sci Rep 2024; 14:10199. [PMID: 38702437 PMCID: PMC11068862 DOI: 10.1038/s41598-024-60936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC) patients, the importance of peritoneal lavage cytology, which indicates unresectability, remains controversial. This study sought to determine whether positive peritoneal lavage cytology (CY+) precludes pancreatectomy. Furthermore, we propose a novel liquid biopsy using peritoneal lavage fluid to detect viable peritoneal tumor cells (v-PTCs) with TelomeScan F35, a telomerase-specific replication-selective adenovirus engineered to express green fluorescent protein. Resectable cytologically or histologically proven PDAC patients (n = 53) were enrolled. CY was conducted immediately following laparotomy. The resulting fluid was examined by conventional cytology (conv-CY; Papanicolaou staining and MOC-31 immunostaining) and by the novel technique (Telo-CY; using TelomeScan F35). Of them, 5 and 12 were conv-CY+ and Telo-CY+, respectively. All underwent pancreatectomy. The two double-CY+ (conv-CY+ and Telo-CY+) patients showed early peritoneal recurrence (P-rec) postoperatively, despite adjuvant chemotherapy. None of the three conv-CY+ Telo-CY- patients exhibited P-rec. Six of the 10 Telo-CY+ conv-CY- patients (60%) relapsed with P-rec. Of the remaining 38 double-CY- [conv-CY-, Telo-CY-, conv-CY± (Class III)] patients, 3 (8.3%) exhibited P-rec. Although conv-CY+ status predicted poor prognosis and a higher risk of P-rec, Telo-CY was more sensitive for detecting v-PTC. Staging laparoscopy and performing conv-CY and Telo-CY are needed to confirm the indication for pancreatectomy.
Collapse
Affiliation(s)
- Masahiro Tanemura
- Department of Surgery, Rinku General Medical Center, 2-23 Rinku Orai-kita, Izumisano, Osaka, 598-8577, Japan.
| | - Kenta Furukawa
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Manabu Mikamori
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Hironao Yasuoka
- Department of Pathology, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Daiki Marukawa
- Department of Surgery, Rinku General Medical Center, 2-23 Rinku Orai-kita, Izumisano, Osaka, 598-8577, Japan
| | - Yasuo Urata
- Oncolys BioPharma Inc., Toranomon Towers 10F, 4-1-28 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine and Faculty of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine and Faculty of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine and Faculty of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|