1
|
Mitala Y, Ssenkumba B, Birungi A, Kiconco R, Mutakooha MM, Atwine R. A cross-sectional study of ERG expression and the relationship with clinicopathological features of Prostate cancer in Southwestern Uganda. Diagn Pathol 2024; 19:67. [PMID: 38730435 PMCID: PMC11084131 DOI: 10.1186/s13000-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Prostate cancer is the leading cause of cancer-related death and the second most commonly diagnosed cancer among men in Uganda and most countries in Sub-Saharan Africa (SSA). The TMPRSS2-ERG fusion gene is the most common genetic alteration seen among prostate cancer patients. There are several contradicting reports about the association of ERG protein with poor prognosis, high PSA, and Gleason score. This study determined the prevalence of ERG expression and the relationship with PSA, Gleason score, and Age of prostate cancer patients in Southwestern Uganda. METHODS We reviewed 130 archived prostate biopsy (needle and TURP) specimens from patients of age ≥ 50 years who had a histological diagnosis of prostate cancer. We obtained their biodata, and preoperative PSA, from the archived records. We did Immunohistochemistry (IHC) to determine the prevalence of ERG expression. RESULTS The mean patient age in our study was 74.64 ± 10.19 years. Pre-operative PSA levels had been done for 79.2% of the participants. Most cancers (58.46%) were of high grade (grade group 3-5). ERG expression prevalence was 75.4% and its expression was independent of age, re-operative PSA, and Gleason score. CONCLUSION There is a significantly higher prevalence of ERG expression in our study compared to what is reported in other African-based studies. The expression of the ERG is independent of age, Gleason score, and serum PSA levels. A high proportion of our prostate cancer has high-grade disease at the time of diagnosis.
Collapse
Affiliation(s)
- Yekosani Mitala
- Department of Pathology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara City, Uganda.
| | - Brian Ssenkumba
- Department of Pathology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara City, Uganda
| | - Abraham Birungi
- Department of Pathology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara City, Uganda
| | - Ritah Kiconco
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara City, Uganda
- Department of Biochemistry, School of Health Sciences, Soroti University, Soroti, Uganda
| | - Marvin Mwesigwa Mutakooha
- Department of Surgery, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara City, Uganda
| | - Raymond Atwine
- Department of Pathology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara City, Uganda
| |
Collapse
|
2
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
3
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
4
|
Ito T, Takahara T, Taniguchi N, Yamamoto Y, Satou A, Ohashi A, Takahashi E, Sassa N, Tsuzuki T. PTEN loss in intraductal carcinoma of the prostate has low incidence in Japanese patients. Pathol Int 2023; 73:542-548. [PMID: 37608749 DOI: 10.1111/pin.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Clinical and genomic features of prostate cancer (PCa) vary considerably between Asian and Western populations. PTEN loss is the most frequent abnormality in intraductal carcinoma of the prostate (IDC-P) in Western populations. However, its prevalence and significance in Asian populations have not yet been well studied. In the present study, we evaluated PTEN expression in IDC-P in a Japanese population and its association with ERG expression. This study included 45 and 59 patients with PCa with and without IDC-P, respectively, who underwent radical prostatectomy. PTEN loss was observed in 10 patients with PCa with IDC-P (22%) and nine patients with PCa without IDC-P (17%). ERG expression was relatively frequent in patients with PCa with PTEN loss, although a significant difference was not observed. The co-occurrence of PTEN loss and ERG expression was observed in four patients with PCa with IDC-P and one without IDC-P. PTEN loss and ERG expression did not affect progression-free survival, regardless of the presence of IDC-P. The frequency of PTEN loss in IDC-P is lower in Asian patients than in Western patients. Our results indicate that mechanisms underlying IDC-P in Asian populations are different from those of Western populations.
Collapse
Affiliation(s)
- Takanori Ito
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Natsuki Taniguchi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Yuki Yamamoto
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akiko Ohashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Naoto Sassa
- Department of Urology, Aichi Medical University Hospital, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
5
|
Zhang Y, Tao J, Wang R, Xuan H, Chen Z, Xiao L, Ding H, Sun Z. Prognostic value of E‑26 transformation‑specific‑related gene in prostate cancer based on immunohistochemistry analysis. Oncol Lett 2023; 26:296. [PMID: 37274473 PMCID: PMC10236269 DOI: 10.3892/ol.2023.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
E-26 transformation-specific-related gene (ERG) has been implicated in prostate cancer; however, its prognostic role remains unclear. Therefore, the present study aimed to investigate the association of ERG with the prognosis after radical prostatectomy in patients with prostate cancer. Patient data were collected at the Huadong Hospital, affiliated with Fudan University, between January 2016 and March 2020. ERG protein expression was detected using immunohistochemistry. Independent-sample t-tests and χ2 tests were used to evaluate prostate cancer prognosis depending on ERG levels. The Kaplan-Meier method was used to estimate biochemical failure-free survival (BFFS) and the log-rank test was used to test the distribution. Prognostic factors were determined using Cox regression analysis. The median patient age was 69 years (range, 47-82 years). The median prostate-specific antigen (PSA) and free-PSA levels before treatment were 9.58 ng/ml (range, 0.003-187.400 ng/ml) and 1.13 ng/ml (range, 0.0059-30.6100 ng/ml), respectively. ERG protein expression was positive in 43 (16.6%) and negative in 216 (83.4%) cases. The median follow-up period and BFFS were 30 and 28 months, respectively. There was a significant difference in biochemical recurrence (P=0.017) between patients with positive and negative ERG expression. Patients with positive ERG expression had significantly worse BFFS curves compared with those with negative ERG expression (P=0.0038). In the multivariate Cox regression analysis, positive ERG expression was found to be an independent prognostic factor in patients with prostate cancer who underwent radical prostatectomy (hazard ratio, 4.08; 95% confidence interval, 2.03-8.17; P=0.000074). In conclusion, positive ERG expression is an independent prognostic risk factor for prostate cancer. These findings may be valuable for improvements in the clinical application of ERG immunohistochemistry.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Tao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Rangrang Wang
- Department of Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haojie Xuan
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhihao Chen
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Li Xiao
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haiyong Ding
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhongquan Sun
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
6
|
SARSIK KUMBARACI B, KANAT E, AYKUTLU U, KIZILAY F, ŞEN S. Prostatın benign, prekürsör ve malign epitelyal proliferasyonlarında ERG ile PTEN ekspresyonlarının araştırılması ve bulguların klinikopatolojik korelasyonu. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1209075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Amaç: Prostat kanseri farklı klinik gidişata ve geniş bir tedavi yelpazesine sahip, klinik ve moleküler olarak oldukça heterojen bir kanser türüdür. Özellikle “prostatik intraepitelyal neoplazi” (PİN), “atipik intraduktal proliferasyon” (AİP) ve “intraduktal karsinom” (İDK) benzer morfolojik özelliklere sahip olması açısından ayırıcı tanı zorluğu yaratan tanılar olup, hasta tedavi ve takibi de farklı olan antitelerdir. Çalışmamızda bu lezyonlarda ERG ve PTEN ekspresyon düzeylerini belirlemeyi ve bu biyobelirteçlerin prognostik ve diagnostik değerini araştırmayı amaçladık. Gereç ve Yöntem: EÜTF Tıbbi Patoloji Anabilim Dalında 2011-2012 yılında radikal prostatektomi veya iğne biyopsi materyallerinde “Adenokarsinom” tanısı almış 87 olgu çalışmaya alındı. Histopatolojik olarak AİP, İDK ve PİN içeren alanlar belirlendi. immunohistokimyasal olarak bu alanlarda ERG ve PTEN ekspresyonları değerlendirildi.Bulgular: Olguların 6’sında İDK, 29’unda AİP ve 52’sinde PİN belirlendi. İDK AİP, DG 3 ve üstünde olan tümörlerde daha fazla görüldü. İDK ve AİP in eşlik ettiği prostat karsinomlarının sağ kalım süresi daha kısaydı (p=0.043). İDK ve AİP içeren tümörlerde ERG ve PTEN durumu invaziv komponentle uyum içindeydi. Ayrıca tüm İDK alanlarında ERG pozitifti. PTEN ile heterojen boyanma görülmüş olup, PTEN’in invaziv karsinom ve İDK alanlarında negatifliği daha fazlaydı (p=0,63). ERG pozitifliği ve PTEN negatifliği istatistiksel olarak anlamlı olmamakla birlikte AİP tanısını desteklediği dikkati çekti.Sonuç: Özellikle ayırıcı tanı sorunu yaratan intraduktal lezyonlarda ERG pozitifliği ve PTEN negatifliği klinik öneme sahip prostat karsinomuna eşlik edebileceği için özellikle biyopsilerde gözardı edilmemeli ve hasta tedavi ile takibi buna göre yapılmalıdır.
Collapse
Affiliation(s)
- Banu SARSIK KUMBARACI
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| | - Emre KANAT
- UŞAK ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, ACİL TIP ANABİLİM DALI
| | - Umut AYKUTLU
- Acıbadem Sağlık Grubu, Altunizade Hastanesi, Patoloji Laboratuvarı
| | - Fuat KIZILAY
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, ÜROLOJİ ANABİLİM DALI
| | - Sait ŞEN
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| |
Collapse
|
7
|
Lazzeri M, Fasulo V, Lughezzani G, Benetti A, Soldà G, Asselta R, De Simone I, Paciotti M, Avolio PP, Contieri R, Saitta C, Saita A, Hurle R, Guazzoni G, Buffi NM, Casale P. Prospective evaluation of the role of imaging techniques and TMPRSS2:ERG mutation for the diagnosis of clinically significant prostate cancer. Front Oncol 2022; 12:968384. [PMID: 36147926 PMCID: PMC9487838 DOI: 10.3389/fonc.2022.968384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To test the hypothesis of a relationship between a specific genetic lesion (T2:ERG) and imaging scores, such as PI-RADS and PRI-MUS, and to test the effectiveness of these parameters for the diagnosis of prostate cancer (PCa) and clinically significant PCa (csPCa). Materials and methods This is a prospective study of men with suspected PCa enrolled between 2016 and 2019 at a high-volume tertiary hospital. Patients underwent systematic US-guided biopsy, plus targeted biopsy if they were presenting with >=1 suspicious lesion (PI-RADS>2) at mpMRI or PR-IMUS >2 at micro-ultrasound assessment. For each patient, one core from the highest PI-RADS or PRI-MUS lesion was collected for T2:ERG analysis. Multivariable logistic regression models (LRMs) were fitted for csPCa with a clinical model (age, total PSA, previous biopsy, family history for PCa), a clinical plus PI-RADS, clinical plus T2:ERG, clinical plus PI-RADS plus T2:ERG, and T2:ERG plus PI-RADS alone. Results The cohort consists of 158 patients: 83.5% and 66.2% had respectively a diagnosis of PCa and csPCa after biopsy. A T2:ERG fusion was found in 37 men and 97.3% of these patients harbored PCa, while 81.1% were diagnosed with csPCa. SE of T2:ERG assay for csPCa was 28.8%, SP 87.0%, NPV 38.8%, and PPV 81.1%. Of 105 patients who performed mpMRI 93.% had PIRADS ≥3. SE of mpMRI for csPCa was 98.5%, SP was 12.8%, NPV was 83.3%, and PPV was 65.7%. Among 67 patients who were subjected to micro-US, 90% had a PRI-MUS ≥3. SE of micro-US for csPCa was 89.1%, SP was 9.52%, NPV was 28.6%, and PPV was 68.3%. At univariable LRM T2:ERG was confirmed as independent of mpMRI and micro-US result (OR 1.49, p=0.133 and OR 1.82, p=0.592, respectively). At multivariable LRM the clinical model alone had an AUC for csPCa of 0.74 while the clinical model including PI-RADS and T2:ERG achieved an AUC of 0.83. Conclusions T2:ERG translocation and imaging results are independent of each other, but both are related csPCa. To evaluate the best diagnostic work-up for PCa and csPCa detection, all available tools (T2:ERG detection and imaging techniques) should be employed together as they appear to have a complementary role.
Collapse
Affiliation(s)
- Massimo Lazzeri
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Vittorio Fasulo
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Lughezzani
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- *Correspondence: Giovanni Lughezzani,
| | - Alessio Benetti
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Giulia Soldà
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Rosanna Asselta
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ilaria De Simone
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Paciotti
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Pier Paolo Avolio
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Contieri
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Cesare Saitta
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alberto Saita
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Rodolfo Hurle
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Giorgio Guazzoni
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Nicolò Maria Buffi
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Casale
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Liu Q, Wang S, Wang Z, Tang P, Zhang D, Lan W, Jiang J. Identification of novel somatic fusions of ERG-VEGFA, TMPRSS2-ERG, and VEGFA-TMPRSS2 in prostate cancer treated with anlotinib and androgen deprivation therapy: A case report. CANCER INNOVATION 2022; 1:114-118. [PMID: 38089454 PMCID: PMC10686182 DOI: 10.1002/cai2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/05/2022] [Indexed: 10/15/2024]
Abstract
The TMPRSS2-ERG fusion gene has frequently been found in prostate cancer and is associated with malignancy. Identifying novel fusions will help to stratify patients and establish patient-tailored therapies. A 78-year-old man presented to our hospital with severe symptoms of urinary urgency and frequency for 2 years, as well as severe bone pain for 1 year. He was diagnosed with metastatic prostate cancer with a Gleason score of 5 + 5. Three gene fusions, ERG_VEGFA, TMPRSS2_ERG, and VEGFA_TMPRSS2, were identified in the patient's prostate cancer tissue. Notably, administration of the tyrosine kinase inhibitor, anlotinib, in combination with a gonadotropin-releasing hormone agonist (GnRHa) and abiraterone, reduced the patient's bone pain and also stabilized his prostate cancer for more than 2 years. This is the first report of somatic fusions among the VEGFA, ERG, and TMPRSS2 genes in cancer tissues from a patient with prostate cancer who responded well to antiangiogenic treatment combined with a GnRHa and abiraterone.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of UrologyDaping Hospital, Army Medical UniversityChongqingChina
| | - Shuo Wang
- Department of UrologyDaping Hospital, Army Medical UniversityChongqingChina
| | - Ze Wang
- Department of UrologyDaping Hospital, Army Medical UniversityChongqingChina
| | - Peng Tang
- Department of UrologyDaping Hospital, Army Medical UniversityChongqingChina
| | - Dianzheng Zhang
- Department of Bio‐Medical SciencesPhiladelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | - Weihua Lan
- Department of UrologyDaping Hospital, Army Medical UniversityChongqingChina
| | - Jun Jiang
- Department of UrologyDaping Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
10
|
Tadalafil and Steroid Hormones Interactions in Adipose, Bone and Prostate Tissues: Focus on Translational Perspectives. Int J Mol Sci 2022; 23:ijms23084191. [PMID: 35457011 PMCID: PMC9024809 DOI: 10.3390/ijms23084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tadalafil is a selective phosphodiesterase type-5 (PDE5) inhibitor that is approved for the treatment of men with erectile dysfunction (ED) and/or benign prostate hyperplasia (BPH) -associated symptoms. Besides its classical actions on PDE5 within the genitourinary tract, where the specific enzyme expression is maximal, it may exert different systemic effects. This is mainly due to the pleiotropic distribution of PDE5 enzyme throughout the human (and animal) body, where it can exert protective effects in different clinical conditions. Recently, it has been demonstrated that tadalafil may display novel actions on androgen receptor (AR) expression and activity and cytochrome P19a1 (Cyp19a1) and estrogen receptor β (ERβ) expression in different in vitro systems, such as adipose, bone and prostate cancer cells, where it can act as a selective modulator of steroid hormone production. This may determine novel potential mechanism(s) of control in pathophysiologic pathways. In this review, we summarize basic research and translational results applicable to the use of tadalafil in the treatment of obesity, bone loss and prostate cancer.
Collapse
|
11
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
12
|
Wu J, Zhang L, Wang X. Host Sex Steroids Interact With Virus Infection: New Insights Into Sex Disparity in Infectious Diseases. Front Microbiol 2021; 12:747347. [PMID: 34803967 PMCID: PMC8600311 DOI: 10.3389/fmicb.2021.747347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Sex hormones are steroid hormones synthesized from the gonads of animals and tissues such as the placenta and adrenocortical reticular zone. The physiological functions of sex hormones are complex. Sex hormones are not only pathologically correlated with many diseases of the reproductive system, but are etiological factors in some viral infectious diseases, including disease caused by infections of coronaviruses, herpesviruses, hepatitis viruses, and other kinds of human viruses, which either exhibit a male propensity in clinical practice, or crosstalk with androgen receptor (AR)-related pathways in viral pathogenesis. Due to the global pandemic of coronavirus disease 2019 (COVID-19), the role of androgen/AR in viral infectious disease is highlighted again, majorly representing by the recent advances of AR-responsive gene of transmembrane protease/serine subfamily member 2 (TMPRSS2), which proteolytically activates the receptor-mediated virus entry by many coronaviruses and influenza virus, along with the role of androgen-mediated signaling for the transcription of hepatitis B virus (HBV), and the role of sex hormone responsive genes during Zika virus (ZIKV) pathogenesis, et al. Collectively, we propose to provide a comprehensive overview of the role of male sex hormones during multiple phases in the life cycle of different human viruses, which may be partly responsible for the sex-specific prevalence, severity and mortality of some diseases, therefore, may provide clues to develop more efficient prevention and treatment strategies for high-risk populations.
Collapse
Affiliation(s)
- Jinfeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lei Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
14
|
Bimonte VM, Marampon F, Antonioni A, Fittipaldi S, Ferretti E, Pestell RG, Curreli M, Lenzi A, Vitale G, Brunetti A, Migliaccio S, Aversa A. Phosphodiesterase Type-5 Inhibitor Tadalafil Modulates Steroid Hormones Signaling in a Prostate Cancer Cell Line. Int J Mol Sci 2021; 22:ijms22020754. [PMID: 33451122 PMCID: PMC7828628 DOI: 10.3390/ijms22020754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/29/2023] Open
Abstract
Background: The androgen receptor (AR) plays a key role in normal prostate homeostasis and in prostate cancer (PCa) development, while the role of aromatase (Cyp19a1) is still unclear. We evaluated the effects of a treatment with Tadalafil (TAD) on both these proteins. Methods: Androgen-sensitive human PCa cell line (LnCAP) was incubated with/without TAD (10−6 M) and bicalutamide (BCT) (10−4 M) to evaluate a potential modulation on cell proliferation, protein and mRNA expression of Cyp19a, AR and estrogen receptor-β (ERβ), respectively. Results: TAD increased early AR nuclear translocation (p < 0.05, after 15 min of exposure), and increased AR transcriptional activity (p < 0.05) and protein expression (p < 0.05) after 24 h. Moreover, after 24 h this treatment upregulated Cyp19a1 and ERβ mRNA (p < 0.05 and p < 0.005 respectively) and led to an increase in protein expression of both after 48 h (p < 0.05). Interestingly, TAD counteracted Cyp19a1 stimulation induced by BCT (p < 0.05) but did not alter the effect induced by BCT on the AR protein expression. Conclusion: We demonstrate for the first time that TAD can significantly modulate AR expression and activity, Cyp19a1 and ERβ expression in PCa cells, suggesting a specific effect of these proteins. In addition, TAD potentiates the antiproliferative activity of BCT, opening a new clinical scenario in the treatment of PCa.
Collapse
Affiliation(s)
- Viviana M. Bimonte
- Department of Movement, Human and Health Sciences, “Foro Italico” University, 00135 Rome, Italy; (V.M.B.); (S.M.)
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University, 00161 Rome, Italy;
| | - Ambra Antonioni
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, “Tor Vergata” University, 00133 Rome, Italy;
| | - Elisabetta Ferretti
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA 19111, USA;
| | - Mariaignazia Curreli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Giovanni Vitale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy;
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, 20095 Milan, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, “Foro Italico” University, 00135 Rome, Italy; (V.M.B.); (S.M.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
15
|
Afshari A, Janfeshan S, Yaghobi R, Roozbeh J, Azarpira N. Covid-19 pathogenesis in prostatic cancer and TMPRSS2-ERG regulatory genetic pathway. INFECTION GENETICS AND EVOLUTION 2020; 88:104669. [PMID: 33301988 PMCID: PMC7720011 DOI: 10.1016/j.meegid.2020.104669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Members of Coronaviridae family have been the source of respiratory illnesses. The outbreak of SARS-CoV-2 that produced a severe lung disease in afflicted patients in China and other countries was the reason for the incredible attention paid toward this viral infection. It is known that SARS-CoV-2 is dependent on TMPRSS2 activity for entrance and subsequent infection of the host cells and TMPRSS2 is a host cell molecule that is important for the spread of viruses such as coronaviruses. Different factors can increase the risk of prostate cancer, including older age, a family history of the disease. Androgen receptor (AR) initiates a transcriptional cascade which plays a serious role in both normal and malignant prostate tissues. TMPRSS2 protein is highly expressed in prostate secretory epithelial cells, and its expression is dependent on androgen signals. One of the molecular signs of prostate cancer is TMPRSS2-ERG gene fusion. In TMPRSS2-ERG-positive prostate cancers different patterns of changed gene expression can be detected. The possible molecular relation between fusion positive prostate cancer patients and the increased risk of lethal respiratory viral infections especially SARS-CoV-2 can candidate TMPRSS2 as an attractive drug target. The studies show that some molecules such as nicotinamide, PARP1, ETS and IL-1R can be studied deeper in order to control SARS-CoV-2 infection especially in prostate cancer patients. This review attempts to investigate the possible relation between the gene expression pattern that is produced through TMPRSS2-ERG fusion positive prostate cancer and the possible influence of these fluctuations on the pathogenesis and development of viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Pederzoli F, Bandini M, Marandino L, Ali SM, Madison R, Chung J, Ross JS, Necchi A. Targetable gene fusions and aberrations in genitourinary oncology. Nat Rev Urol 2020; 17:613-625. [PMID: 33046892 DOI: 10.1038/s41585-020-00379-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Gene fusions result from either structural chromosomal rearrangement or aberrations caused by splicing or transcriptional readthrough. The precise and distinctive presence of fusion genes in neoplastic tissues and their involvement in multiple pathways central to cancer development, growth and survival make them promising targets for personalized therapy. In genitourinary malignancies, rearrangements involving the E26 transformation-specific family of transcription factors have emerged as very frequent alterations in prostate cancer, especially the TMPRSS2-ERG fusion. In renal malignancies, Xp11 and t(6;11) translocations are hallmarks of a distinct pathological group of tumours described as microphthalmia-associated transcription factor family translocation-associated renal cell carcinomas. Novel druggable fusion events have been recognized in genitourinary malignancies, leading to the activation of several clinical trials. For instance, ALK-rearranged renal cell carcinomas have shown responses to alectinib and crizotinib. Erdafitinib has been tested for the treatment of FGFR-rearranged bladder cancer. Other anti-fibroblast growth factor receptor 3 (FGFR3) compounds are showing promising results in the treatment of bladder cancer, including infigratinib and pemigatinib, and all are currently in clinical trials.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy.
| | - Marco Bandini
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Marandino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | - Jon Chung
- Foundation Medicine Inc., Cambridge, MA, USA
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Andrea Necchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
17
|
Kaczorowski A, Tolstov Y, Falkenstein M, Vasioukhin V, Prigge ES, Geisler C, Kippenberger M, Nientiedt C, Ratz L, Kuryshev V, Herpel E, Kristiansen G, Sültmann H, Stenzinger A, Doeberitz MVK, Hohenfellner M, Duensing A, Duensing S. Rearranged ERG confers robustness to prostate cancer cells by subverting the function of p53. Urol Oncol 2020; 38:736.e1-736.e10. [PMID: 32674955 DOI: 10.1016/j.urolonc.2020.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE ERG rearrangements are frequent and early events in prostate cancer. The functional role of rearranged ERG, however, is still incompletely understood. ERG rearrangements are maintained during prostate cancer progression suggesting that they may confer a selective advantage. The molecular basis of this notion is the subject of this study. METHODS A variety of immunological methods were used to characterize the effects of rearranged ERG on p53. Consequences of an overexpression of N-terminally deleted ERG on p53 function were interrogated by measuring apoptosis and cellular senescence in the presence or absence of exogenous DNA damage. Effects of N-terminally deleted ERG on the transactivation function of p53 were analyzed by qRT-PCR. RESULTS We show that overexpression of ERG leads to an increased basal level of DNA damage and a stabilization of p53 that involves a sequestration of its E3 ubiquitin ligase, MDM2, into nucleoli. A higher p53 expression was also observed in vivo in an ERG-overexpressing prostatic intraepithelial neoplasia mouse model. The correlation between ERG and p53 expression was corroborated in 163 patients with prostate cancer. ERG overexpression was found to inhibit both apoptosis and cellular senescence induced by exogenous DNA damage. Mechanistically, this protective effect of ERG involved an abrogation of the DNA damage-induced expression of p53 target genes. CONCLUSIONS By protecting tumor cells from the antiproliferative consequences of genotoxic stress, ERG may allow the survival and proliferation of genomically unstable tumor cells. Targeting ERG may therefore represent a promising strategy to suppress such adverse features during prostate cancer progression.
Collapse
Affiliation(s)
- Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Yanis Tolstov
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Michael Falkenstein
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview, Avenue N C3-168, Seattle, 98109, Washington
| | - Elena-Sophie Prigge
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital, Heidelberg, and Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Christine Geisler
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Maximilian Kippenberger
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Cathleen Nientiedt
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Leonie Ratz
- Cancer Genome Research, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Vladimir Kuryshev
- Cancer Genome Research, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, D-69120, Heidelberg, Germany; Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Holger Sültmann
- Cancer Genome Research, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, D-69120, Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital, Heidelberg, and Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Anette Duensing
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany; Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, 15213, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, 15213, Pennsylvania
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
19
|
Aldaoud N, Hallak A, Abdo N, Al Bashir S, Marji N, Graboski-Bauer A. Interobserver Variability in the Diagnosis of High-Grade Prostatic Intraepithelial Neoplasia in a Tertiary Hospital in Northern Jordan. CLINICAL PATHOLOGY 2020; 13:2632010X19898472. [PMID: 31950103 PMCID: PMC6952849 DOI: 10.1177/2632010x19898472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/06/2018] [Indexed: 11/16/2022]
Abstract
Prostate intraepithelial neoplasia is described as a precursor lesion to prostatic adenocarcinoma. High-grade prostate intraepithelial neoplasia (HGPIN) is classified as both grade 2 and 3 prostate intraepithelial neoplasia due to inconsistency between pathologists' findings. In our study, we assessed the interobserver variability in the diagnosis of HGPIN among genitourinary and nongenitourinary pathologists. All cases with prostate adenocarcinoma diagnosis on needle core biopsy, radical prostatectomy, and transurethral resection of prostate (TURP) between the years 2005 and 2014 were included. In total, 191 prostate cancer cases were included: 109 needle core biopsies, 45 radical prostatectomies, and 37 TURP. All were independently reviewed by 2 urologic pathologists for the presence of HGPIN. High-grade prostate intraepithelial neoplasia was diagnosed in 65 cases (34%), among which the lesion was recognized by the reporting pathologists in 36 (55%) of the cases and was missed in 29 (45%) of the cases with a κ coefficient of 0.53. There was a moderate interobserver agreement in the diagnosis of HGPIN. Consultation with genitourinary pathologist can improve HGPIN diagnosis.
Collapse
Affiliation(s)
- Najla Aldaoud
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan.,Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan
| | - Amer Hallak
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour Abdo
- Department of Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Samir Al Bashir
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Marji
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan.,Department of Pathology, University of Florida, Jacksonville, FL, USA
| | - Ashley Graboski-Bauer
- Department of Public Health Sciences, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
20
|
Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer. Acta Pharmacol Sin 2019; 40:1436-1447. [PMID: 31097763 DOI: 10.1038/s41401-019-0237-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
In advanced prostate cancer, CREB (cAMP-responsive element-binding protein) binding protein (CBP) and its homolog EP300 are highly expressed; targeting the bromodomain of CBP is a new strategy for the treatment of prostate cancer. In the current study we identified Y08197, a novel 1-(indolizin-3-yl) ethanone derivative, as a selective inhibitor of CBP/EP300 bromodomain and explored its antitumor activity against prostate cancer cell lines in vitro. In the AlphaScreen assay, we demonstrated that Y08197 dose-dependently inhibited the CBP bromodomain with an IC50 value at 100.67 ± 3.30 nM. Y08197 also exhibited high selectivity for CBP/EP300 over other bromodomain-containing proteins. In LNCaP, 22Rv1 and VCaP prostate cancer cells, treatment with Y08197 (1, 5 μM) strongly affected downstream signaling transduction, thus markedly inhibiting the expression of androgen receptor (AR)-regulated genes PSA, KLK2, TMPRSS2, and oncogenes C-MYC and ERG. Notably, Y08197 potently inhibited cell growth in several AR-positive prostate cancer cell lines including LNCaP, 22Rv1, VCaP, and C4-2B. In 22Rv1 prostate cancer cells, treatment with Y08197 (1, 4, 16 μM) dose-dependently induced G0/G1 phase arrest and apoptosis. Furthermore, treatment with Y08197 (5 μM) significantly decreased ERG-induced invasive capacity of 22Rv1 prostate cancer cells detected in wound-healing assay and cell migration assay. Taken together, CBP/EP300 inhibitor Y08197 represents a promising lead compound for development as new therapeutics for the treatment of castration-resistant prostate cancer.
Collapse
|
21
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
22
|
Association of imputed prostate cancer transcriptome with disease risk reveals novel mechanisms. Nat Commun 2019; 10:3107. [PMID: 31308362 PMCID: PMC6629701 DOI: 10.1038/s41467-019-10808-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Here we train cis-regulatory models of prostate tissue gene expression and impute expression transcriptome-wide for 233,955 European ancestry men (14,616 prostate cancer (PrCa) cases, 219,339 controls) from two large cohorts. Among 12,014 genes evaluated in the UK Biobank, we identify 38 associated with PrCa, many replicating in the Kaiser Permanente RPGEH. We report the association of elevated TMPRSS2 expression with increased PrCa risk (independent of a previously-reported risk variant) and with increased tumoral expression of the TMPRSS2:ERG fusion-oncogene in The Cancer Genome Atlas, suggesting a novel germline-somatic interaction mechanism. Three novel genes, HOXA4, KLK1, and TIMM23, additionally replicate in the RPGEH cohort. Furthermore, 4 genes, MSMB, NCOA4, PCAT1, and PPP1R14A, are associated with PrCa in a trans-ethnic meta-analysis (N = 9117). Many genes exhibit evidence for allele-specific transcriptional activation by PrCa master-regulators (including androgen receptor) in Position Weight Matrix, Chip-Seq, and Hi-C experimental data, suggesting common regulatory mechanisms for the associated genes.
Collapse
|
23
|
Aldaoud N, Graboski-Bauer A, Abdo N, Al Bashir S, Oweis AO, Ebwaini H, Hasen Y, Alazab R, Trpkov K. ERG expression in prostate cancer biopsies with and without high-grade prostatic intraepithelial neoplasia: a study in Jordanian Arab patients. Res Rep Urol 2019; 11:149-155. [PMID: 31192172 PMCID: PMC6535407 DOI: 10.2147/rru.s207843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
Background: High-grade prostatic intraepithelial neoplasia (HGPIN) is the most likely precancerous lesion for prostatic adenocarcinoma (PCa). Recent molecular studies have shown that HGPIN can harbor TMPRSS2-ERG fusion, a genetic marker also associated with PCa, which may provide an additional risk stratification tool for HGPIN, especially when present as an isolated lesion. Our aim was to assess the frequency of HGPIN and ERG expression in a cohort of prostatic needle core biopsies from Jordanian-Arab patients with PCa. Materials and methods: We studied 109 needle core biopsies from patients with PCa. Clinical data, including age and preoperative prostate specific antigen (PSA) level, were obtained from patients’ medical records. Results: HGPIN was present in 31 (28.4 %) of the 109 cases. Of the HGPIN cases, 13 (41.9%) expressed ERG immunostain. ERG expression in HGPIN was independent of patient age at presentation (P=0.4), pre-operative PSA (P=0.9), and the grade, using the novel Grade Groups (P=0.5). Conclusion: The frequency of HGPIN in our cohort appears similar to the one found in the Western patient populations and demonstrates a comparable frequency of ERG expression in these lesions.
Collapse
Affiliation(s)
- Najla Aldaoud
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan.,Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nour Abdo
- Department of Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Samir Al Bashir
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan.,Jordan University of Science and Technology, Irbid, Jordan
| | - Ashraf O Oweis
- Division of Nephrology, Department of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanadi Ebwaini
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan
| | - Yousef Hasen
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan.,Jordan University of Science and Technology, Irbid, Jordan.,Attasami Diagnostic Center, Tripoli, Libya
| | - Rami Alazab
- Division of Urology, Jordan University of Science and Technology, Irbid, Irbid
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Trabzonlu L, Kulac I, Zheng Q, Hicks JL, Haffner MC, Nelson WG, Sfanos KS, Ertunc O, Lotan TL, Heaphy CM, Meeker AK, Yegnasubramanian S, De Marzo AM. Molecular Pathology of High-Grade Prostatic Intraepithelial Neoplasia: Challenges and Opportunities. Cold Spring Harb Perspect Med 2019; 9:a030403. [PMID: 30082453 PMCID: PMC6444695 DOI: 10.1101/cshperspect.a030403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A better understanding of the early stages of prostate cancer initiation, potentially arising from precursor lesions, may fuel development of powerful approaches for prostate cancer prevention or interception. The best-known candidate for such a precursor lesion has been referred to as high-grade prostatic intraepithelial neoplasia (HGPIN). Although there is significant evidence supporting the notion that such HGPIN lesions can give rise to invasive adenocarcinomas of the prostate, there are also numerous complicating considerations and evidence that cloud the picture in many instances. Notably, recent evidence has suggested that some fraction of such lesions that are morphologically consistent with HGPIN may actually be invasive carcinomas masquerading as HGPIN-a state that we term "postinvasive intraepithelial carcinoma" (PIC). Although the prevalence of such PIC lesions is not fully understood, this and other factors can confound the potential of identifying prostate precursors that can be targeted for disease prevention, interception, or treatment. Here, we review our current understanding of the morphological and molecular pathological features of prostate cancer precursor lesions.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul 34010, Turkey
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Onur Ertunc
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
25
|
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb Perspect Med 2019; 9:a030593. [PMID: 29844220 PMCID: PMC6360865 DOI: 10.1101/cshperspect.a030593] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a de novo clinical presentation of small cell neuroendocrine carcinoma of the prostate is rare, a subset of patients previously diagnosed with prostate adenocarcinoma may develop neuroendocrine features in later stages of castration-resistant prostate cancer (CRPC) progression as a result of treatment resistance. Despite sharing clinical, histologic, and some molecular features with other neuroendocrine carcinomas, including small cell lung cancer, castration-resistant neuroendocrine prostate cancer (CRPC-NE) is clonally derived from prostate adenocarcinoma. CRPC-NE therefore retains early prostate cancer genomic alterations and acquires new molecular changes making them resistant to traditional CRPC therapies. This review focuses on recent advances in our understanding of CRPC-NE biology, the transdifferentiation/plasticity process, and development and characterization of relevant CRPC-NE preclinical models.
Collapse
Affiliation(s)
- Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| | | | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
26
|
Eryilmaz IE, Aytac Vuruskan B, Kaygısız O, Egeli U, Tunca B, Kordan Y, Cecener G. RNA-based markers in biopsy cores with atypical small acinar proliferation: Predictive effect of T2E fusion positivity and MMP-2 upregulation for a subsequent prostate cancer diagnosis. Prostate 2019; 79:195-205. [PMID: 30294801 DOI: 10.1002/pros.23724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atypical small acinar proliferation (ASAP) is a precursor lesion of prostate cancer (PC), and PC develops from this suspicious focus or an unsampled malignant gland nearby. However, PC-related molecular alterations that could guide the timing of repeat biopsies and help monitor PC risk in ASAP-diagnosed patients have not been investigated. The purpose of this study was to first investigate the expression of seven different PC-related RNAs that included serine 2 (TMPRSS2): erythroblastosis virus E26 oncogene homolog (ERG) gene (TMPRSS2-ERG, T2E) fusion, alpha-methylacyl-CoA racemase (AMACR), kallikrein related peptidase 3 (KLK3), androgen receptor (AR), prostate cancer specific antigen 3 (PCA3), and matrix metalloproteinases (MMP)-2 and 9. METHODS PC-related RNAs were evaluated using a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) system in pathologically ASAP-diagnosed prostate biopsy cores from 55 patients presenting with a normal digital rectal examination and a PSA level of 4-10 ng/mL. RESULTS We detected that positive T2E fusion status (P = 0.013) and the expression of AMACR (P = 0.016), AR (P = 0.016) and MMP-2 (P = 0.013) were independently and significantly associated with PC risk in ASAP patients. There were also several statistically significant correlations between expression levels. Additionally, we demonstrated that T2E fusion positive ASAP patients with higher MMP-2 expression were more likely to be diagnosed with PC at a subsequent biopsy during the follow-up period (P = 0.003). CONCLUSIONS Although, more clinical validations are needed for the stratification of PC risk in ASAP-diagnosed biopsy cores, our current results indicate that the coexistence of T2E fusion positivity with MMP-2 upregulation may help clinicians adjust their biopsy timetable and/or assessment of PC risk in ASAP-diagnosed patients with a PSA level of 4-10 ng/mL.
Collapse
Affiliation(s)
- I Ezgi Eryilmaz
- Medical Faculty, Medical Biology Department, Uludag University, Gorukle, Bursa, Turkey
| | - Berna Aytac Vuruskan
- Medical Faculty, Medical Pathology Department, Uludag University, Gorukle, Bursa, Turkey
| | - Onur Kaygısız
- Medical Faculty, Urology Department, Uludag University, Gorukle, Bursa, Turkey
| | - Unal Egeli
- Medical Faculty, Medical Biology Department, Uludag University, Gorukle, Bursa, Turkey
| | - Berrin Tunca
- Medical Faculty, Medical Biology Department, Uludag University, Gorukle, Bursa, Turkey
| | - Yakup Kordan
- Medical Faculty, Urology Department, Koc University, Topkapı, İstanbul, Turkey
| | - Gulsah Cecener
- Medical Faculty, Medical Biology Department, Uludag University, Gorukle, Bursa, Turkey
| |
Collapse
|
27
|
Luca BA, Brewer DS, Edwards DR, Edward S, Whitaker HC, Merson S, Dennis N, Cooper RA, Hazell S, Warren AY, Eeles R, Lynch AG, Ross-Adams H, Lamb AD, Neal DE, Sethia K, Mills RD, Ball RY, Curley H, Clark J, Moulton V, Cooper CS. DESNT: A Poor Prognosis Category of Human Prostate Cancer. Eur Urol Focus 2018; 4:842-850. [PMID: 28753852 PMCID: PMC5669460 DOI: 10.1016/j.euf.2017.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND A critical problem in the clinical management of prostate cancer is that it is highly heterogeneous. Accurate prediction of individual cancer behaviour is therefore not achievable at the time of diagnosis leading to substantial overtreatment. It remains an enigma that, in contrast to breast cancer, unsupervised analyses of global expression profiles have not currently defined robust categories of prostate cancer with distinct clinical outcomes. OBJECTIVE To devise a novel classification framework for human prostate cancer based on unsupervised mathematical approaches. DESIGN, SETTING, AND PARTICIPANTS Our analyses are based on the hypothesis that previous attempts to classify prostate cancer have been unsuccessful because individual samples of prostate cancer frequently have heterogeneous compositions. To address this issue, we applied an unsupervised Bayesian procedure called Latent Process Decomposition to four independent prostate cancer transcriptome datasets obtained using samples from prostatectomy patients and containing between 78 and 182 participants. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Biochemical failure was assessed using log-rank analysis and Cox regression analysis. RESULTS AND LIMITATIONS Application of Latent Process Decomposition identified a common process in all four independent datasets examined. Cancers assigned to this process (designated DESNT cancers) are characterized by low expression of a core set of 45 genes, many encoding proteins involved in the cytoskeleton machinery, ion transport, and cell adhesion. For the three datasets with linked prostate-specific antigen failure data following prostatectomy, patients with DESNT cancer exhibited poor outcome relative to other patients (p=2.65×10-5, p=4.28×10-5, and p=2.98×10-8). When these three datasets were combined the independent predictive value of DESNT membership was p=1.61×10-7 compared with p=1.00×10-5 for Gleason sum. A limitation of the study is that only prediction of prostate-specific antigen failure was examined. CONCLUSIONS Our results demonstrate the existence of a novel poor prognosis category of human prostate cancer and will assist in the targeting of therapy, helping avoid treatment-associated morbidity in men with indolent disease. PATIENT SUMMARY Prostate cancer, unlike breast cancer, does not have a robust classification framework. We propose that this failure has occurred because prostate cancer samples selected for analysis frequently have heterozygous compositions (individual samples are made up of many different parts that each have different characteristics). Applying a mathematical approach that can overcome this problem we identify a novel poor prognosis category of human prostate cancer called DESNT.
Collapse
Affiliation(s)
- Bogdan-Alexandru Luca
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- The Earlham Institute, Norwich Research Park, Norwich, Norfolk, UK
| | - Dylan R Edwards
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sandra Edward
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
| | - Hayley C Whitaker
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Sue Merson
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
| | - Nening Dennis
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
| | - Rosalin A Cooper
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Steven Hazell
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - The CancerMap Group
- A list of participants and their affiliations appears in the Supplemental Information
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Andy G Lynch
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Helen Ross-Adams
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Alastair D Lamb
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
- Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - David E Neal
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
- Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Krishna Sethia
- Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Robert D Mills
- Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Richard Y Ball
- Department of Histopathology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Helen Curley
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jeremy Clark
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Colin S Cooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
28
|
García-Perdomo HA, Chaves MJ, Osorio JC, Sanchez A. Association between TMPRSS2:ERG fusion gene and the prostate cancer: systematic review and meta-analysis. Cent European J Urol 2018; 71:410-419. [PMID: 30680235 PMCID: PMC6338815 DOI: 10.5173/ceju.2018.1752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 11/01/2018] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION To identify the association between the TMPRSS2:ERG fusion gene, their variants and the onset of localized prostate cancer. MATERIAL AND METHODS A systematic search strategy was carried out through MEDLINE, EMBASE, LILACS, CENTRAL and unpublished literature. We included randomized control trials, cohort, case-control and cross-sectional studies that involved patients >18 years-old assessing the association between TMPRSS2 fusion gene, its single nucleotide polymorphisms and prostate cancer. The primary outcome was prostate cancer defined by histology of the tumor coming from transrectal ultrasound guided biopsy, transurethral resection of the prostate or radical prostatectomy. We assessed the risk of bias with QUADAS2 and performed a meta-analysis with Stata 14. RESULTS We found 241 records with the search strategies. After duplicates were removed, 18 studies were included in qualitative analysis and 15 studies in meta-analysis. All included studies that had no applicability concerns and low risk of bias for flow and timing. Nine studies had an unclear risk of bias for index and reference tests, since they did not describe the blinding assessment appropriately. Regarding the association between TMPRSS2:ERG and prostate cancer, we found an odds ratio (OR) 2.24 and a 95% confidence interval (CI) (1.29 to 3.91). Regarding the kind of sample, urine showed an OR 2.79 and a 95% CI (1.12 to 6.98) and when using a DNA molecular template, the OR was 3.55 with a 95% CI (1.08 to 11.65). CONCLUSIONS There was an association between TMPRSS2:ERG fusion gene with the diagnosis of prostate cancer, mainly in urine samples and DNA-based molecular templates. TMPRSS2:ERG might be used as the gold standard biomarker for diagnosis and stratification of PCa.
Collapse
|
29
|
Boldrini L, Bartoletti R, Giordano M, Manassero F, Selli C, Panichi M, Galli L, Farci F, Faviana P. C-MYC, HIF-1α, ERG, TKT, and GSTP1: an Axis in Prostate Cancer? Pathol Oncol Res 2018; 25:1423-1429. [PMID: 30357756 DOI: 10.1007/s12253-018-0479-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
To analyze putative biomarkers for prostate cancer (PCA) characterization, the second leading cause of cancer-associated mortality in men. Quantification of the expression level of c-myc and HIF-1α was performed in 72 prostate cancer specimens. A cohort of 497 prostate cancer patients from The Cancer Genome Atlas (TCGA) database was further analyzed, in order to test our hypothesis. We found that high c-myc level was significantly associated with HIF-1α elevated expression (p = 0.008) in our 72 samples. Statistical analysis of 497 TCGA prostate cancer specimens confirmed the strong association (p = 0.0005) of c-myc and HIF-1α expression levels, as we found in our series. Moreover, we found high c-myc levels significantly associated with low Glutatione S-transferase P1 (GSTP1) expression (p = 0.01), with high Transketolase (TKT) expression (p < 0.0001). High TKT levels were found in TCGA samples with low GSTP1 mRNA (p < 0.0001), as shown for c-myc, and with ERG increased expression (p = 0.02). Finally, samples with low GSTP1 expression displayed higher ERG mRNA levels than samples with high GSTP1 score (p < 0.0001), as above shown for c-myc. Our study emphasizes the notion of a potential value of HIF-1α and c-myc as putative biomarkers in prostate cancer; moreover TCGA data analysis showed a putative crosstalk between c-myc, HIF-1α, ERG, TKT, and GSTP1, suggesting a potential use of this axis in prostate cancer.
Collapse
Affiliation(s)
- L Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma 57, 56126, Pisa, Italy.
| | - R Bartoletti
- Department of Translational Research and New Technologies, University of Pisa, Pisa, Italy
| | - M Giordano
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - F Manassero
- Division of Urology, Pisa University, Pisa, Italy
| | - C Selli
- Department of Translational Research and New Technologies, University of Pisa, Pisa, Italy
| | - M Panichi
- Department of Radiotherapy, Pisa University, Pisa, Italy
| | - L Galli
- Division of Medical Oncology, Pisa University, Pisa, Italy
| | - F Farci
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - P Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma 57, 56126, Pisa, Italy
| |
Collapse
|
30
|
Srivastava S, Ghosh S. Early Detection Research Network: Accomplishments and Outlook. J Appl Lab Med 2018; 3:324-332. [PMID: 33636939 DOI: 10.1373/jalm.2017.025825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Chen X, Ding B, Zhang P, Geng S, Xu J, Han B. Intraductal carcinoma of the prostate: What we know and what we do not know. Pathol Res Pract 2018; 214:612-618. [DOI: 10.1016/j.prp.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/11/2023]
|
32
|
Montironi R, Zhou M, Magi-Galluzzi C, Epstein JI. Features and Prognostic Significance of Intraductal Carcinoma of the Prostate. Eur Urol Oncol 2018; 1:21-28. [DOI: 10.1016/j.euo.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022]
|
33
|
Foucher Y, Lorent M, Tessier P, Supiot S, Sébille V, Dantan E. A mini-review of quality of life as an outcome in prostate cancer trials: patient-centered approaches are needed to propose appropriate treatments on behalf of patients. Health Qual Life Outcomes 2018; 16:40. [PMID: 29506537 PMCID: PMC5836440 DOI: 10.1186/s12955-018-0870-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background Patients with prostate cancer (PC) may be ready to make trade-offs between their quantity and their quality of life. For instance, elderly patients may prefer the absence of treatment if it is associated with a low-risk of disease progression, compared to treatments aiming at preventing disease progression but with a substantial deterioration of their Health-Related Quality of Life (HRQoL). Therefore, it seems relevant to compare the treatments by considering both survival and HRQoL. In this mini-review, the aim was to question whether the potential trade-offs between survival and HRQoL are considered in high impact factor journals. Methods The study was conducted from the PubMed database for recent papers published between May 01, 2013, and May 01, 2015. We also restricted our search to nine medical journals with 2013 impact factor > 15. Results Among the 30 selected studies, only six collected individual HRQoL as a secondary endpoint by using the Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaire. In four studies, the time to HRQoL change was analyzed, but its definitions varied. In two studies, the mean changes in HRQoL between the baseline and the 12- or 16-week follow-up were analyzed. None of the six studies reported in a single endpoint both the quantity and the quality of life. Conclusions Our mini-review, which only focused on recent publications in journals with high-impact, suggests moving PC clinical research towards patient-centered outcomes-based studies. This may help physicians to propose the most appropriate treatment on behalf of patients. We recommend the use of indicators such as Quality-Adjusted Life-Years (QALYs) as principal endpoint in future clinical trials. Electronic supplementary material The online version of this article (10.1186/s12955-018-0870-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohann Foucher
- SPHERE (MethodS for Patients-centered outcomes and HEalth Research), INSERM UMR 1246, Nantes University, IRS2 - 22 boulevard Bénoni Goullin, 44200, Nantes, France. .,CHU Nantes University Hospital, Nantes, France.
| | - Marine Lorent
- SPHERE (MethodS for Patients-centered outcomes and HEalth Research), INSERM UMR 1246, Nantes University, IRS2 - 22 boulevard Bénoni Goullin, 44200, Nantes, France
| | - Philippe Tessier
- SPHERE (MethodS for Patients-centered outcomes and HEalth Research), INSERM UMR 1246, Nantes University, IRS2 - 22 boulevard Bénoni Goullin, 44200, Nantes, France.,CHU Nantes University Hospital, Nantes, France
| | - Stéphane Supiot
- ICO - Institut de Cancérologie de l'Ouest - Centre René Gauducheau, Boulevard Jacques Monod, 44805, Saint-Herblain, France
| | - Véronique Sébille
- SPHERE (MethodS for Patients-centered outcomes and HEalth Research), INSERM UMR 1246, Nantes University, IRS2 - 22 boulevard Bénoni Goullin, 44200, Nantes, France.,CHU Nantes University Hospital, Nantes, France
| | - Etienne Dantan
- SPHERE (MethodS for Patients-centered outcomes and HEalth Research), INSERM UMR 1246, Nantes University, IRS2 - 22 boulevard Bénoni Goullin, 44200, Nantes, France
| |
Collapse
|
34
|
Eryilmaz IE, Kordan Y, Vuruskan BA, Kaygısız O, Tunca B, Cecener G. T2E ( TMPRSS2-ERG ) fusion transcripts are associated with higher levels of AMACR mRNA and a subsequent prostate cancer diagnosis in patients with atypical small acinar proliferation. Gene 2018; 645:69-75. [DOI: 10.1016/j.gene.2017.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
|
35
|
Bonkhoff H. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression. Prostate 2018; 78:2-10. [PMID: 29094395 DOI: 10.1002/pros.23446] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 11/11/2022]
Abstract
BACKGROUND The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. METHODS Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. RESULTS The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. CONCLUSIONS Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation.
Collapse
|
36
|
Zhou CK, Young D, Yeboah ED, Coburn SB, Tettey Y, Biritwum RB, Adjei AA, Tay E, Niwa S, Truelove A, Welsh J, Mensah JE, Hoover RN, Sesterhenn IA, Hsing AW, Srivastava S, Cook MB. TMPRSS2:ERG Gene Fusions in Prostate Cancer of West African Men and a Meta-Analysis of Racial Differences. Am J Epidemiol 2017; 186:1352-1361. [PMID: 28633309 PMCID: PMC5860576 DOI: 10.1093/aje/kwx235] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
The prevalence of fusions of the transmembrane protease, serine 2, gene (TMPRSS2) with the erythroblast transformation-specific-related gene (ERG), or TMPRSS2:ERG, in prostate cancer varies by race. However, such somatic aberration and its association with prognostic factors have neither been studied in a West African population nor been systematically reviewed in the context of racial differences. We used immunohistochemistry to assess oncoprotein encoded by the ERG gene as the established surrogate of ERG fusion genes among 262 prostate cancer biopsies from the Ghana Prostate Study (2004-2006). Poisson regression with robust variance estimation provided prevalence ratios and 95% confidence intervals of ERG expression in relation to patient characteristics. We found that 47 of 262 (18%) prostate cancers were ERG-positive, and being negative for ERG staining was associated with higher Gleason score. We further conducted a systematic review and meta-analysis of TMPRSS2:ERG fusions in relation to race, Gleason score, and tumor stage, combining results from Ghana with 40 additional studies. Meta-analysis showed the prevalence of TMPRSS2:ERG fusions in prostate cancer to be highest in men of European descent (49%), followed by men of Asian (27%) and then African (25%) descent. The lower prevalence of TMPRSS2:ERG fusions in men of African descent implies that alternative genomic mechanisms might explain the disproportionately high prostate cancer burden in such populations.
Collapse
Affiliation(s)
- Cindy Ke Zhou
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of Health Sciences, Rockville, Maryland
| | | | - Sally B Coburn
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yao Tettey
- University of Ghana Medical School, Accra, Ghana
| | | | | | - Evelyn Tay
- University of Ghana Medical School, Accra, Ghana
| | | | | | - Judith Welsh
- NIH Library, National Institutes of Health, Bethesda, Maryland
| | | | - Robert N Hoover
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Isabell A Sesterhenn
- Genitourinary Pathology, Joint Pathology Center, Department of Defense, Silver Spring, Maryland
| | - Ann W Hsing
- Stanford Prevention Research Center and Cancer Institute, Palo Alto, California
- Department of Health Research and Policy, Stanford School of Medicine, Palo Alto, California
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of Health Sciences, Rockville, Maryland
| | - Michael B Cook
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
37
|
Domain retention in transcription factor fusion genes and its biological and clinical implications: a pan-cancer study. Oncotarget 2017; 8:110103-110117. [PMID: 29299133 PMCID: PMC5746368 DOI: 10.18632/oncotarget.22653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
Genomic rearrangements involving transcription factors (TFs) can form fusion proteins resulting in either enhanced, weakened, or even loss of TF activity. Functional domain (FD) retention is a critical factor in the activity of transcription factor fusion genes (TFFGs). A systematic investigation of FD retention in TFFGs and their outcome (e.g. expression changes) in a pan-cancer study has not yet been completed. Here, we examined the FD retention status in 386 TFFGs across 13 major cancer types and identified 83 TFFGs involving 67 TFs that retained FDs. To measure the potential biological relevance of TFs in TFFGs, we introduced a Major Active Isofusion Index (MAII) and built a prioritized TFFG network using MAII scores and the observed frequency of fusion positive samples. Interestingly, the four TFFGs (PML-RARA, RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) with the highest MAII scores showed 50 differentially expressed target genes (DETGs) in fusion-positive versus fusion-negative cancer samples. DETG analysis revealed that they were involved in tumorigenesis-related processes in each cancer type. PLAU, which encodes plasminogen activator urokinase and serves as a biomarker for tumor invasion, was found to be consistently activated in the samples with the highest MAII scores. Among the 50 DETGs, 21 were drug targetable genes. Fourteen of these 21 DETGs were expressed in acute myeloid leukemia (AML) samples. Accordingly, we constructed an AML-specific TFFG network, which included 38 DETGs in RUNX1-RUNX1T1 or PML-RARA positive samples. In summary, this study revealed several TFFGs and their potential target genes, and provided insights into the clinical implications of TFFGs.
Collapse
|
38
|
Abstract
The androgen-signaling axis plays a pivotal role in the pathogenesis of prostate cancer. Since the landmark discovery by Huggins and Hodges, gonadal depletion of androgens has remained a mainstay of therapy for advanced disease. However, progression to castration-resistant prostate cancer (CRPC) typically follows and is largely the result of restored androgen signaling. Efforts to understand the mechanisms behind CRPC have revealed new insights into dysregulated androgen signaling and intratumoral androgen synthesis, which has ultimately led to the development of several novel androgen receptor (AR)-directed therapies for CRPC. However, emergence of resistance to these newer agents has also galvanized new directions in investigations of prereceptor and postreceptor AR regulation. Here, we review our current understanding of AR signaling as it pertains to the biology and natural history of prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Hannelore Heemers
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nima Sharifi
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
39
|
Abstract
CONTEXT - Precursor lesions of urologic malignancies are established histopathologic entities, which are important not only to recognize for clinical purposes, but also to further investigate at the molecular level in order to gain a better understanding of the pathogenesis of these malignancies. OBJECTIVE - To provide a brief overview of precursor lesions to the most common malignancies that develop within the genitourinary tract with a focus on their clinical implications, histologic features, and molecular characteristics. DATA SOURCES - Literature review from PubMed, urologic pathology textbooks, and the 4th edition of the World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs. All photomicrographs were taken from cases seen at Weill Cornell Medicine or from the authors' personal slide collections. CONCLUSIONS - The clinical importance and histologic criteria are well established for the known precursor lesions of the most common malignancies throughout the genitourinary tract, but further investigation is warranted at the molecular level to better understand the pathogenesis of these lesions. Such investigation may lead to better risk stratification of patients and potentially novel treatments.
Collapse
|
40
|
Hernández-Llodrà S, Juanpere N, de Muga S, Lorenzo M, Gil J, Font-Tello A, Agell L, Albero-González R, Segalés L, Merino J, Serrano L, Fumadó L, Cecchini L, Lloreta-Trull J. ERG overexpression plus SLC45A3 (prostein) and PTEN expression loss: Strong association of the triple hit phenotype with an aggressive pathway of prostate cancer progression. Oncotarget 2017; 8:74106-74118. [PMID: 29088771 PMCID: PMC5650326 DOI: 10.18632/oncotarget.18266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
TMPRSS2 and SLC45A3 rearrangements may coexist in the same tumor. ERG rearrangements and PTEN loss are concomitant events in prostate cancer (PrCa), and can cooperate in progression. We have reported that mRNA expression of TMPRSS2-ERG and SLC45A3-ERG rearrangements plus PTEN loss define an aggressive tumor subset. The aim of this study has been to validate these results by immunohistochemistry in a large cohort of tumors. ERG, SLC45A3 and PTEN immunostaining and their association with pathological features and PSA progression-free survival were analyzed in 220 PrCa (PSMAR-Biobank, Barcelona, Spain). ERG protein expression was found in 46.8% and SLC45A3 and PTEN loss in 30% and 34% tumors, respectively. Single ERG positive immunostaining was associated with GS = 6 tumors (p = 0.016), double ERG+/PTEN loss with GS = 7 (p = 0.008) and Grade Group 2 (GG) or GG3 cases (p = 0.042), ERG+/SLC45A3 loss/PTEN loss ("triple hit") with GS ≥ 8 (p < 0.0001) and GG4 or GG5 tumors (p = 0.0003). None of GS = 6 nor = GG1 cases showed this combination. In the GS ≥ 8 group, ERG+ (p = 0.002), PTEN loss (p = 0.009) and "triple hit" (p = 0.003) were associated with Gleason pattern 3 component, and single SLC45A3 loss (p = 0.036) with GS ≥ 8 without pattern 3. The number of aberrant events and the triple hit were strongly associated with shorter PSA progression-free survival. In GS = 6 PrCa, single ERG+ was also associated with progression. ERG+ identifies a distinct pathway of PrCa. Additional assessment of PTEN and SLC45A3 adds relevant prognostic information. The triple hit phenotype (ERG+/SLC45A3 loss/PTEN loss) is associated with progression and could be used for patient stratification, treatment and follow-up.
Collapse
Affiliation(s)
| | - Nuria Juanpere
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Silvia de Muga
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Lorenzo
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Joan Gil
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Laia Agell
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Laura Segalés
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Laia Serrano
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Fumadó
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Cecchini
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Josep Lloreta-Trull
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| |
Collapse
|
41
|
Aldaoud N, Abdo N, Al Bashir S, Alqudah M, Marji N, Alzou'bi H, Alazab R, Trpkov K. Prostate cancer in Jordanian-Arab population: ERG status and relationship with clinicopathologic characteristics. Virchows Arch 2017; 471:753-759. [PMID: 28550496 DOI: 10.1007/s00428-017-2160-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 11/26/2022]
Abstract
TMPRSS2/ERG fusion was found to be the most common genetic event in prostate adenocarcinoma. There is a strong correlation between the fusion and ERG-positive immunostaining. Many studies showed racial variation in ERG expression in prostate cancer patients. There is no data however on the rate of ERG-positive cancer in Jordanian or Arab population. We evaluated the frequency and the significance of ERG fusion in Jordanian-Arab population using immunohistochemistry for ERG. The cohort included 193 prostate cancer specimens: 109 needle core biopsies, 45 radical prostatectomies, 37 transurethral resections of prostate, and 2 enucleation specimens. We found ERG reactivity in 64 (33.2%) of evaluated cases. The observed ERG frequency in the Jordanian-Arab population is lower than the one documented in North America, but it is higher than in Asian patient cohorts. The ERG positivity was significantly associated with lower baseline prostate-specific antigen but was unrelated to patient age, Gleason Score, or the novel Gleason Grade Groups. In the 45 prostatectomy cases, ERG did not correlate with the pathologic stage, margin, nodal status, and the biochemical recurrence, and it did not appear to represent an important prognosticator.
Collapse
Affiliation(s)
- Najla Aldaoud
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan.
- Department of Pathology King Abdullah University hospital, Jordan University of Science and Technology, P.O. box (3030), Irbid, 22110, Jordan.
| | - Nour Abdo
- Department of Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Samir Al Bashir
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alqudah
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Marji
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Hiba Alzou'bi
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
- Department of Pathology, Yarmouk University, Irbid, Jordan
| | - Rami Alazab
- Department of Urology, Jordan University of Science and Technology, Irbid, Jordan
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Mikhaylenko DS, Efremov GD, Strelnikov VV, Zaletaev DV, Alekseev BY. Somatic Mutation Analyses in Studies of the Clonal Evolution and Diagnostic Targets of Prostate Cancer. Curr Genomics 2017; 18:236-243. [PMID: 28659719 PMCID: PMC5476950 DOI: 10.2174/1389202917666161102095900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PC) is the most common uro-oncological disease in the global population and still requires a more efficient laboratory diagnosis. Point mutations of oncogenes and tumor sup-pressor genes are the most frequent molecular genetic events in carcinogenesis. The mutations are re-sponsible, to a great extent, for the clonal evolution of cancer and can be considered as primary candi-date molecular markers of PC. Using next-generation sequencing to analyze the mutations in PC, the main molecular PC subtypes were identified, which depended on the presence of fusion genes and FOXA1, CHD1, and SPOP point mutations; other driver mutations responsible for the progression of PC subclones were also characterized. This review summarizes the data on early PC genetic markers (an mtDNA deletion, and TMPRSS2:ERG expression), as well as these somatic mutations at later stages of PC. Emphasis is placed on a switch in AR synthesis to a constitutively active variant and the point muta-tions that facilitate PC transition to a castration-refractory state that is resistant to new AR inhibitors. Based on the current whole-exome sequencing data, the frequencies and localizations of the somatic mu-tations that may provide new genetic diagnostic markers and drug targets are described.
Collapse
Affiliation(s)
- Dmitry S Mikhaylenko
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia.,Laboratory of Human Molecular Genetics, Institute of Molecular Medicine of the Sechenov First Moscow State Medical University, Moscow, Russia
| | - Gennady D Efremov
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia
| | | | - Dmitry V Zaletaev
- Laboratory of Human Molecular Genetics, Institute of Molecular Medicine of the Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Y Alekseev
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia
| |
Collapse
|
43
|
Yates C, Long MD, Campbell MJ, Sucheston-Campbell L. miRNAs as drivers of TMPRSS2-ERG negative prostate tumors in African American men. FRONT BIOSCI-LANDMRK 2017; 22:212-229. [PMID: 27814612 PMCID: PMC5858730 DOI: 10.2741/4482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
African Americans (AAs) who have PCa typically have more aggressive disease and make up a disproportionate number of the disease deaths, relative to European Americans (EAs). TMPRSS2 translocations, a common event in EA patients, are exploited in diagnostic and prognostic settings, whereas they are diminished in frequency in AA men. Thus, these patients with TMPRSS2 fusion-negative disease represent an under-investigated patient group. We propose that epigenetic events are a significant and alternative driver of aggressive disease in fusion-negative PCa. To reveal epigenetically governed microRNAs (miRNAs) that are enriched in fusion-negative disease and associated with aggressive in AA PCa, we leveraged both our experimental evidence and publically available data. These analyses identified 18 miRNAs that are differentially altered in fusion-negative disease, associated with DNA CpG methylation, and implicated in aggressive and AA PCas. Understanding the relationships between miRNA expression, upstream epigenetic regulation by DNA methylation, and downstream regulation of mRNA targets in fusion negative disease is imperative to understanding the biological basis of the racial health disparity in PCa.
Collapse
Affiliation(s)
- Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088
| | - Mark D Long
- Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| | - Moray J Campbell
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088,
| | - Lara Sucheston-Campbell
- Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The recent publication of The Cancer Genome Atlas molecular taxonomy of primary prostate cancer highlights the increased understanding of the genomic basis of human prostate cancer, but also emphasizes the complexity and heterogeneity of prostate cancer. RECENT FINDINGS Seven molecular subclasses have been defined on the basis of early genomic alterations, which are largely mutually exclusive. SUMMARY We review the recent advances in the genomic understanding of human prostate cancer, with focus on molecular subclassification. Broadly, prostate cancer can be classified based upon whether specific genomic rearrangements, such as the Transmembrane Protease, Serine 2-ETS-related gene fusion occur or whether specific alterations such as Speckle-type POZ protein and forkhead box A1 mutations occur. The molecular drivers remain to be identified in a further quarter of human prostate cancers. Depending upon the molecular subclassification and the coincident genomic alterations, specific clinical insights can be gained from this information, including associations with pathologic factors, race, and prognosis, as well as the possibility for future precision therapies.
Collapse
|
45
|
Liu B, Gu X, Huang T, Luan Y, Ding X. Identification of TMPRSS2-ERG mechanisms in prostate cancer invasiveness: Involvement of MMP-9 and plexin B1. Oncol Rep 2016; 37:201-208. [PMID: 28004109 DOI: 10.3892/or.2016.5277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/06/2016] [Indexed: 11/05/2022] Open
Abstract
The relationship of TMPRSS2-ERG fusion gene with matrix metalloproteinase-9 (MMP-9) and PLXNB1 (plexin B1) in regulation of prostate cancer (PCa) aggressiveness was investigated. Fluorescence in situ hybridization (FISH) assays, qRT-PCR and western blot analysis were employed to detect the expression of TMPRSS2-ERG fusion gene, ERG, MMP-9 and PLXNB1 of 135 human tissues, which included 55 metastatic PCa cases, 50 localized PCa cases and 30 BPH cases. Then using siRNA (anti-ERG, MMP-9 and PLXNB1, respectively) downregulation of the target gene of VCaP and PC-3 cells, MTT and Transwell were performed. The results showed that the positive rate of TMPRSS2-ERG fusion was 38.1% (40/105) in total PCa samples, 47.3% (26/55) of metastatic PCa, 28.0% (14/50) of localized PCa, while 0.0% (0/30) in BPH samples. The mRNA and protein expression of ERG, MMP-9 and PLXNB1 were higher in metastatic PCa (P<0.0001), and the mRNA expression of the three genes were positively correlated with TMPRSS2-ERG fusionin PCa group (P<0.0001). siRNA transfected PCa cells can effectively downregulate the target gene expression, and we identified that MMP-9 and PLXNB1 expression were all regulated by TMPRSS2-ERG fusion gene. While only PLXNB1 contributed to TMPRSS2-ERG mediated enhancements of VCaP cell migration and invasion. The results demonstrated that PLXNB1, but not MMP-9, was the target gene directly related to TMPRSS2-ERG in PCa cell migration and invasion.
Collapse
Affiliation(s)
- Bide Liu
- Department of Urology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiao Gu
- Department of Urology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Tianbao Huang
- Department of Urology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yang Luan
- Department of Urology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xuefei Ding
- Department of Urology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
46
|
Gerrin SJ, Sowalsky AG, Balk SP, Ye H. Mutation Profiling Indicates High Grade Prostatic Intraepithelial Neoplasia as Distant Precursors of Adjacent Invasive Prostatic Adenocarcinoma. Prostate 2016; 76:1227-36. [PMID: 27272561 PMCID: PMC5507580 DOI: 10.1002/pros.23212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION High Grade Prostatic Intraepithelial Neoplasia (HGPIN) is the putative precursor lesion to prostatic adenocarcinoma (PCa), but the precise relationship between HGPIN and PCa remains unclear. METHODS We performed a molecular case study in which we studied mutation profiles of six tumor-associated HGPIN lesions in a single case of TMPRSS2:ERG fusion positive Gleason score 7 PCa that we had previously mapped for somatic mutations in adjacent Gleason patterns 3 and 4 foci, using microdissection and targeted deep-sequencing. RESULTS A total of 32 tumor-specific mutated sites were successfully amplified and sequenced, including 25 truncal mutations and 7 mutations that were specific to either the Gleason pattern 3 or pattern 4 foci. All six HGPIN foci shared the same tumor-specific TMPRSS2:ERG fusion breakpoint, establishing that they were all clonally related to the adjacent invasive tumor. Among the 32 gene targets mutated in the invasive tumor, only mutation of the OR2AP1 gene, a truncal mutation, was found in a single focus of HGPIN. The remaining gene targets that were successfully sequenced were wild-type in all other HGPIN foci. DISCUSSION This study demonstrates the feasibility of targeted mutation profiling of HGPIN lesions, which will be important to understand PCa tumorigenesis. The results in this case, showing a remarkable absence of truncal mutations in HGPIN lesions bearing the tumor-specific ERG fusion, indicate HGPIN lesions may be relatively stable genetically and argue against a stepwise clonal evolution model of HGPIN to PCa. Prostate 76:1227-1236, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sean J. Gerrin
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Adam G. Sowalsky
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
47
|
Abstract
Prostate cancer is a clinically heterogeneous disease, with some men having indolent disease that can safely be observed, while others have aggressive, lethal disease. Over the past decade, researchers have begun to unravel some of the genomic heterogeneity that contributes to these varying clinical phenotypes. Distinct molecular sub-classes of prostate cancer have been identified, and the uniqueness of these sub-classes has been leveraged to predict clinical outcomes, design novel biomarkers for prostate cancer diagnosis, and develop novel therapeutics. Recent work has also elucidated the temporal and spatial heterogeneity of prostate cancer, helping us understand disease pathogenesis, response to therapy, and progression. New genomic techniques have provided us with a window into the remarkable clinical and genomic heterogeneity of prostate cancer, and this new perspective will increasingly impact patient care.
Collapse
Affiliation(s)
- Jonathan Shoag
- Department of Urology, NewYork–Presbyterian Hospital, Weill Cornell Medical College, New York, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork–Presbyterian Hospital, Weill Cornell Medical College, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, USA
| |
Collapse
|
48
|
Koo KM, Carrascosa LG, Shiddiky MJA, Trau M. Amplification-Free Detection of Gene Fusions in Prostate Cancer Urinary Samples Using mRNA-Gold Affinity Interactions. Anal Chem 2016; 88:6781-8. [PMID: 27299694 DOI: 10.1021/acs.analchem.6b01182] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A crucial issue in present-day prostate cancer (PCa) detection is the lack of specific biomarkers for accurately distinguishing between benign and malignant cancer forms. This is causing a high degree of overdiagnosis and overtreatment of otherwise clinically insignificant cases. As around half of all malignant PCa cases display a detectable gene fusion mutation between the TMPRSS2 promoter sequence and the ERG coding sequence (TMPRSS2:ERG) in urine, noninvasive screening of TMPRSS2:ERG mRNA in patient urine samples could improve the specificity of current PCa diagnosis. However, current gene fusion detection methodologies are largely dependent on RNA enzymatic amplification, which requires extensive sample manipulation, costly labels for detection, and is prone to bias/artifacts. Herein we introduce the first successful amplification-free electrochemical assay for direct detection of TMPRSS2:ERG mRNA in PCa urinary samples by selectively isolating and adsorbing TMPRSS2:ERG mRNA onto bare gold electrodes without requiring any surface modification. We demonstrated excellent limit-of-detection (10 cells) and specificity using PCa cell line models, and showcased clinical utility by accurately detecting TMPRSS2:ERG in a collection of 17 urinary samples obtained from PCa patients. Furthermore, these results were validated with the current gold standard reverse transcription (RT)-PCR approach with 100% concordance.
Collapse
Affiliation(s)
- Kevin M Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Muhammad J A Shiddiky
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
TMPRSS2:ERG fusion gene occurs less frequently in Chinese patients with prostate cancer. Tumour Biol 2016; 37:12397-12402. [DOI: 10.1007/s13277-016-5116-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 06/09/2016] [Indexed: 01/31/2023] Open
|
50
|
Hernández S, Font-Tello A, Juanpere N, de Muga S, Lorenzo M, Salido M, Fumadó L, Serrano L, Cecchini L, Serrano S, Lloreta J. Concurrent TMPRSS2-ERG and SLC45A3-ERG rearrangements plus PTEN loss are not found in low grade prostate cancer and define an aggressive tumor subset. Prostate 2016; 76:854-65. [PMID: 26959281 DOI: 10.1002/pros.23176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/16/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND SLC45A3 is the second most common ERG partner in prostate cancer (PrCa). Coexisting TMPRSS2 and SLC45A3 rearrangements are found in a subset of cases, but the meaning is still unknown. METHODS SLC45A3-ERG and TMPRSS2-ERG rearrangements and their association with ERG and PTEN expression and with clinical and pathological features have been analyzed in 80 PrCa (PSMAR-Biobank, Barcelona, Spain). ERG and PTEN mRNA were assessed by qRT-PCR; TMPRSS2-ERG and SLC45A3-ERG by RT-PCR, FISH, and direct sequencing; and ERG expression by IHC. The endpoints were Gleason score (GS), stage, and PSA progression-free survival. RESULTS Single TMPRSS2-ERG was found in 51.6% GS ≤ 7 and 22.2% GS ≥ 8 tumors (P = 0.027). SLC45A3-ERG was found in 25 cases, 20 of them with concurrent TMPRSS2-ERG rearrangement: 11.5% GS = 6, 22.2% GS = 7, and 50% GS ≥ 8 tumors (P = 0.013). Double rearrangements were associated with higher levels of ERG mRNA (P = 0.04). Double rearrangement plus PTEN loss was detected in 0% GS = 6; 14.7% GS = 7, and 29.4% GS ≥ 8 tumors (P = 0.032). Furthermore, this triple change was present in 19.2% stage T3-4 but not in any of stage T2 tumors (P = 0.05). No relationship was found with PSA progression-free survival. CONCLUSIONS Single TMPRSS2-ERG translocation is associated with low grade PrCa. Subsequent development of SLC45A3-ERG results in higher ERG expression. The combination of double rearrangement plus PTEN loss, according to our series, is never found in low grade, low stage tumors. These findings could be potentially useful in therapeutic decision making in PrCa. Tumors with combined TMPRSS2-ERG/SLC45A3-ERG fusions plus PTEN loss should be excluded from watchful waiting and are candidates for intensive therapy. Prostate 76:854-865, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvia Hernández
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba Font-Tello
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Núria Juanpere
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Silvia de Muga
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Lorenzo
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Marta Salido
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Fumadó
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Laia Serrano
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Cecchini
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Sergio Serrano
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - Josep Lloreta
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| |
Collapse
|