1
|
Güngör Ö, Solmaz AE, Karaca E, Akalın T, Bolat E, Akın H. A Rare Case of Lhermitte Duclos Disease Associated with Somatic PTEN and Germline SUFU Variants. CEREBELLUM (LONDON, ENGLAND) 2025; 24:85. [PMID: 40208419 DOI: 10.1007/s12311-025-01835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
Lhermitte-Duclos disease (LDD) is a rare dysplastic gangliocytoma of the cerebellum, typically manifesting as a hamartomatous lesion in the posterior fossa. Currently, LDD has been only linked to PTEN pathogenic variants, with the PI3K/AKT/mTOR pathway acting as the primary signaling cascade responsible for its pathogenesis. We present a case of LDD in which a novel germline heterozygous splice site variant (c.183-2 A > G) in the SUFU gene and a somatic heterozygous missense variant (c.389 G > A) in the PTEN gene, identified from tumor tissue were detected by targeted next-generation sequencing (NGS). SUFU, a tumor suppressor gene, primarily inhibits the hedgehog (Hh) signaling pathway and furthermore influences the AKT/mTOR pathway. Pathogenic variants in SUFU have been linked to medulloblastoma, and their potential role in LDD remains under investigation. Given that both conditions involve granule cell progenitors and are influenced by impaired Hh signaling, they may share a similar developmental path. This is the first research indicating that SUFU may play a role in the etiology of LDD, despite SUFU variants being associated with several central nervous system malignancies. The SUFU variant was shown to disrupt splicing via Sanger sequencing and gel electrophoresis of RNA extracted from blood. Analysis of DNA from tumor tissue using the TWIST Exome 2.0 Panel revealed de novo pathogenic SUFU (c.183-2 A > G) and PTEN (c.389G > A) variants. This paper establishes an initial link between LDD and germline SUFU along with somatic PTEN variants identified from tumor tissue, providing novel insights into the molecular pathogenesis of this rare condition.
Collapse
Affiliation(s)
- Özge Güngör
- EGE University School of Medicine Medical Genetics, Izmir, Turkey
| | - Aslı Ece Solmaz
- EGE University School of Medicine Medical Genetics, Izmir, Turkey.
| | - Emin Karaca
- EGE University School of Medicine Medical Genetics, Izmir, Turkey
| | - Taner Akalın
- EGE University School of Medicine Medical pathology, Izmir, Turkey
| | - Elif Bolat
- School of Medicine Brain and Neurosurgery, EGE University, Izmir, Turkey
| | - Haluk Akın
- EGE University School of Medicine Medical Genetics, Izmir, Turkey
| |
Collapse
|
2
|
Wang CY, Chen CB, Ilagan FMD, Lin JY, Sung WY, Lu LY, Liau JY, Chen YH, Liao YH, Chen JS, Sheen YS, Chang YY, Hong JB. Basal Cell Nevus Syndrome and Sporadic Basal Cell Carcinoma: A Comparative Study of Clinicopathological Features. Acta Derm Venereol 2025; 105:adv40692. [PMID: 40105068 PMCID: PMC11971840 DOI: 10.2340/actadv.v105.40692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Basal cell nevus syndrome is caused by mutations in the Sonic hedgehog pathway and characterized by early-onset basal cell carcinoma. The features of basal cell carcinoma in basal cell nevus syndrome compared with sporadic basal cell carcinoma have not been explored. This study is a retrospective study of patients with basal cell nevus syndrome in two medical centres in Taiwan from 1991 to 2021 and patients with sporadic basal cell carcinoma excised from 2015 to 2020. An analysis of 18 patients with basal cell nevus syndrome showed an older mean age at the first diagnosis of basal cell carcinoma (37.5 years) than reported in Western countries. The majority of basal cell carcinomas were located in the head and neck region (80.7%), with nodular BCC being the most common tumour type (47.0%). Compared with sporadic basal cell carcinomas, basal cell carcinomas in basal cell nevus syndrome patients occurred more frequently on the scalp (34.7% vs 6.1%, p < 0.001). In addition, the superficial type of basal cell carcinoma was more likely to be seen in basal cell nevus syndrome (24.7% vs 10.4%, p < 0.001). The limitations were that some features of the basal cell nevus syndrome patients might not have been present yet at the time of examination or they did not receive thorough screening. In conclusion, the distinct features of basal cell carcinomas in basal cell nevus syndrome patients have important implications for the prevention, diagnosis, and management of basal cell carcinoma in basal cell nevus syndrome patients.
Collapse
Affiliation(s)
- Ching-Ya Wang
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan
| | - Chun-Bing Chen
- Department of dermatology, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan; Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Franchesca Marie D Ilagan
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Yi Lin
- Department of dermatology, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan; Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yi Sung
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Lai-Ying Lu
- Department of dermatology, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology and Aesthetic Medicine Center, Jen-Ai Hospital, Taichung, Taiwan
| | - Jau-Yu Liau
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiu Chen
- Department of Pathology, Chang Gung Memorial Hospital Linkou-Branch, Taoyuan, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jau-Shiuh Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yao-Yu Chang
- Department of dermatology, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Bon Hong
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Yoshida S, Yoshida K. Regulatory mechanisms governing GLI proteins in hedgehog signaling. Anat Sci Int 2025; 100:143-154. [PMID: 39576500 DOI: 10.1007/s12565-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 02/16/2025]
Abstract
The Hedgehog (Hh) signaling pathway is critical for regulating cell growth, survival, fate determination, and the overall patterning of both vertebrate and invertebrate body plans. Aberrations in Hh signaling are associated with congenital abnormalities and tumorigenesis. In vertebrates, Hh signaling depends uniquely on primary cilia, microtubule-based organelles that extend from the cell surface. Over the last 2 decades, studies have demonstrated that key molecules regulating Hh signaling dynamically accumulate in primary cilia via intraflagellar transport systems. Moreover, through the primary cilia, extracellular signals are converted to stabilize GLI2 and GLI3 that are transcription factors that play a central role in regulating Hh signaling at the post-translational modification level. Recent in vivo and anatomical studies have uncovered crucial molecules that facilitate the conversion of extracellular signals into the intracellular stabilization of GLI2/GLI3 via primary cilia, emphasizing their essential roles in tissue development and tumorigenesis. This review explores the regulatory mechanisms of GLI2/GLI3 with a focus on mammalian tissue development.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan.
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
4
|
Barbieux S, Jouenne F, Machet MC, Fraitag S, Macagno N, Battistella M, Cribier B, Sohier P, Laurent-Roussel S, Carlotti A, Beltzung F, Jullié ML, Moulonguet I, Basset-Seguin N, Deschamps L, Mourah S, Samimi M, Guyétant S, Kervarrec T. Re-evaluation of the concept of basaloid follicular hamartoma associated with naevoid basal cell carcinoma syndrome: a morphological, immunohistochemical and molecular study. Pathology 2025; 57:49-56. [PMID: 39455322 DOI: 10.1016/j.pathol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 10/28/2024]
Abstract
Naevoid basal cell carcinoma syndrome (NBCCS) is a rare genodermatosis caused by germline mutations in genes of the Sonic Hedgehog (SHH) pathway and is characterised by early onset of multiple basal cell carcinomas (BCCs). Although skin tumours with follicular differentiation, notably basaloid follicular hamartoma (BFH), have been reported in NBCCS, their relations with BCC are poorly defined. In this context, the aim of this study was to clarify morphological, immunohistochemical and molecular features of BFH arising in a context of NBCCS. A total of 140 skin tumours from NBCCS and 140 control BCC tumours were reviewed, blinded to clinical data and classified as BCC or BFH. The morphological characteristics of these two groups were then compared. Twenty cases were submitted for immunohistochemical and molecular analysis. Thirty-three tumours among the exploratory cohort were classified as BFH and were exclusively detected in NBCCS patients. Histopathological criteria that were significantly different from BCC were as follows: a small size (<1.5 mm), connection to a hair follicle, arborescent organoid architecture, lack of cytological atypia and infundibulocystic differentiation. Immunohistochemical analysis confirmed activation of the SHH pathway in these lesions. Targeted next-generation sequencing suggested that MYCN and GLI2/3 amplifications and TP53 mutations might be involved in progression of these follicular tumours to BCC. Our study confirms the high prevalence of BFH, representing up to 24% of skin tumours in NBCCS and potentially being BCC precursors.
Collapse
Affiliation(s)
- Simon Barbieux
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France.
| | - Fanélie Jouenne
- Department of Tumors Genomics and Pharmacology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Marie-Christine Machet
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Sylvie Fraitag
- Department of Pathology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Nicolas Macagno
- Department of Pathology, Centre Hospitalier de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France; CARADERM Network, France
| | - Maxime Battistella
- CARADERM Network, France; Department of Pathology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Bernard Cribier
- CARADERM Network, France; Department of Dermatology, Hôpitaux Universitaires et Université de Strasbourg, Strasbourg, France
| | - Pierre Sohier
- CARADERM Network, France; Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Sara Laurent-Roussel
- CARADERM Network, France; Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France; National Center of Dermatopathology - La Roquette, Paris, France
| | - Agnès Carlotti
- Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Fanny Beltzung
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Marie-Laure Jullié
- CARADERM Network, France; Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | | | - Nicole Basset-Seguin
- CARADERM Network, France; Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Lydia Deschamps
- CARADERM Network, France; Department of Pathology, Hôpital Bichat, AP-HP, Paris, France
| | - Samia Mourah
- Department of Tumors Genomics and Pharmacology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Mahtab Samimi
- CARADERM Network, France; Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; CARADERM Network, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| |
Collapse
|
5
|
Hercent A, Bennani R, Lafitte P, Mary M, Lamoril J, Bourrat E, Kannengiesser C, Tchernitchko D. Clinical vs. molecular diagnosis of Gorlin syndrome: relevance of diagnostic criteria depends on the age of the patients. Clin Exp Dermatol 2025; 50:380-386. [PMID: 38768301 DOI: 10.1093/ced/llae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Gorlin syndrome (GS) is an autosomal dominant disorder characterized by a predisposition to basal cell carcinoma and developmental defects. It is caused by pathogenic variants in the PTCH1 or SUFU genes. OBJECTIVES To ascertain the effectiveness of molecular screening in a cohort of patients with a suspicion of GS and to describe the patients' clinical and genetic characteristics. METHODS In total, 110 patients with a suspicion of GS were studied. The patients were seen at the genetic department of Bichat University Hospital for molecular screening. The patients' clinical and paraclinical data were collected and analysed according to Evans' diagnostic criteria and were compared with molecular information. RESULTS Among 110 probands, only 56% fulfilled Evans' diagnostic criteria. Overall, 75% of the patients who fulfilled those criteria carried a pathogenic variation in PTCH1 or SUFU. We compared the clinical and paraclinical data of 54 probands carrying a PTCH1 or SUFU mutation with 56 probands without identified mutations. Among patients carrying a pathogenic variation in the PTCH1 or SUFU genes, 30 years appears to be the cut-off age after which all patients have clear clinical GS. Indeed, after age 30 years, all patients carrying a PTCH1 or SUFU mutation fulfilled the diagnostic criteria of Evans (82% met the clinical criteria, reaching 100% with complementary examinations such as X-rays and ultrasound). Before 30 years of age, only 37% of patients with mutated genes fulfilled the clinical diagnostic criteria, reaching only 62% with simple complementary exams. We also report 22 new mutations in PTCH1. CONCLUSIONS Molecular screening of patients with GS who do not fulfil Evans' diagnostic criteria should only be offered in the first instance to patients under 30 years of age. After age 30 years, careful clinical examination and complementary radiological exams should be enough to eliminate the diagnosis of GS among patients who do not fulfil the diagnostic criteria.
Collapse
Affiliation(s)
- Agathe Hercent
- Department of Genetics, Bichat Hospital (APHP), Reference Laboratory for the Diagnosis of Gorlin Syndrome, University of Paris Cité, Paris, France
| | - Rizk Bennani
- Department of Genetics, Bichat Hospital (APHP), Reference Laboratory for the Diagnosis of Gorlin Syndrome, University of Paris Cité, Paris, France
| | - Philippe Lafitte
- Department of Genetics, Bichat Hospital (APHP), Reference Laboratory for the Diagnosis of Gorlin Syndrome, University of Paris Cité, Paris, France
| | - Mickael Mary
- Department of Genetics, Bichat Hospital (APHP), Reference Laboratory for the Diagnosis of Gorlin Syndrome, University of Paris Cité, Paris, France
| | - Jerôme Lamoril
- Department of Genetics, Bichat Hospital (APHP), Reference Laboratory for the Diagnosis of Gorlin Syndrome, University of Paris Cité, Paris, France
| | - Emmanuelle Bourrat
- Department of Dermatology, Reference Centre for Rare Skin Diseases MAGEC, Saint Louis Hospital, University of Paris Cité, Paris, France
| | - Caroline Kannengiesser
- Department of Genetics, Bichat Hospital (APHP), Reference Laboratory for the Diagnosis of Gorlin Syndrome, University of Paris Cité, Paris, France
- INSERM U1152, University of Paris Cité, Paris, France
| | - Dimitri Tchernitchko
- Department of Genetics, Bichat Hospital (APHP), Reference Laboratory for the Diagnosis of Gorlin Syndrome, University of Paris Cité, Paris, France
| |
Collapse
|
6
|
Smith TB, Kopajtich R, Demain LAM, Rea A, Thomas HB, Schiff M, Beetz C, Joss S, Conway GS, Shukla A, Yeole M, Radhakrishnan P, Azzouz H, Ben Chehida A, Elmaleh-Bergès M, Glasgow RIC, Thompson K, Oláhová M, He L, Jenkinson EM, Jahic A, Belyantseva IA, Barzik M, Urquhart JE, O'Sullivan J, Williams SG, Bhaskar SS, Carrera S, Blakes AJM, Banka S, Yue WW, Ellingford JM, Houlden H, Munro KJ, Friedman TB, Taylor RW, Prokisch H, O'Keefe RT, Newman WG. Bi-allelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered apoptosis and a Perrault-syndrome-spectrum phenotype. Am J Hum Genet 2025; 112:59-74. [PMID: 39701103 PMCID: PMC11739875 DOI: 10.1016/j.ajhg.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency. Here, we describe five unrelated individuals with bi-allelic variants in death-associated protein 3 (DAP3), a nuclear gene encoding mitoribosomal small subunit 29 (MRPS29), with variable clinical presentations ranging from Perrault syndrome (sensorineural hearing loss and ovarian insufficiency) to an early childhood neurometabolic phenotype. Assessment of respiratory-chain function and proteomic profiling of fibroblasts from affected individuals demonstrated reduced MRPS29 protein amounts and, consequently, decreased levels of additional protein components of the mitoribosomal small subunit, as well as an associated combined deficiency of complexes I and IV. Lentiviral transduction of fibroblasts from affected individuals with wild-type DAP3 cDNA increased DAP3 mRNA expression and partially rescued protein levels of MRPS7, MRPS9, and complex I and IV subunits, demonstrating the pathogenicity of the DAP3 variants. Protein modeling suggested that DAP3 disease-associated missense variants can impact ADP binding, and in vitro assays demonstrated that DAP3 variants can consequently reduce both intrinsic and extrinsic apoptotic sensitivity, DAP3 thermal stability, and DAP3 GTPase activity. Our study presents genetic and functional evidence that bi-allelic variants in DAP3 result in a multisystem disorder of combined oxidative phosphorylation deficiency with pleiotropic presentations, consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Manuel Schiff
- Université Paris Cité, Reference Center for Mitochondrial Disorders (CARAMMEL) and Reference Center Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, Filière G2M, Paris, France; INSERM UMR_S1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, UK
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hatem Azzouz
- Service de Pédiatrie et des Maladies Métaboliques Héréditaires, Centre Hospitalier Universitaire la Rabta, Jabberi 1007, Tunis, Tunisia
| | - Amel Ben Chehida
- Laboratoire de Recherche LR12SP02, Maladies Métaboliques Héréditaires Investigations et Prise en Charge, Service de Pédiatrie et des Maladies Métaboliques Héréditaires, Centre Hospitalier Universitaire la Rabta, Jabberi 1007, Tunis, Tunisia
| | - Monique Elmaleh-Bergès
- Service de Radiologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ruth I C Glasgow
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Monika Oláhová
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Emma M Jenkinson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Amir Jahic
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Jill E Urquhart
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - James O'Sullivan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Simon G Williams
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Sanjeev S Bhaskar
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Samantha Carrera
- Genome Editing Unit, University of Manchester, Manchester M13 9PT, UK
| | - Alexander J M Blakes
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK; Genomics England, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-3729, USA
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Holger Prokisch
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK.
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
7
|
van Dal M, Martens-de Kemp SR, Mooyaart AL, Voogt W, Wakkee M, Damman J. Clinicopathological and molecular spectrum of patients with germline SUFU mutations: A case series. J Cutan Pathol 2024; 51:980-986. [PMID: 39276021 DOI: 10.1111/cup.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND One of the hereditary syndromes associated with multiple early-onset basal cell carcinomas (BCCs) is basal cell nevus syndrome (BCNS), of which a minority is caused by germline SUFU mutations. Germline SUFU mutations show a spectrum of phenotypes, of which multiple hereditary infundibulocystic basal cell carcinoma syndrome (MHIBCC) is one. Patients with MHIBCC develop multiple basaloid skin tumors from middle age onwards. METHODS Three patients presenting with an MHIBCC phenotype were tested for a germline SUFU mutation. Skin biopsies were assessed by two dermatopathologists. RESULTS Our study adds three new pathogenic SUFU variants, including a mosaic, to the current literature. Literature suggests a spectrum of phenotypes of patients carrying the same SUFU mutation, which ranges from the MHIBCC phenotype, to BCNS, to patients that develop life-threatening brain tumors. This last risk is significantly higher in germline SUFU mutation carriers when compared to BCNS patients carrying germline PTCH1 mutations. CONCLUSIONS Germline SUFU mutation carriers should be recognized as a distinct group of patients carrying specific health risks, independent of meeting the BCNS criteria. Phenotypic prediction based on the specific SUFU mutation seems unfeasible. It is of utmost importance that the less apparent MHIBCC phenotype is recognized, to provide (second generation) germline SUFU mutation carriers appropriate healthcare.
Collapse
Affiliation(s)
- Mashiro van Dal
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Antien L Mooyaart
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Walter Voogt
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marlies Wakkee
- Department of Dermatology, Erasmus MC, University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Jeffrey Damman
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Smith TB, Kopajtich R, Demain LAM, Rea A, Thomas HB, Schiff M, Beetz C, Joss S, Conway GS, Shukla A, Yeole M, Radhakrishnan P, Azzouz H, Ben Chehida A, Elmaleh-Bergès M, Glasgow RIC, Thompson K, Oláhová M, He L, Jenkinson EM, Jahic A, Belyantseva IA, Barzik M, Urquhart JE, O' Sullivan J, Williams SG, Bhaskar SS, Carrera S, Blakes AJM, Banka S, Yue WW, Ellingford JM, Houlden H, Munro KJ, Friedman TB, Taylor RW, Prokisch H, O'Keefe RT, Newman WG. Biallelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered intrinsic and extrinsic apoptosis and a Perrault syndrome-spectrum phenotype. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312079. [PMID: 39371131 PMCID: PMC11451657 DOI: 10.1101/2024.08.19.24312079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The mitoribosome synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders, and frequently show combined oxidative phosphorylation deficiency. Here, we describe five unrelated individuals with biallelic variants in the DAP3 nuclear gene encoding mitoribosomal small subunit 29 (MRPS29), with variable clinical presentations ranging from Perrault syndrome (sensorineural hearing loss and ovarian insufficiency) to an early childhood neurometabolic phenotype. Assessment of respiratory chain function and proteomic profiling of fibroblasts from affected individuals demonstrated reduced MRPS29 protein levels, and consequently decreased levels of additional protein components of the mitoribosomal small subunit, associated with a combined complex I and IV deficiency. Lentiviral transduction of fibroblasts from affected individuals with wild-type DAP3 cDNA increased DAP3 mRNA expression, and partially rescued protein levels of MRPS7, MRPS9 and complex I and IV subunits, demonstrating the pathogenicity of the DAP3 variants. Protein modelling suggested that DAP3 disease-associated missense variants can impact ADP binding, and in vitro assays demonstrated DAP3 variants can consequently reduce both intrinsic and extrinsic apoptotic sensitivity, DAP3 thermal stability and DAP3 GTPase activity. Our study presents genetic and functional evidence that biallelic variants in DAP3 result in a multisystem disorder of combined oxidative phosphorylation deficiency with pleiotropic presentations, consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Manuel Schiff
- Université Paris Cité, Reference Center for Mitochondrial Disorders (CARAMMEL) and Reference Center Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, Filière G2M, Paris, France
- Inserm UMR_S1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, United Kingdom
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hatem Azzouz
- Service de pédiatrie et des maladies métaboliques héréditaires, CHU la Rabta, 1007 Jabberi, Tunis, Tunisia
| | - Amel Ben Chehida
- Service de pédiatrie et des maladies métaboliques héréditaires, CHU la Rabta, 1007 Jabberi, Tunis, Tunisia
| | | | - Ruth I C Glasgow
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Monika Oláhová
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Emma M Jenkinson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Amir Jahic
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892-3729, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892-3729, USA
| | - Jill E Urquhart
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - James O' Sullivan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Simon G Williams
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sanjeev S Bhaskar
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Samantha Carrera
- Genome Editing Unit, The University of Manchester, Manchester, M13 9PT, UK
| | - Alexander J M Blakes
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
- Genomics England, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, The University of Manchester, Manchester, UK
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892-3729, USA
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Holger Prokisch
- Institute of Human Genetics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, The University of Manchester NHS Foundation Trust, Manchester, M13 9WL, UK
| |
Collapse
|
10
|
Rees D, Gianferante DM, Kim J, Stavrou T, Reaman G, Sapkota Y, Gramatges MM, Morton LM, Hudson MM, Armstrong GT, Freedman ND, Huang WY, Diver WR, Lori A, Luo W, Hicks BD, Liu J, Hutchinson AA, Goldstein AM, Mirabello L. Frequency of pathogenic germline variants in pediatric medulloblastoma survivors. Front Oncol 2024; 14:1441958. [PMID: 39184053 PMCID: PMC11341988 DOI: 10.3389/fonc.2024.1441958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor in children. Most cases are sporadic, but well characterized germline alterations in APC, ELP1, GPR161, PTCH1, SUFU, and TP53 predispose to medulloblastoma. However, knowledge about pathogenic/likely pathogenic (P/LP) variants that predispose to medulloblastoma vary based on genes evaluated, patient demographics, and pathogenicity definitions. Methods Germline exome sequencing was conducted on 160 childhood survivors of medulloblastoma. Analyses focused on rare variants in 239 known cancer susceptibility genes (CSGs). P/LP variants were identified using ClinVar and InterVar. Variants of unknown significance in known medulloblastoma predisposing genes (APC, ELP1, GPR161, PTCH1, SUFU, TP53) were further classified for loss of function variants. We compared the frequency of P/LP variants in cases to that in 1,259 cancer-free adult controls. Results Twenty cases (12.5%) had a P/LP variant in an autosomal dominant CSG versus 5% in controls (p=1.0 x10-3), and 10 (6.3%) of these were P/LP variants in a known medulloblastoma gene, significantly greater than 0.2% observed in controls (p=1.4x10-8). The CSGs with the most P/LP variants in cases, and significantly higher than controls, were ELP1 (p=3.0x10-4) and SUFU (p=1.4x10-3). Conclusion Approximately one in eight pediatric medulloblastoma survivors had an autosomal dominant P/LP CSG variant. We confirm several known associated genes and identify novel genes that may be important in medulloblastoma.
Collapse
Affiliation(s)
- Donald Rees
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
- Department of Pediatric Hematology and Oncology, Walter Reed National Military Medical Center, Bethesda, MD, United States
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D. Matthew Gianferante
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | | | - Gregory Reaman
- Division Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yadav Sapkota
- Departments of Oncology and Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - M. Monica Gramatges
- Division of Hematology and Oncology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - Melissa M. Hudson
- Departments of Oncology and Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Gregory T. Armstrong
- Departments of Oncology and Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - W. Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Belynda D. Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jia Liu
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Amy A. Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
11
|
Yu S, Lin Y, Yang Y, Jin X, Liao B, Lu D, Huang J. Shared genetic effect of kidney function on bipolar and major depressive disorders: a large-scale genome-wide cross-trait analysis. Hum Genomics 2024; 18:60. [PMID: 38858783 PMCID: PMC11165782 DOI: 10.1186/s40246-024-00627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.
Collapse
Affiliation(s)
- Simin Yu
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yifei Lin
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yong Yang
- Health Management Center, General Practice Medical Center, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Donghao Lu
- Health Management Center, General Practice Medical Center, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 17177, Stockholm, Sweden.
| | - Jin Huang
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
- Health Management Center, General Practice Medical Center, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
- Health Management Center, General Practice Medical Center and Medical Device Regulatory Research and Evaluation Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
12
|
Hansford JR, Das A, McGee RB, Nakano Y, Brzezinski J, Scollon SR, Rednam SP, Schienda J, Michaeli O, Kim SY, Greer MLC, Weksberg R, Stewart DR, Foulkes WD, Tabori U, Pajtler KW, Pfister SM, Brodeur GM, Kamihara J. Update on Cancer Predisposition Syndromes and Surveillance Guidelines for Childhood Brain Tumors. Clin Cancer Res 2024; 30:2342-2350. [PMID: 38573059 PMCID: PMC11147702 DOI: 10.1158/1078-0432.ccr-23-4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Tumors of the central nervous system (CNS) comprise the second most common group of neoplasms in childhood. The incidence of germline predisposition among children with brain tumors continues to grow as our knowledge on disease etiology increases. Some children with brain tumors may present with nonmalignant phenotypic features of specific syndromes (e.g., nevoid basal cell carcinoma syndrome, neurofibromatosis type 1 and type 2, DICER1 syndrome, and constitutional mismatch-repair deficiency), while others may present with a strong family history of cancer (e.g., Li-Fraumeni syndrome) or with a rare tumor commonly found in the context of germline predisposition (e.g., rhabdoid tumor predisposition syndrome). Approximately 50% of patients with a brain tumor may be the first in a family identified to have a predisposition. The past decade has witnessed a rapid expansion in our molecular understanding of CNS tumors. A significant proportion of CNS tumors are now well characterized and known to harbor specific genetic changes that can be found in the germline. Additional novel predisposition syndromes are also being described. Identification of these germline syndromes in individual patients has not only enabled cascade testing of family members and early tumor surveillance but also increasingly affected cancer management in those patients. Therefore, the AACR Cancer Predisposition Working Group chose to highlight these advances in CNS tumor predisposition and summarize and/or generate surveillance recommendations for established and more recently emerging pediatric brain tumor predisposition syndromes.
Collapse
Affiliation(s)
- Jordan R. Hansford
- Michael Rice Children’s Hematology and Oncology Center, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmmunoGenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anirban Das
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Dept. of Pediatrics, Univ. of Toronto, Toronto, Ontario, Canada
| | - Rose B. McGee
- Department of Oncology, Division of Cancer Predisposition, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yoshiko Nakano
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Jack Brzezinski
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Dept. of Pediatrics, Univ. of Toronto, Toronto, Ontario, Canada
| | - Sarah R. Scollon
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Surya P. Rednam
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Orli Michaeli
- Division of Hematology/Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Center, Cincinnati, Ohio
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children/Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Dept of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - William D. Foulkes
- Department of Human Genetics, McGill University, and Division of Medical Genetics, Departments of Specialized Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children; SickKids Research Institute; Dept. of Pediatrics, Univ. of Toronto, Toronto, Ontario, Canada
| | - Kristian W. Pajtler
- Division of Pediatric Neurooncology, Hopp Children’s Cancer Center Heidelberg (KiTZ); German Cancer Research Center Heidelberg (DKFZ) and Heidelberg University Hospital, Heidelberg; National Center for Tumor Diseases (NCT) Heidelberg, Germany
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, Hopp Children’s Cancer Center Heidelberg (KiTZ); German Cancer Research Center Heidelberg (DKFZ) and Heidelberg University Hospital, Heidelberg; National Center for Tumor Diseases (NCT) Heidelberg, Germany
| | - Garrett M. Brodeur
- Department of Pediatrics, Division of Oncology, the Children’s Hospital of Philadelphia, and the University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Junne Kamihara
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Lee SG, Evans G, Stephen M, Goren R, Bondy M, Goodman S. Medulloblastoma and other neoplasms in patients with heterozygous germline SUFU variants: A scoping review. Am J Med Genet A 2024; 194:e63496. [PMID: 38282294 DOI: 10.1002/ajmg.a.63496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
In 2002, heterozygous suppressor of fused variants (SUFU+/-) in the germline were described to have a tumor suppressor role in the development of pediatric medulloblastoma (MB). Other neoplasms associated with pathologic germline SUFU+/- variants have also been described among patients with basal cell nevus syndrome (BCNS; BCNS is also known as Gorlin syndrome, nevoid basal cell carcinoma [BCC] syndrome or Gorlin-Goltz syndrome; OMIM 109400), an autosomal-dominant cancer predisposition syndrome. The phenotype of patients with germline SUFU+/- variants is very poorly characterized due to a paucity of large studies with long-term follow-up. As such, there is a clinical need to better characterize the spectrum of neoplasms among patients with germline SUFU+/- variants so that clinicians can provide accurate counseling and optimize tumor surveillance strategies. The objective of this study is to perform a scoping review to map the evidence on the rate of medulloblastoma and to describe the spectrum of other neoplasms among patients with germline SUFU+/- variants. A review of all published literature in PubMed (MEDLINE), EMBASE, Cochrane, and Web of Science were searched from the beginning of each respective database until October 9, 2021. Studies of pediatric and adult patients with a confirmed germline SUFU+/- variant who were evaluated for the presence of any neoplasm (benign or malignant) were included. There were 176 patients (N = 30 studies) identified with a confirmed germline SUFU+/- variant who met inclusion criteria. Data were extracted from two cohort studies, two case-control studies, 18 case series, and eight case reports. The median age at diagnosis of a germline SUFU+/- variant was 4.5 years where 44.4% identified as female and 13.4% of variants were de novo. There were 34 different neoplasms (benign and malignant) documented among patients with confirmed germline SUFU+/- variants, and the most common were medulloblastoma (N = 59 patients), BCC (N = 21 patients), and meningioma (N = 19 patients). The median age at medulloblastoma diagnosis was 1.42 years (range 0.083-3; interquartile range 1.2). When data were available for these three most frequent neoplasms (N = 95 patients), 31 patients (32.6%) had neither MB, BCC nor meningioma; 51 patients (53.7%) had one of medulloblastoma or BCC or meningioma; eight patients (8.4%) had two of medulloblastoma or BCC or meningioma, and five patients (5.3%) had medulloblastoma and BCC and meningioma. This is the first study to synthesize the data on the frequency and spectrum of neoplasms specifically among patients with a confirmed germline SUFU+/- variant. This scoping review is a necessary step forward in optimizing evidence-based tumor surveillance strategies for medulloblastoma and estimating the risk of other neoplasms that could impact patient outcomes.
Collapse
Affiliation(s)
- Stephanie G Lee
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gareth Evans
- Division of Evolution, Infection and Genomic Science, Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester NHS Foundation Trust, Manchester, UK
| | - Maddie Stephen
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Goren
- Queen's School of Medicine, Queens University, Kingston, Ontario, Canada
| | - Melissa Bondy
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| | - Steven Goodman
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
14
|
Narod SA, Metcalfe K, Finch A, Chan AW, Armel SR, Aeilts A, Eisen A, Karlan B, Bordeleau L, Tung N, Foulkes WD, Neuhausen SL, Eng C, Olopade O, Zakalik D, Couch F, Cullinane C, Pal T, Sun P, Kotsopoulos J. The risk of skin cancer in women who carry BRCA1 or BRCA2 mutations. Hered Cancer Clin Pract 2024; 22:7. [PMID: 38741145 DOI: 10.1186/s13053-024-00277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND It has not been clearly established if skin cancer or melanoma are manifestations of BRCA1 or BRCA2 mutation carrier status. Estimating the risk of skin cancer is an important step towards developing screening recommendations. METHODS We report the findings of a prospective cohort study of 6,207 women from North America who carry BRCA1 or BRCA2 mutations. Women were followed from the date of baseline questionnaire to the diagnosis of skin cancer, to age 80 years, death from any cause, or the date of last follow-up. RESULTS During the mean follow-up period of eight years, 3.7% of women with a BRCA1 mutation (133 of 3,623) and 3.8% of women with a BRCA2 mutation (99 of 2,584) reported a diagnosis of skin cancer (including both keratinocyte carcinomas and melanoma). The cumulative risk of all types of skin cancer from age 20 to 80 years was 14.1% for BRCA1 carriers and 10.7% for BRCA2 carriers. The cumulative risk of melanoma was 2.5% for BRCA1 carriers and 2.3% for BRCA2 carriers, compared to 1.5% for women in the general population in the United States. The strongest risk factor for skin cancer was a prior diagnosis of skin cancer. CONCLUSION The risk of non-melanoma skin cancer in women who carry a mutation in BRCA1 or BRCA2 is similar to that of non-carrier women. The risk of melanoma appears to be slightly elevated. We suggest that a referral to a dermatologist or primary care provider for BRCA mutation carriers for annual skin examination and counselling regarding limiting UV exposure, the use of sunscreen and recognizing the early signs of melanoma might be warranted, but further studies are necessary.
Collapse
Affiliation(s)
- Steven A Narod
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Kelly Metcalfe
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
- Bloomberg School of Nursing, University of Toronto, Toronto, ON, Canada
| | - Amy Finch
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
| | - An-Wen Chan
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Susan Randall Armel
- Princess Margaret Hospital, Familial Cancer Clinic, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Amber Aeilts
- Division of Human Genetics, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, OH, USA
| | | | - Beth Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Louise Bordeleau
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Nadine Tung
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - William D Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montréal, QC, Canada
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olufunmilayo Olopade
- Department of Medicine and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dana Zakalik
- Cancer Genetics Program, Beaumont Hospital, Royal Oak, MI, USA
| | - Fergus Couch
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Tuya Pal
- Division of Genetics, Department of Medicine, Vanderbilt University Medical Centre and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ping Sun
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
| | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Rijckmans E, Bordon V, de Ravel T, Baert E, Jansen AC, Stouffs K. Macrocephaly? Do not Forget SUFU. Pediatr Neurol 2024; 151:34-36. [PMID: 38101305 DOI: 10.1016/j.pediatrneurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Affiliation(s)
- Ellen Rijckmans
- Department of Pediatric Neurology, KidZ Health Castle, Universitair Ziekenhuis Brussel, Brussels, Belgium; Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium; Centre for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Thomy de Ravel
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Elien Baert
- Department of Pediatrics, AZ Sint Lucas, Ghent, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium; Centre for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium.
| |
Collapse
|
17
|
Roemen GMJM, Theunissen TEJ, Hoezen WWJ, Steyls ARM, Paulussen ADC, Mosterd K, Rahikkala E, zur Hausen A, Speel EJM, van Geel M. Detection of PTCH1 Copy-Number Variants in Mosaic Basal Cell Nevus Syndrome. Biomedicines 2024; 12:330. [PMID: 38397932 PMCID: PMC10886644 DOI: 10.3390/biomedicines12020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Basal cell nevus syndrome (BCNS) is an inherited disorder characterized mainly by the development of basal cell carcinomas (BCCs) at an early age. BCNS is caused by heterozygous small-nucleotide variants (SNVs) and copy-number variants (CNVs) in the Patched1 (PTCH1) gene. Genetic diagnosis may be complicated in mosaic BCNS patients, as accurate SNV and CNV analysis requires high-sensitivity methods due to possible low variant allele frequencies. We compared test outcomes for PTCH1 CNV detection using multiplex ligation-probe amplification (MLPA) and digital droplet PCR (ddPCR) with samples from a BCNS patient heterozygous for a PTCH1 CNV duplication and the patient's father, suspected to have a mosaic form of BCNS. ddPCR detected a significantly increased PTCH1 copy-number ratio in the index patient's blood, and the father's blood and tissues, indicating that the father was postzygotic mosaic and the index patient inherited the CNV from him. MLPA only detected the PTCH1 duplication in the index patient's blood and in hair and saliva from the mosaic father. Our data indicate that ddPCR more accurately detects CNVs, even in low-grade mosaic BCNS patients, which may be missed by MLPA. In general, quantitative ddPCR can be of added value in the genetic diagnosis of mosaic BCNS patients and in estimating the recurrence risk for offspring.
Collapse
Affiliation(s)
- Guido M. J. M. Roemen
- Department of Pathology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (T.E.J.T.)
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.C.P.)
| | - Tom E. J. Theunissen
- Department of Pathology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (T.E.J.T.)
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.C.P.)
| | - Ward W. J. Hoezen
- Department of Dermatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Anja R. M. Steyls
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Aimee D. C. Paulussen
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.C.P.)
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Klara Mosterd
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.C.P.)
- Department of Dermatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine, Department of Clinical Genetics, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, 90570 Oulu, Finland
| | - Axel zur Hausen
- Department of Pathology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (T.E.J.T.)
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.C.P.)
| | - Ernst Jan M. Speel
- Department of Pathology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (T.E.J.T.)
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.C.P.)
| | - Michel van Geel
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.C.P.)
- Department of Dermatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| |
Collapse
|
18
|
Guerrini-Rousseau L, Masliah-Planchon J, Filser M, Tauziède-Espariat A, Entz-Werle N, Maugard CM, Hopman SMJ, Torrejon J, Gauthier-Villars M, Simaga F, Blauwblomme T, Beccaria K, Rouleau E, Dimaria M, Grill J, Abbou S, Claret B, Brugières L, Doz F, Bouchoucha Y, Faure-Conter C, Bonadona V, Mansuy L, de Carli E, Ingster O, Legrand C, Pagnier A, Berthet P, Bodet D, Julia S, Bertozzi AI, Wilems M, Maurage CA, Delattre O, Ayrault O, Dufour C, Bourdeaut F. Medulloblastomas with ELP1 pathogenic variants: A weakly penetrant syndrome with a restricted spectrum in a limited age window. Neurooncol Adv 2024; 6:vdae075. [PMID: 38962751 PMCID: PMC11221071 DOI: 10.1093/noajnl/vdae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background ELP1 pathogenic variants (PV) have been recently identified as the most frequent variants predisposing to Sonic Hedgehog (SHH) medulloblastomas (MB); however, guidelines are still lacking for genetic counseling in this new syndrome. Methods We retrospectively reviewed clinical and genetic data of a French series of 29 ELP1-mutated MB. Results All patients developed SHH-MB, with a biallelic inactivation of PTCH1 found in 24 tumors. Other recurrent alterations encompassed the TP53 pathway and activation of MYCN/MYCL signaling. The median age at diagnosis was 7.3 years (range: 3-14). ELP1-mutated MB behave as sporadic cases, with similar distribution within clinical and molecular risk groups and similar outcomes (5 y - OS = 86%); no unusual side effect of treatments was noticed. Remarkably, a germline ELP1 PV was identified in all patients with available constitutional DNA (n = 26); moreover, all tested familial trio (n = 11) revealed that the PVs were inherited. Two of the 26 index cases from the French series had a family history of MB; pedigrees from these patients and from 1 additional Dutch family suggested a weak penetrance. Apart from MB, no cancer was associated with ELP1 PVs; second tumors reported in 4 patients occurred within the irradiation fields, in the usual time-lapse for expected radiotherapy-induced neoplasms. Conclusions The low penetrance, the "at risk' age window limited to childhood and the narrow tumor spectrum, question the actual benefit of genetic screening in these patients and their family. Our results suggest restricting ELP1 germline sequencing to patients with SHH-MB, depending on the parents" request.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Julien Masliah-Planchon
- Department of Pathology and Diagnostic, Prognostic and Theranostic Medicine, Somatic Genetic Unit, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Mathilde Filser
- Department of Pathology and Diagnostic, Prognostic and Theranostic Medicine, Somatic Genetic Unit, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | | | - Natacha Entz-Werle
- Pediatric Hematology and Oncology Department, Strasbourg University Hospital, University of Strasbourg, Strasbourg, France
| | - Christine M Maugard
- Department of Clinical Genetics, Strasbourg University Hospital, Strasbourg, France
| | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacob Torrejon
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie, Paris Sciences Lettres Research University, CNRS UMR, INSERM, Orsay, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Fatoumata Simaga
- Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Thomas Blauwblomme
- Necker-Enfants Malades University Hospital, Department of Pediatric Neurosurgery, Paris-Cité University, Paris, France
| | - Kevin Beccaria
- Necker-Enfants Malades University Hospital, Department of Pediatric Neurosurgery, Paris-Cité University, Paris, France
| | - Etienne Rouleau
- Cancer Genetics Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
| | - Marina Dimaria
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Samuel Abbou
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy, Villejuif, France
| | - Béatrice Claret
- Psycho-Oncology Unit, Interdisciplinary Department of Supportive Care, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - François Doz
- Université Paris Cité, SIREDO Pediatric Cancer Center, Institut Curie, Paris, France
- SIREDO Center (Care, Innovation Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Yassine Bouchoucha
- SIREDO Center (Care, Innovation Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Cécile Faure-Conter
- Pediatric Hematology and Oncology Institut, Centre Léon Berard, Lyon, France
| | - Valerie Bonadona
- Clinical Oncogenetics Unit, Department of Prevention and Public Health, Centre Léon Bérard, Lyon, France
| | - Ludovic Mansuy
- Department of Pediatric Hematology and Oncology, Centre Hospitalo-Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Emilie de Carli
- Pediatric Hematology and Oncology Department, Angers University Hospital, Nancy, France
| | - Olivier Ingster
- Department of Genetics, Angers University Hospital, Angers, France
| | | | - Anne Pagnier
- Department of Pediatric Hematology and Oncology, Centre Hospitalo-Universitaire de Grenoble, Grenoble, France
| | | | - Damien Bodet
- Pediatric Hematology and Oncology Department, Caen University Hospital, Caen, France
| | - Sophie Julia
- Department of Genetics, Toulouse University Hospital, Toulouse, France
| | - Anne-Isabelle Bertozzi
- Pediatric Hematology and Oncology Department, Toulouse University Hospital, Toulouse, France
| | - Marjolaine Wilems
- Department of Medical Genetics, Montpellier University Hospital, Institute for Neurosciences of Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | | | - Olivier Delattre
- INSERM U830, Cancer, Heterogeneity, Instability and Plasticity Laboratory Institut Curie, Paris, France
| | - Olivier Ayrault
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie, Paris Sciences Lettres Research University, CNRS UMR, INSERM, Orsay, France
| | - Christelle Dufour
- Molecular Predictors and New Targets in Oncology, Inserm U981 Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Franck Bourdeaut
- Université Paris Cité, SIREDO Pediatric Cancer Center, Institut Curie, Paris, France
- SIREDO Center (Care, Innovation Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
- INSERM U830, Cancer, Heterogeneity, Instability and Plasticity Laboratory Institut Curie, Paris, France
| |
Collapse
|
19
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
20
|
Zhu M, Li J, Duan J, Yang J, Gu W, Jiang W. Bilateral ovarian fibromas as the sole manifestation of Gorlin syndrome in a 22-year-old woman: a case report and literature review. Diagn Pathol 2023; 18:118. [PMID: 37907964 PMCID: PMC10617060 DOI: 10.1186/s13000-023-01406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Nevoid basal cell carcinoma syndrome (NBCCS, Gorlin syndrome) is a rare autosomal dominantly inherited disorder that is characterized by multisystem disorder such as basal cell carcinomas, keratocystic odontogenic tumors and skeletal abnormalities. Bilateral and/or unilateral ovarian fibromas have been reported in individuals diagnosed with NBCCS. CASE PRESENTATION A 22-year-old female, presented with low back pain, and was found to have bilateral giant adnexal masses on pelvic ultrasonography, which had been suspected to be malignant ovarian tumors. Positron emission tomography/computed tomography showed multiple intracranial calcification and skeletal abnormalities. The left adnexa and right ovarian tumor were resected with laparotomy, and pathology revealed bilateral ovarian fibromas with marked calcification. We recommended the patient to receive genetic testing and dermatological examination. No skin lesion was detected. Germline testing identified pathogenic heterozygous mutation in PTCH1 (Patched1). CONCLUSIONS The possibility of NBCCS needs to be considered in patients with ovarian fibromas diagnosed in an early age. Skin lesions are not necessary for the diagnosis of NBCCS. Ovarian fibromas are managed with surgical excision with an attempt at preserving ovarian function. Follow-up regime and counseling on options for future fertility should be offered to patients.
Collapse
Affiliation(s)
- Menghan Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shenyang Road 128, Shanghai, 200090, China
| | - Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shenyang Road 128, Shanghai, 200090, China
| | - Jie Duan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shenyang Road 128, Shanghai, 200090, China
| | - Jing Yang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shenyang Road 128, Shanghai, 200090, China
| | - Weiyong Gu
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Wei Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shenyang Road 128, Shanghai, 200090, China.
| |
Collapse
|
21
|
Manfreda L, Rampazzo E, Persano L, Viola G, Bortolozzi R. Surviving the hunger games: Metabolic reprogramming in medulloblastoma. Biochem Pharmacol 2023; 215:115697. [PMID: 37481140 DOI: 10.1016/j.bcp.2023.115697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Elena Rampazzo
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Roberta Bortolozzi
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
22
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
23
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
24
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
25
|
Stoltze UK, Foss-Skiftesvik J, van Overeem Hansen T, Byrjalsen A, Sehested A, Scheie D, Stamm Mikkelsen T, Rasmussen S, Bak M, Okkels H, Thude Callesen M, Skjøth-Rasmussen J, Gerdes AM, Schmiegelow K, Mathiasen R, Wadt K. Genetic predisposition and evolutionary traces of pediatric cancer risk: a prospective 5-year population-based genome sequencing study of children with CNS tumors. Neuro Oncol 2023; 25:761-773. [PMID: 35902210 PMCID: PMC10076945 DOI: 10.1093/neuonc/noac187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The etiology of central nervous system (CNS) tumors in children is largely unknown and population-based studies of genetic predisposition are lacking. METHODS In this prospective, population-based study, we performed germline whole-genome sequencing in 128 children with CNS tumors, supplemented by a systematic pedigree analysis covering 3543 close relatives. RESULTS Thirteen children (10%) harbored pathogenic variants in known cancer genes. These children were more likely to have medulloblastoma (OR 5.9, CI 1.6-21.2) and develop metasynchronous CNS tumors (P = 0.01). Similar carrier frequencies were seen among children with low-grade glioma (12.8%) and high-grade tumors (12.2%). Next, considering the high mortality of childhood CNS tumors throughout most of human evolution, we explored known pediatric-onset cancer genes, showing that they are more evolutionarily constrained than genes associated with risk of adult-onset malignancies (P = 5e-4) and all other genes (P = 5e-17). Based on this observation, we expanded our analysis to 2986 genes exhibiting high evolutionary constraint in 141,456 humans. This analysis identified eight directly causative loss-of-functions variants, and showed a dose-response association between degree of constraint and likelihood of pathogenicity-raising the question of the role of other highly constrained gene alterations detected. CONCLUSIONS Approximately 10% of pediatric CNS tumors can be attributed to rare variants in known cancer genes. Genes associated with high risk of childhood cancer show evolutionary evidence of constraint.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
- Department of Neurosurgery, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - David Scheie
- Department of Pathology, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Stamm Mikkelsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Okkels
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Thude Callesen
- Department of Pediatrics and Adolescent Medicine, Odense University Hospital, Odense, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
26
|
Kurdi M, Mulla N, Malibary H, Bamaga AK, Fadul MM, Faizo E, Hakamy S, Baeesa S. Immune microenvironment of medulloblastoma: The association between its molecular subgroups and potential targeted immunotherapeutic receptors. World J Clin Oncol 2023; 14:117-130. [PMID: 37009528 PMCID: PMC10052334 DOI: 10.5306/wjco.v14.i3.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Medulloblastoma (MB) is considered the commonest malignant brain tumor in children. Multimodal treatments consisting of surgery, radiation, and chemotherapy have improved patients’ survival. Nevertheless, the recurrence occurs in 30% of cases. The persistent mortality rates, the failure of current therapies to extend life expectancy, and the serious complications of non-targeted cytotoxic treatment indicate the need for more refined therapeutic approaches. Most MBs originating from the neurons of external granular layer line the outer surface of neocerebellum and responsible for the afferent and efferent connections. Recently, MBs have been segregated into four molecular subgroups: Wingless-activated (WNT-MB) (Group 1); Sonic-hedgehog-activated (SHH-MB) (Group 2); Group 3 and 4 MBs. These molecular alterations follow specific gene mutations and disease-risk stratifications. The current treatment protocols and ongoing clinical trials against these molecular subgroups are still using common chemotherapeutic agents by which their efficacy have improved the progression-free survival but did not change the overall survival. However, the need to explore new therapies targeting specific receptors in MB microenvironment became essential. The immune microenvironment of MBs consists of distinctive cellular heterogeneities including immune cells and none-immune cells. Tumour associate macrophage and tumour infiltrating lymphocyte are considered the main principal cells in tumour microenvironment, and their role are still under investigation. In this review, we discuss the mechanism of interaction between MB cells and immune cells in the microenvironment, with an overview of the recent investigations and clinical trials
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
- Neuromuscular Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina 213733, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Sahar Hakamy
- Neurmuscular Unit, Center of Excellence of Genomic Medicine, Jeddah 21423, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Álvarez-Salafranca M, García-García M, Montes-Torres A, Rivera-Fuertes I, López-Giménez MT, Ara M. SUFU-associated Gorlin syndrome: Expanding the spectrum between classic nevoid basal cell carcinoma syndrome and multiple hereditary infundibulocystic basal cell carcinoma. Australas J Dermatol 2023; 64:249-254. [PMID: 36825822 DOI: 10.1111/ajd.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, is characterized by an aberrant activation of the hedgehog (Hh) pathway, most cases being caused by PTCH1 mutations. However, certain features such as multiple hereditary infundibulocystic basal cell carcinomas (MHIBCC), sclerotic fibromas, childhood medulloblastoma or meningioma may be relatively specific to a SUFU mutation. We present two patients with MHIBCC, along with a more complex cutaneous and extracutaneous phenotype. MHIBCC syndrome and BCNS may share clinical features and, indeed, both syndromes probably represent different degrees of upregulation in the Hh pathway.
Collapse
Affiliation(s)
| | - Mar García-García
- Department of Pathology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Andrea Montes-Torres
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Ignacio Rivera-Fuertes
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | | | - Mariano Ara
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| |
Collapse
|
28
|
Choi JY. Medulloblastoma: Current Perspectives and Recent Advances. Brain Tumor Res Treat 2023; 11:28-38. [PMID: 36762806 PMCID: PMC9911713 DOI: 10.14791/btrt.2022.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Medulloblastoma is the most common embryonal tumor of the central nervous system in childhood. Combined multimodality approaches, including surgery, radiation, and chemotherapy, have improved the outcome of medulloblastoma. Advances in genomic research have shown that medulloblastoma is not a biologically or clinically discrete entity. Previously, the risk was divided according to histology, presence of metastasis, degree of resection, and age at diagnosis. Through the development of integrated genomics, new biology-based risk stratification methods have recently been proposed. It is also important to understand the genetic predisposition of patients with medulloblastoma. Therefore, treatment goal aimed to improve the survival rate with minimal additional adverse effects and reduced long-term sequelae. It is necessary to incorporate genetic findings into the standard of care, and clinical trials that reflect this need to be conducted.
Collapse
Affiliation(s)
- Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, Korea.
| |
Collapse
|
29
|
Shobeiri P, Seyedmirzaei H, Kalantari A, Mohammadi E, Rezaei N, Hanaei S. The Epidemiology of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:19-39. [PMID: 36587379 DOI: 10.1007/978-3-031-14732-6_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CNS tumors are a diverse group of neoplasms that emerge from a variety of different CNS cell types. These tumors may be benign, malignant, or borderline in nature. The majority of high grade glial tumors are fatal, with the exception of pilocytic astrocytoma. Primary malignant CNS tumors occur at a global annual rate of 2.1 to 5.8 per 100,000 persons. Males are more likely to develop malignant brain tumors than females, whereas benign meningiomas are more common in adult females. Additionally, gender inequalities in non-malignant tumors peak between the ages of 25 and 29 years. Only a small number of genetic variants have been associated with survival and prognosis. Notably, central nervous system (CNS) tumors exhibit significant age, gender, and race variation. Race is another factor that affects the incidence of brain and spinal cord tumors. Different races exhibit variation in terms of the prevalence of brain and CNS malignancies. This chapter discusses ongoing research on brain and spinal cord tumor epidemiology, as well as the associated risks and accompanied disorders.
Collapse
Affiliation(s)
- Parnian Shobeiri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Homa Seyedmirzaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirali Kalantari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Esmaeil Mohammadi
- Department of Pediatric Neurosurgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Hanaei
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
30
|
Muacevic A, Adler JR, Skubitz KM. Patched Homolog 1 (PTCH1) Mutation in a CIC-Rearranged Sarcoma: Lack of Response to the Smoothened (SMO) Vismodegib. Cureus 2023; 15:e34281. [PMID: 36843760 PMCID: PMC9957587 DOI: 10.7759/cureus.34281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
Next-generation sequencing (NGS) to identify potential targets is becoming a common approach to refractory tumors. We describe a patient with a CIC-DUX4 sarcoma that harbored a patched homolog 1 (PTCH1) mutation, a mutation not previously reported in so-called Ewing family tumors. PTCH1 is part of the hedgehog signaling pathway. Basal cell carcinomas (BCC) commonly have PTCH1 mutations, and those with PTCH1 mutations are often responsive to therapy with the hedgehog pathway inhibitor vismodegib. The effect of any mutation in a gene important in cell growth and division is likely dependent upon the background biochemistry of the cell. In the current case, vismodegib was not effective. This case is the first report of a PTCH1 mutation in an Ewing family tumor and demonstrates that the utility of targeting a potential mutation may depend upon many factors, including other mutations in the signaling pathway, and importantly, also the background biochemistry of the malignant cell that may prevent effective treatment targeting.
Collapse
|
31
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
32
|
Spice DM, Dierolf J, Kelly GM. Suppressor of Fused Regulation of Hedgehog Signaling is Required for Proper Astrocyte Differentiation. Stem Cells Dev 2022; 31:741-755. [PMID: 36103394 DOI: 10.1089/scd.2022.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hedgehog signaling is essential for vertebrate development; however, less is known about the negative regulators that influence this pathway. Using the mouse P19 embryonal carcinoma cell model, suppressor of fused (SUFU), a negative regulator of the Hedgehog (Hh) pathway, was investigated during retinoic acid (RA)-induced neural differentiation. We found Hh signaling increased activity in the early phase of differentiation, but was reduced during terminal differentiation of neurons and astrocytes. This early increase in pathway activity was required for neural differentiation; however, it alone was not sufficient to induce neural lineages. SUFU, which regulates signaling at the level of Gli, remained relatively unchanged during differentiation, but its loss through CRISPR-Cas9 gene editing resulted in ectopic expression of Hh target genes. Interestingly, these SUFU-deficient cells were unable to differentiate toward neural lineages without RA, and when directed toward these lineages, they showed delayed and decreased astrocyte differentiation; neuron differentiation was unaffected. Ectopic activation of Hh target genes in SUFU-deficient cells remained throughout RA-induced differentiation and this was accompanied by the loss of Gli3, despite the presence of the Gli3 message. Thus, the study indicates the proper timing and proportion of astrocyte differentiation requires SUFU, likely acting through Gli3, to reduce Hh signaling during late-stage differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | - Joshua Dierolf
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Gregory M Kelly
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
33
|
Liu Y, Banka S, Huang Y, Hardman-Smart J, Pye D, Torrelo A, Beaman GM, Kazanietz MG, Baker MJ, Ferrazzano C, Shi C, Orozco G, Eyre S, van Geel M, Bygum A, Fischer J, Miedzybrodzka Z, Abuzahra F, Rübben A, Cuvertino S, Ellingford JM, Smith MJ, Evans DG, Weppner-Parren LJMT, van Steensel MAM, Chaudhary IH, Mangham DC, Lear JT, Paus R, Frank J, Newman WG, Zhang X. Germline intergenic duplications at Xq26.1 underlie Bazex-Dupré-Christol basal cell carcinoma susceptibility syndrome. Br J Dermatol 2022; 187:948-961. [PMID: 35986704 DOI: 10.1111/bjd.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.
Collapse
Affiliation(s)
- Yanshan Liu
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Yingzhi Huang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jonathan Hardman-Smart
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- St John's Institute of Dermatology, Kings College London, London, WC2R 2LS, UK
| | - Derek Pye
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil Universitario Niño Jesús, 28009, Madrid, Spain
| | - Glenda M Beaman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carlo Ferrazzano
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Michel van Geel
- Department of Dermatology, University Hospital Maastricht, 6229, Maastricht, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, 6229, Maastricht, the Netherlands
| | - Anette Bygum
- Department of Clinical Genetics, Odense University Hospital, 5230, Odense, Denmark
- Hospital Clinical Institute, University of Southern Denmark, 5230, Odense, Denmark
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, AB25 2ZD, UK
- Medical Genetics Department, NHS Grampian, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Faris Abuzahra
- Department of Dermatology, Zaandam Medical Center, 1502, Zaandam, the Netherlands
| | - Albert Rübben
- Department of Dermatology and Allergology, University Hospital of RWTH Aachen, 52062, Aachen, Germany
| | - Sara Cuvertino
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Miriam J Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | | | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138543, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 636921, Singapore
| | - Iskander H Chaudhary
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - D Chas Mangham
- Adult Histopathology, Laboratory Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK
| | - John T Lear
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- Department of Dermatology, Salford Royal NHS Foundation Trust, Manchester, M6 8AD, UK
| | - Ralf Paus
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33125, USA
- Monasterium Laboratory, Nano-Bioanalytik Zentrum, D-48149, Münster, Germany
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - William G Newman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
34
|
Genetic predisposition to central nervous system tumors in children - what the neurosurgeon should know. Acta Neurochir (Wien) 2022; 164:3025-3034. [PMID: 35660974 DOI: 10.1007/s00701-022-05258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Historically, few pediatric central nervous system (CNS) tumors were thought to result from genetic predisposition. However, within the last decade, new DNA sequencing methods have led to an increased recognition of high-risk cancer predisposition syndromes in children with CNS tumors. Thus, genetic predisposition is increasingly impacting clinical pediatric neuro-oncology. METHODS In this narrative review, we discuss the current understanding of genetic predisposition to childhood CNS tumors and provide a general overview of involved research methodologies and terminology. Moreover, we consider how germline genetics may influence neurosurgical practice. RESULTS Introduction of next-generation DNA sequencing has greatly increased our understanding of genetic predisposition to pediatric CNS tumors by enabling whole-exome/-genome sequencing of large cohorts. To date, the scientific literature has reported germline sequencing findings for more than 2000 children with CNS tumors. Although varying between tumor types, at least 10% of childhood CNS tumors can currently be explained by rare pathogenic germline variants in known cancer-related genes. Novel methodologies continue to uncover new mechanisms, suggesting that a much higher proportion of children with CNS tumors have underlying genetic causes. Understanding how genetic predisposition influences tumor biology and the clinical course in a given patient may mandate adjustments to neurosurgical treatment. CONCLUSION Germline genetics is becoming increasingly important to clinicians, including neurosurgeons. This review provides an updated overview of genetic predisposition to childhood CNS tumors with focus on aspects relevant to pediatric neurosurgeons.
Collapse
|
35
|
Bardwell AJ, Wu B, Sarin KY, Waterman ML, Atwood SX, Bardwell L. ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Sci Alliance 2022; 5:e202101353. [PMID: 35831023 PMCID: PMC9279676 DOI: 10.26508/lsa.202101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between the Hedgehog and MAPK signaling pathways occurs in several types of cancer and contributes to clinical resistance to Hedgehog pathway inhibitors. Here we show that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. ERK2 phosphorylates GLI1 on three evolutionarily conserved target sites (S102, S116, and S130) located near the high-affinity binding site for SUFU; these phosphorylations cooperate to weaken the affinity of GLI1-SUFU binding by over 25-fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily conserved SUFU affinity-modulating region. In cultured mammalian cells, GLI1 variants containing phosphomimetic substitutions of S102, S116, and S130 displayed an increased ability to drive transcription. We conclude that multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Beibei Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
36
|
Chen Y, Zhang H, Zhao Y, Ma J. Congenital medulloblastoma in two brothers with SUFU-mutated Gorlin-Goltz syndrome: Case reports and literature review. Front Oncol 2022; 12:988798. [PMID: 36313636 PMCID: PMC9603755 DOI: 10.3389/fonc.2022.988798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCongenital medulloblastoma is very rare, and many cases involve germline mutations that can lead to inherited syndromes. Here, we first report two brothers with congenital medulloblastoma who were diagnosed with Gorlin-Goltz syndrome caused by SUFU mutation.Clinical presentationMedulloblastoma was detected in two brothers at 2 and 3 months of age, with very similar imaging features. Genetic testing revealed that both children and their mother carried SUFU gene germline mutations, and both brothers were diagnosed with Gorlin-Goltz syndrome.ConclusionGorlin-Goltz syndrome-associated congenital medulloblastoma with SUFU germline mutation is very rare. Pathological types mostly involve desmoplastic/nodular or extensive nodularity; chemotherapy is the main treatment, and studies revealing prognostic data are scarce.
Collapse
Affiliation(s)
| | | | - Yang Zhao
- *Correspondence: Jie Ma, ; Yang Zhao,
| | - Jie Ma
- *Correspondence: Jie Ma, ; Yang Zhao,
| |
Collapse
|
37
|
Swati K, Agrawal K, Raj S, Kumar R, Prakash A, Kumar D. Molecular mechanism(s) of regulations of cancer stem cell in brain cancer propagation. Med Res Rev 2022; 43:441-463. [PMID: 36205299 DOI: 10.1002/med.21930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/01/2022] [Accepted: 09/11/2022] [Indexed: 11/12/2022]
Abstract
Brain tumors are most often diagnosed with solid neoplasms and are the primary reason for cancer-related deaths in both children and adults worldwide. With recent developments in the progression of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. However, the high recurrence rate and high mortality rate remain unresolved and are closely linked to the biological features of cancer stem cells (CSCs). Research on tumor biology has reached a new age with more understanding of CSC features. CSCs, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Therefore, in the diagnosis and treatment of tumors, recognizing the biological properties of CSCs is of considerable significance. Here, we have discussed the concept of CSCs and their significant role in brain cancer growth and propagation. We have also discussed personalized therapeutic development and immunotherapies for brain cancer by specifically targeting CSCs.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Sibi Raj
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Rajeev Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
38
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
39
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
40
|
Serpieri V, D’Abrusco F, Dempsey JC, Cheng YHH, Arrigoni F, Baker J, Battini R, Bertini ES, Borgatti R, Christman AK, Curry C, D'Arrigo S, Fluss J, Freilinger M, Gana S, Ishak GE, Leuzzi V, Loucks H, Manti F, Mendelsohn N, Merlini L, Miller CV, Muhammad A, Nuovo S, Romaniello R, Schmidt W, Signorini S, Siliquini S, Szczałuba K, Vasco G, Wilson M, Zanni G, Boltshauser E, Doherty D, Valente EM. SUFU haploinsufficiency causes a recognisable neurodevelopmental phenotype at the mild end of the Joubert syndrome spectrum. J Med Genet 2022; 59:888-894. [PMID: 34675124 PMCID: PMC9411896 DOI: 10.1136/jmedgenet-2021-108114] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.
Collapse
Affiliation(s)
| | - Fulvio D’Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Yong-Han Hank Cheng
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Janice Baker
- Genomics and Genetic Medicine Department, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Roberta Battini
- Unit of Child Neuropsychiatry, IRCCS Foundation Stella Maris, Calambrone, Toscana, Italy,Department of Clinical ad Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Silvio Bertini
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Diseases, Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Angela K Christman
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Cynthia Curry
- Department of Pediatrics, Stanford University, Stanford, California, USA,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, Fresno, California, USA,University Pediatric Specialists, Fresno, California, USA
| | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Joel Fluss
- Department of Women, Children and Adolescents, Geneva University Hospitals, Geneva, Switzerland
| | - Michael Freilinger
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Simone Gana
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Gisele E Ishak
- Department of Neuroradiology, University of Washington School of Medicine, Seattle, Washington, USA,Pediatric Radiology, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, University of Rome La Sapienza, Roma, Lazio, Italy
| | - Hailey Loucks
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Filippo Manti
- Department of Human Neuroscience, University of Rome La Sapienza, Roma, Lazio, Italy
| | - Nancy Mendelsohn
- Complex Health Solutions, United Healthcare, Minneapolis, Minnesota, USA
| | - Laura Merlini
- Department of Pediatric Radiology, Geneva University Hospitals Children's Hospital, Geneva, Switzerland
| | - Caitlin V Miller
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Ansar Muhammad
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland,Depatment of Ophtalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland,Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Sara Nuovo
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Lazio, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Wolfgang Schmidt
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sabrina Siliquini
- Child Neuropsychiatry Unit, Paediatric Hospital G Salesi, Ancona, Italy
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Warszawski Uniwersytet Medyczny, Warszawa, Poland
| | - Gessica Vasco
- Unit of Neurorehabilitation, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Meredith Wilson
- Department of Clinical Genetics, Children’s Hospital at Westmead, Sydney, New South Wales, Australia,Discipline of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Ginevra Zanni
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Diseases, Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Eugen Boltshauser
- Department of Pediatric Neurology (Emeritus), University Children's Hospital Zürich, Zurich, Zürich, Switzerland
| | - Dan Doherty
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA,Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy,Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
| | | |
Collapse
|
41
|
Lopez-Cañizares A, Al-Khersan H, Carletti P, Shields CL, Berrocal AM. Gorlin Syndrome Associated With a Solitary Circumscribed Retinal Astrocytic Proliferation in a Pediatric Patient. Ophthalmic Surg Lasers Imaging Retina 2022; 53:514-516. [PMID: 36107625 DOI: 10.3928/23258160-20220811-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gorlin syndrome is a rare autosomal dominant disorder with near complete penetrance. The underlying genetic mechanism is a mutation in a tumor suppressor gene. Thus far, mutations in patched homolog 1 and 2 genes (PTCH1 and PTCH2) and the suppressor of fused gene (SUFU) have been identified. The syndrome is characterized by neoplasms arising early in childhood as well as developmental abnormalities, including ophthalmic anomalies. We present the first case associating Gorlin syndrome with a rare retinal lesion known as solitary circumscribed retinal astrocytic proliferation (SCRAP). SCRAP is a benign, stable retinal tumor. For this reason, it is essential to differentiate it from similar retinal lesions that are associated with poor prognosis. [Ophthalmic Surg Lasers Imaging Retina 2022;53:514-516.].
Collapse
|
42
|
Dorsey J, Mott R, Lack C, Britt N, Ramkissoon S, Morris B, Carter A, Detroye A, Chan M, Tatter S, Lesser G. PTCH1 mutant small cell glioblastoma in a patient with Gorlin syndrome: A case report. Oncol Lett 2022; 24:326. [PMID: 35949590 PMCID: PMC9353864 DOI: 10.3892/ol.2022.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022] Open
Abstract
Gorlin syndrome or nevoid basal cell carcinoma syndrome is a rare genetic disease characterized by predisposition to congenital defects, basal cell carcinomas and medulloblastoma. The syndrome results from a heritable mutation in PATCHED1 (PTCH1), causing constitutive activation of the Hedgehog pathway. The present study described a patient with Gorlin syndrome who presented early in life with characteristic basal cell carcinomas and later developed a small cell glioblastoma (GBM), World Health Organization grade IV, associated with a Patched 1 (PTCH1) N97fs*43 mutation. Comprehensive genomic profiling of GBM tissues also revealed multiple co-occurring alterations including cyclin-dependent kinase 4 (CDK4) amplification, receptor tyrosine-protein kinase 3 (ERBB3) amplification, a fibroblast growth factor receptor 1 and transforming acidic coiled-coil containing protein 1 (FGFR1-TACC1) fusion, zinc finger protein (GLI1) amplification, E3 ubiquitin-protein ligase (MDM2) amplification and spectrin α chain, erythrocytic 1 (SPTA1) T1151fs*24. After the biopsy, imaging revealed extensive leptomeningeal enhancement intracranially and around the cervical spinal cord due to leptomeningeal disease. The patient underwent craniospinal radiation followed by 6 months of adjuvant temozolomide (150 mg/m2) with good response. She was then treated with vismodegib for 11 months, first combined with temozolomide and then with bevacizumab, until disease progression was noted on MRI, with no significant toxicities associated with the combination therapy. She received additional therapies but ultimately succumbed to the disease four months later. The current study presents the first documentation in the literature of a primary (non-radiation induced) glioblastoma secondary to Gorlin syndrome. Based on this clinical experience, vismodegib should be considered in combination with standard-of-care therapies for patients with known Gorlin syndrome-associated glioblastomas and sonic hedgehog pathway mutations.
Collapse
Affiliation(s)
- John Dorsey
- Department of Hematology‑Oncology, Cone Health Cancer Center, Greensboro, NC 27403, USA
| | - Ryan Mott
- Department of Pathology, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Christopher Lack
- Department of Radiology, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Nicholas Britt
- Department of Pathology, Foundation Medicine, Morrisville, NC 27560, USA
| | - Shakti Ramkissoon
- Department of Pathology, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Bonny Morris
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Annette Carter
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Alisha Detroye
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Michael Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Stephen Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| | - Glenn Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston‑Salem, NC 27157, USA
| |
Collapse
|
43
|
Spadari F, Pulicari F, Pellegrini M, Scribante A, Garagiola U. Multidisciplinary approach to Gorlin-Goltz syndrome: from diagnosis to surgical treatment of jawbones. Maxillofac Plast Reconstr Surg 2022; 44:25. [PMID: 35843976 PMCID: PMC9288940 DOI: 10.1186/s40902-022-00355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gorlin syndrome, also known as Gorlin-Goltz syndrome (GGS) or basal cell nevus syndrome (BCNS) or nevoid basal cell carcinoma syndrome (NBCCS), is an autosomal dominant familial cancer syndrome. It is characterized by the presence of numerous basal cell carcinomas (BCCs), along with skeletal, ophthalmic, and neurological abnormalities. It is essential to anticipate the diagnosis by identifying the pathology through the available diagnostic tests, clinical signs, and radiological manifestations, setting up an adequate treatment plan. MAIN BODY In the first part, we searched recent databases including MEDLINE (PubMed), Embase, and the Cochrane Library by analyzing the etiopathogenesis of the disease, identifying the genetic alterations underlying them. Subsequently, we defined what are, to date, the major and minor clinical diagnostic criteria, the possible genetic tests to be performed, and the pathologies with which to perform differential diagnosis. The radiological investigations were reviewed based on the most recent literature, and in the second part, we performed a review regarding the existing jawbone protocols, treating simple enucleation, enucleation with bone curettage in association or not with topical use of cytotoxic chemicals, and "en bloc" resection followed by possible bone reconstruction, marsupialization, decompression, and cryotherapy. CONCLUSION To promote the most efficient and accurate management of GGS, this article summarizes the clinical features of the disease, pathogenesis, diagnostic criteria, differential diagnosis, and surgical protocols. To arrive at an early diagnosis of the syndrome, it would be advisable to perform radiographic and clinical examinations from the young age of the patient. The management of the patient with GGS requires a multidisciplinary approach ensuring an adequate quality of life and effective treatment of symptoms.
Collapse
Affiliation(s)
- Francesco Spadari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Federica Pulicari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Matteo Pellegrini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Andrea Scribante
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Umberto Garagiola
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Leiomyomatosis in an Infant With a SUFU Splice Site Variant: Case Report. J Pediatr Hematol Oncol 2022; 44:e914-e917. [PMID: 35398865 DOI: 10.1097/mph.0000000000002454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Heterozygous loss-of-function variants in the suppressor of fused protein gene (SUFU) can result in Gorlin syndrome, which is characterized by an increased frequency of basal cell carcinoma, medulloblastoma, odontogenic keratocysts, as well as other tumors. We describe a case of a 5-month-old female who presented with multiple intra-abdominal leiomyomata and was found to have a likely pathogenic splice site variant in the SUFU gene. This is the first reported case of leiomyomatosis secondary to a pathogenic SUFU variant in an infant and may represent an early, atypical presentation of Gorlin syndrome.
Collapse
|
45
|
Smith MJ, Evans DG. PTCH2 is not a strong candidate gene for gorlin syndrome predisposition. Fam Cancer 2022; 21:343-346. [PMID: 34170463 PMCID: PMC9203365 DOI: 10.1007/s10689-021-00269-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 11/11/2022]
Abstract
A number of case/family reports have proposed PTCH2 as a putative Gorlin Syndrome (GS) gene, but evidence to support this is lacking. We assessed our cohort of 21 PTCH1/SUFU negative GS families for PTCH2 variants and assessed current evidence from reported cases/families and population data. In our PTCH1/SUFU variant negative GS cohort (25% of total), no pathogenic or likely pathogenic PTCH2 variants were identified. In addition, none of the previously published PTCH2 variants in GS families/cases could be considered pathogenic or likely pathogenic using current guidelines. The absence of clear pathogenic variants in GS families and the high frequency of Loss-of-function (LoF) variants in the general population, including the presence of homozygous LoF variants without a clinical phenotype, mean that it is untenable that PTCH2 is a GS gene. PTCH2 should not be included in panels for genetic diagnosis of GS.
Collapse
Affiliation(s)
- Miriam J Smith
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9WL, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9WL, UK.
| |
Collapse
|
46
|
Multiple Basal Cell Carcinomas in Immunocompetent Patients. Cancers (Basel) 2022; 14:cancers14133211. [PMID: 35804983 PMCID: PMC9264959 DOI: 10.3390/cancers14133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary It is widely known that long-term treatment with immunosuppressive drugs represents a risk factor for the onset of malignancies, including multiple basal cell carcinomas. However, multiple basal carcinomas are ao found in the general population, and even in the absence of specific predisposing genetic mutations. This paper aims, through the retrospective evaluation of all patients diagnosed and surgically treated for basal cell carcinomas during 5 years at our Dermatological Division, to identify the characteristics of these subjects and any possible risk factors, useful for outlining specific surveillance programs. In our experience, multiple carcinomas were identified in over 24% of the subjects analyzed, with several lesions removed, ranging from 2 to 11, confirming the relevance of this phenomenon. Abstract Background: The onset of multiple BCCs is a relatively common condition, not only among patients undergoing chronic treatment with immunosuppressant drugs, but also in the general population, although specific risk factors for immunocompetent patients have not been identified. A putative role of somatic mutations in the hedgehog pathway should be considered. Methods: This study is a retrospective observation of all patients diagnosed and surgically treated for BCCs during 5 years at our Dermatological Division. For these patients, we evaluated clinical and histopathological characteristics and data about possible risk factors for BCC. Results: Five-hundred and six patients affected by multiple BCCs, accounting for the 24.2% of the entire sample, have been identified. In these patients, the total number of BCCs was 1516, ranging from 2 to 11. Subjects affected by multiple BCCs were more frequently males, with an older age at diagnosis; multiple BCCs developed mainly on the trunk and were often represented by a nodular histotype. The multivariate analysis highlighted that male gender, older age, nodular BCC, or face involvement at the first diagnosis are risk factors for the development of multiple BCCs. Conclusions: The frequency of multiple BCCs even among the non-immunocompromised population underlines the need to subject patients to a close surveillance program, to allow early diagnosis and treatment of additional cancers.
Collapse
|
47
|
Guerrini-Rousseau L, Masliah-Planchon J, Waszak SM, Alhopuro P, Benusiglio PR, Bourdeaut F, Brecht IB, Del Baldo G, Dhanda SK, Garrè ML, Gidding CEM, Hirsch S, Hoarau P, Jorgensen M, Kratz C, Lafay-Cousin L, Mastronuzzi A, Pastorino L, Pfister SM, Schroeder C, Smith MJ, Vahteristo P, Vibert R, Vilain C, Waespe N, Winship IM, Evans DG, Brugieres L. Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation: a collaborative study of the SIOPE Host Genome Working Group. J Med Genet 2022; 59:jmedgenet-2021-108385. [PMID: 35768194 PMCID: PMC9613872 DOI: 10.1136/jmedgenet-2021-108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. METHODS To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. RESULTS Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. CONCLUSION Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
| | - Julien Masliah-Planchon
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Pia Alhopuro
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Patrick R Benusiglio
- Département de Génétique et Institut Universitaire de Cancérologie, Sorbonne University Faculty of Medicine Pitié-Salpêtrière Campus, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Ines B Brecht
- Department of Pediatric Oncology and Hematology, University Hospitals Tubingen, Tubingen, Germany
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, IRCCS, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Department of Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Corrie E M Gidding
- Neuro-Oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steffen Hirsch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
| | - Pauline Hoarau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
| | - Mette Jorgensen
- Oncology, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Christian Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Lucie Lafay-Cousin
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital and Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Mastronuzzi
- Pediatric Hematology/Oncology and Stem Cells Transplatation, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Lorenza Pastorino
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
- Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tubingen Institute of Human Genetics, Tubingen, Germany
| | - Miriam Jane Smith
- Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Pia Vahteristo
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Roseline Vibert
- Department of Genetics, PSL Research University, Institute Curie, Paris, France
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Nicolas Waespe
- CANSEARCH Research Platform, Depatment of pediatric oncology and hematology, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ingrid M Winship
- Department of Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences,Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Laurence Brugieres
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
- Department of Children and Adolescents Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
48
|
Abstract
Hedgehog (Hh) proteins constitute one family of a small number of secreted signaling proteins that together regulate multiple aspects of animal development, tissue homeostasis and regeneration. Originally uncovered through genetic analyses in Drosophila, their subsequent discovery in vertebrates has provided a paradigm for the role of morphogens in positional specification. Most strikingly, the Sonic hedgehog protein was shown to mediate the activity of two classic embryonic organizing centers in vertebrates and subsequent studies have implicated it and its paralogs in a myriad of processes. Moreover, dysfunction of the signaling pathway has been shown to underlie numerous human congenital abnormalities and diseases, especially certain types of cancer. This review focusses on the genetic studies that uncovered the key components of the Hh signaling system and the subsequent, biochemical, cell and structural biology analyses of their functions. These studies have revealed several novel processes and principles, shedding new light on the cellular and molecular mechanisms underlying cell-cell communication. Notable amongst these are the involvement of cholesterol both in modifying the Hh proteins and in activating its transduction pathway, the role of cytonemes, filipodia-like extensions, in conveying Hh signals between cells; and the central importance of the Primary Cilium as a cellular compartment within which the components of the signaling pathway are sequestered and interact.
Collapse
Affiliation(s)
- Philip William Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
49
|
Rinaldi B, Cesaretti C, Boito S, Villa R, Guerneri S, Borzani I, Rizzuti T, Marchetti D, Conte G, Cinnante C, Triulzi F, Persico N, Iascone M, Natacci F. Family history is key to the interpretation of exome sequencing in the prenatal context: Unexpected diagnosis of Basal Cell Nevus Syndrome. Prenat Diagn 2022; 42:927-933. [PMID: 35584264 DOI: 10.1002/pd.6171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To reach a molecular diagnosis for a family with two consecutive fetuses presenting with multiple congenital anomalies. METHOD The two fetuses underwent prenatal ultrasound, autopsy, radiologic and genetic investigation. Genetic analysis included karyotype and array-CGH for both fetuses and trio-based whole exome sequencing (WES) only for the second fetus. RESULTS WES results, initially focusing on recessive or dominant de novo variants, were negative. However, as a result of new relevant information regarding family history, the variant c.648_651dup in the PTCH1 gene was identified as causative of the fetal phenotype. CONCLUSION This case further highlights how WES data analysis and interpretation strongly rely on family history and robust genotype-phenotype correlation. This is even more relevant in the prenatal setting, where access to fetal phenotype is limited and prenatal recognition of many morbid genes is not fully explored. We also provide a detailed description of the prenatal manifestations of Basal Cell Nevus Syndrome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cesaretti
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Villa
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Borzani
- Pediatric Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Rizzuti
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Marchetti
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giorgio Conte
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Istituto Auxologico Italiano IRCCS, Dipartimento di Radiologia e Diagnostica per Immagini, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Natacci
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
50
|
Betancourt NJ, Qian MF, Pickford JR, Bailey-Healy I, Tang JY, Teng JMC. Gorlin Syndrome: Assessing Genotype-Phenotype Correlations and Analysis of Early Clinical Characteristics as Risk Factors for Disease Severity. J Clin Oncol 2022; 40:2119-2127. [PMID: 35333541 DOI: 10.1200/jco.21.02385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Gorlin syndrome (GS) is a rare genetic disorder characterized by lifetime risk of basal cell carcinomas (BCCs), skeletal anomalies (SAs), and other extracutaneous neoplasms. There is great variation in disease severity, and a genotype-phenotype correlation has not been well established. Here, we investigate whether patients' clinical characteristics predict disease severity to inform clinical decision making. METHODS Data of 248 patients with GS were collected between 2014 and 2021 from three institutions. Multivariable regression analyses were performed to investigate whether clinical characteristics predicted disease burden. Genotype-phenotype correlations were investigated in 40 patients. RESULTS Patients with SAs had a mean increase of 120 lifetime BCCs (95% CI, 27.1 to 213) relative to patients without SAs. Those with ≥ 2 SAs had 2.45 increased odds (95% CI, 1.01 to 5.91) of advanced or metastatic BCCs. Moreover, the presence of multiple SAs was associated with 5.00 increased odds of having a keratocystic odontogenic tumor (95% CI, 2.22 to 11.3) and 2.79 increased odds of an ovarian fibroma (95% CI, 1.05 to 7.40). Genotype-phenotype analyses showed that missense/in-frame mutations were more likely to be hereditary compared with severe deleterious mutation types (100% v 27%; P = .004). In addition, heat map visualization illustrated that those with more deleterious variants, like large deletions, trended toward increased burden of SAs and BCCs per year. CONCLUSION GS patients with SAs may be at greater risk for developing more numerous and severe BCCs and other neoplastic growths including keratocystic odontogenic tumors and ovarian fibromas. Current clinical guidelines suggest yearly follow-up in individuals with GS. Since SAs are usually recognized at the time of diagnosis, our results suggest that more vigilant lifetime multidisciplinary surveillance should be considered for these patients starting in childhood.
Collapse
Affiliation(s)
| | - Mollie F Qian
- Stanford University School of Medicine, Stanford, CA
| | | | - Irene Bailey-Healy
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Joyce M C Teng
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|