1
|
Ma Y, Yue P, Zhang J, Yuan J, Liu Z, Chen Z, Zhang H, Zhang C, Zhang Y, Dong C, Lin Y, Liu Y, Li S, Meng W. Early prediction of acute gallstone pancreatitis severity: a novel machine learning model based on CT features and open access online prediction platform. Ann Med 2024; 56:2357354. [PMID: 38813815 PMCID: PMC11141304 DOI: 10.1080/07853890.2024.2357354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Early diagnosis of acute gallstone pancreatitis severity (GSP) is challenging in clinical practice. We aimed to investigate the efficacy of CT features and radiomics for the early prediction of acute GSP severity. METHODS We retrospectively recruited GSP patients who underwent CT imaging within 48 h of admission from tertiary referral centre. Radiomics and CT features were extracted from CT scans. The clinical and CT features were selected by the random forest algorithm to develop the ML GSP model for the identification of severity of GSP (mild or severe), and its predictive efficacy was compared with radiomics model. The predictive performance was assessed by the area under operating characteristic curve. Calibration curve and decision curve analysis were performed to demonstrate the classification performance and clinical efficacy. Furthermore, we built a web-based open access GSP severity calculator. The study was registered with ClinicalTrials.gov (NCT05498961). RESULTS A total of 301 patients were enrolled. They were randomly assigned into the training (n = 210) and validation (n = 91) cohorts at a ratio of 7:3. The random forest algorithm identified the level of calcium ions, WBC count, urea level, combined cholecystitis, gallbladder wall thickening, gallstones, and hydrothorax as the seven predictive factors for severity of GSP. In the validation cohort, the areas under the curve for the radiomics model and ML GSP model were 0.841 (0.757-0.926) and 0.914 (0.851-0.978), respectively. The calibration plot shows that the ML GSP model has good consistency between the prediction probability and the observation probability. Decision curve analysis showed that the ML GSP model had high clinical utility. CONCLUSIONS We built the ML GSP model based on clinical and CT image features and distributed it as a free web-based calculator. Our results indicated that the ML GSP model is useful for predicting the severity of GSP.
Collapse
Affiliation(s)
- Yuhu Ma
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhaoqing Liu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zixian Chen
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yatao Liu
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Li
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Gao Z, Dai Z, Ouyang Z, Li D, Tang S, Li P, Liu X, Jiang Y, Song D. Radiomics analysis in differentiating osteosarcoma and chondrosarcoma based on T2-weighted imaging and contrast-enhanced T1-weighted imaging. Sci Rep 2024; 14:26594. [PMID: 39496777 PMCID: PMC11535035 DOI: 10.1038/s41598-024-78245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
This study was performed to investigate the diagnostic value of radiomics models constructed by fat suppressed T2-weighted imaging (T2WI-FS) and contrast-enhanced T1-weighted imaging (CET1) based on magnetic resonance imaging (MRI) for differentiation of osteosarcoma (OS) and chondrosarcoma (CS). In this retrospective cohort study, we included all inpatients with pathologically confirmed OS or CS from Second Xiangya Hospital of Central South University (Hunan, China) as of October 2020. Demographic and imaging variables were extracted from electronic medical records and compared between OS and CS group. Totals of 530 radiomics features were extracted from CET1 and T2WI-FS sequences based on MRI. The least absolute shrinkage and selection operator (LASSO) method was used for screening and dimensionality reduction of the radiomics model. Multivariate logistic regression analysis was performed to construct the radiomics model, and receiver operating characteristic curve (ROC) was generated to evaluate the diagnostic accuracy of the radiomics model. The training cohort and validation cohort included 87 and 29 patients, respectively. 8 CET1 features and 15 T2WI-FS features were screened based on the radiomics features. In the training group, the area under the receiver-operator characteristic curve (AUC) value for CET1 and T2WI-FS sequences in the radiomics model was 0.894 (95% CI 0.817-0.970) and 0.970 (95% CI 0.940-0.999), respectively. In the validation group, the AUC value for CET1 and T2WI-FS sequences in the radiomics model was 0.821 (95% CI 0.642-1.000) and 0.899 (95% CI 0.785-1.000), respectively. In this study, we developed a radiomics model based on T2WI-FS and CET1 sequences to differentiate between OS and CS. This model exhibits good performance and can help clinicians make decisions and optimize the use of healthcare resources.
Collapse
Affiliation(s)
- Zhi Gao
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Clinical Research Center for Viral Hepatitis in Hunan Province, Changsha, Hunan, China
| | - Zhongshang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Clinical Research Center for Viral Hepatitis in Hunan Province, Changsha, Hunan, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Dianqing Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Sihuai Tang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Penglin Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Xudong Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Clinical Research Center for Viral Hepatitis in Hunan Province, Changsha, Hunan, China.
| | - Deye Song
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Ahmed TM, Zhu Z, Yasrab M, Blanco A, Kawamoto S, He J, Fishman EK, Chu L, Javed AA. Preoperative Prediction of Lymph Node Metastases in Nonfunctional Pancreatic Neuroendocrine Tumors Using a Combined CT Radiomics-Clinical Model. Ann Surg Oncol 2024; 31:8136-8145. [PMID: 39179862 DOI: 10.1245/s10434-024-16064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND PanNETs are a rare group of pancreatic tumors that display heterogeneous histopathological and clinical behavior. Nodal disease has been established as one of the strongest predictors of patient outcomes in PanNETs. Lack of accurate preoperative assessment of nodal disease is a major limitation in the management of these patients, in particular those with small (< 2 cm) low-grade tumors. The aim of the study was to evaluate the ability of radiomic features (RF) to preoperatively predict the presence of nodal disease in pancreatic neuroendocrine tumors (PanNETs). PATIENTS AND METHODS An institutional database was used to identify patients with nonfunctional PanNETs undergoing resection. Pancreas protocol computed tomography was obtained, manually segmented, and RF were extracted. These were analyzed using the minimum redundancy maximum relevance analysis for hierarchical feature selection. Youden index was used to identify the optimal cutoff for predicting nodal disease. A random forest prediction model was trained using RF and clinicopathological characteristics and validated internally. RESULTS Of the 320 patients included in the study, 92 (28.8%) had nodal disease based on histopathological assessment of the surgical specimen. A radiomic signature based on ten selected RF was developed. Clinicopathological characteristics predictive of nodal disease included tumor grade and size. Upon internal validation the combined radiomics and clinical feature model demonstrated adequate performance (AUC 0.80) in identifying nodal disease. The model accurately identified nodal disease in 85% of patients with small tumors (< 2 cm). CONCLUSIONS Non-invasive preoperative assessment of nodal disease using RF and clinicopathological characteristics is feasible.
Collapse
Affiliation(s)
- Taha M Ahmed
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Zhuotun Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Mohammad Yasrab
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alejandra Blanco
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ammar A Javed
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NYU Langone Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Liao T, Su T, Lu Y, Huang L, Feng LH. Development and validation of a dynamic nomogram for short-term survival in acute heart failure patients with acute kidney injury upon ICU admission. Heliyon 2024; 10:e39494. [PMID: 39502227 PMCID: PMC11535336 DOI: 10.1016/j.heliyon.2024.e39494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Objective The objective of this study is to develop and validate an effective prognostic nomogram for predicting the short-term survival rate of patients with acute heart failure (AHF) complicated by acute kidney injury (AKI) who are admitted to the intensive care unit (ICU). Patients and methods We conducted an analysis of data from patients of AHF with AKI spanning the period from 2008 to 2019, utilizing the MIMIC-IV database. Patients were randomly divided into training and validation sets. The training set employed the least absolute shrinkage and selection operator regression model to identify predictors of AKI. Subsequently, a dynamic nomogram was constructed using multivariate Cox regression analysis within the training set and was subsequently validated using the validation set. The nomogram's predictive accuracy, calibration, and clinical utility were evaluated through the concordance index (C-index), calibration plots, and decision curve analysis (DCA). Results A total of 978 AHF patients with AKI were analyzed. Multivariate analysis identified serum creatinine, race, age, use of human albumin, use of vasoactive drug, and hemoglobin as independent predictors significantly influencing the short-term prognosis of AHF patients with AKI upon ICU admission. The C-index for the training and validation sets were 0.81 (95%CI: 0.74-0.87) and 0.80 (95 % CI: 0.67-0.92), respectively. The calibration plot of the nomogram demonstrated a close alignment between predicted and observed probabilities. Furthermore, the DCA confirmed the clinical utility of the nomogram. Conclusions This study presents a dynamic nomogram that incorporates clinical risk factors and can be conveniently utilized to predict short-term prognosis for AHF patients with AKI upon ICU admission.
Collapse
Affiliation(s)
- Tianbao Liao
- Department of President's Office, Youjiang Medical University for Nationalities, Baise, China
| | - Tingting Su
- Department of ECG Diagnostics, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yang Lu
- Department of Gastroenterology and Respiratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Lina Huang
- Department of Endocrinology and Metabolism Nephrology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Lu-Huai Feng
- Department of Endocrinology and Metabolism Nephrology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Xu L, Zhang J, Liu S, He G, Shu J. Development and internal validation of prediction model for rebleeding within one year after endoscopic treatment of cirrhotic varices: consideration from organ-based CT radiomics signature. BMC Med Imaging 2024; 24:292. [PMID: 39472821 PMCID: PMC11523671 DOI: 10.1186/s12880-024-01461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Rebleeding after endoscopic treatment for esophagogastric varices (EGVs) in cirrhotic patients remains a significant clinical challenge, with high mortality rates and limited predictive tools. Current methods, relying on clinical indicators, often lack precision and fail to provide personalized risk assessments. This study aims to develop and validate a novel, non-invasive prediction model based on CT radiomics to predict rebleeding risk within one year of treatment, integrating radiomic features from key organs and clinical data. METHODS 123 patients were enrolled and divided into rebleeding (n = 44) and non-bleeding group (n = 79) within 1 year after endoscopic treatment of EGVs. The liver, spleen, and the lower part of the esophagus were segmented and the extracted radiomics features were selected to construct liver/spleen/esophagus radiomics signatures based on logistic regression. Clinic-radiomics combined models and multi-organ combined radiomics models were constructed based on independent model scores using logistic regression. The model performance was evaluated by ROC analysis, calibration and decision curves. The continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices were analyzed. RESULTS The clinical-liver combined model had the highest AUC of 0.931 (95% CI: 0.887-0.974), which was followed by the liver-based model with AUC of 0.891 (95% CI: 0.835-0.74). The decision curves also showed that the clinical-liver combined model afforded a greater net benefit compared to other models within the threshold probability of 0.45 to 0.80. Significant improvements in discrimination (IDI, P < 0.05) and reclassification (NRI, P < 0.05) were obtained for clinical-liver combined model compared with the independent ones. CONCLUSION The independent and combined liver-based CT radiomics models performed well in predicting rebleeding within 1 year after endoscopic treatment of EGVs.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, NO. 25, Taiping Road, Jiangyang District, Luzhou City, Sichuan, China
| | - Jing Zhang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, NO. 25, Taiping Road, Jiangyang District, Luzhou City, Sichuan, China
| | - Siyun Liu
- Pharmaceutical Diagnostics, GE Healthcare, Beijing, China
| | - Guoyun He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, NO. 25, Taiping Road, Jiangyang District, Luzhou City, Sichuan, China.
| |
Collapse
|
6
|
Hu ZX, Li Y, Yang X, Li YX, He YY, Niu XH, Nie TT, Guo XF, Yuan ZL. Constructing a nomogram to predict overall survival of colon cancer based on computed tomography characteristics and clinicopathological factors. World J Gastrointest Oncol 2024; 16:4104-4114. [DOI: 10.4251/wjgo.v16.i10.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The colon cancer prognosis is influenced by multiple factors, including clinical, pathological, and non-biological factors. However, only a few studies have focused on computed tomography (CT) imaging features. Therefore, this study aims to predict the prognosis of patients with colon cancer by combining CT imaging features with clinical and pathological characteristics, and establishes a nomogram to provide critical guidance for the individualized treatment.
AIM To establish and validate a nomogram to predict the overall survival (OS) of patients with colon cancer.
METHODS A retrospective analysis was conducted on the survival data of 249 patients with colon cancer confirmed by surgical pathology between January 2017 and December 2021. The patients were randomly divided into training and testing groups at a 1:1 ratio. Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with OS, and a nomogram model was constructed for the training group. Survival curves were calculated using the Kaplan–Meier method. The concordance index (C-index) and calibration curve were used to evaluate the nomogram model in the training and testing groups.
RESULTS Multivariate logistic regression analysis revealed that lymph node metastasis on CT, perineural invasion, and tumor classification were independent prognostic factors. A nomogram incorporating these variables was constructed, and the C-index of the training and testing groups was 0.804 and 0.692, respectively. The calibration curves demonstrated good consistency between the actual values and predicted probabilities of OS.
CONCLUSION A nomogram combining CT imaging characteristics and clinicopathological factors exhibited good discrimination and reliability. It can aid clinicians in risk stratification and postoperative monitoring and provide important guidance for the individualized treatment of patients with colon cancer.
Collapse
Affiliation(s)
- Zhe-Xing Hu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China
| | - Yin Li
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China
| | - Xuan Yang
- Department of Radiology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| | - Yu-Xia Li
- College of Informatics, Huazhong Agriculture University, Wuhan 430070, Hubei Province, China
| | - Yao-Yao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China
| | - Xiao-Hui Niu
- College of Informatics, Huazhong Agriculture University, Wuhan 430070, Hubei Province, China
| | - Ting-Ting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China
| | - Xiao-Fang Guo
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China
| | - Zi-Long Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China
| |
Collapse
|
7
|
Ma J, Nie X, Kong X, Xiao L, Liu H, Shi S, Wu Y, Li N, Hu L, Li X. MRI T2WI-based radiomics combined with KRAS gene mutation constructed models for predicting liver metastasis in rectal cancer. BMC Med Imaging 2024; 24:262. [PMID: 39367333 PMCID: PMC11453062 DOI: 10.1186/s12880-024-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. METHODS A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. RESULTS KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. CONCLUSIONS Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Xinsheng Nie
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Xiangjiang Kong
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Lingqing Xiao
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Han Liu
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Shengming Shi
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Yupeng Wu
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Na Li
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Linlin Hu
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Xiaofu Li
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China.
| |
Collapse
|
8
|
Zhang L, Xie G, Zhang Y, Li J, Tang W, Yang L, Li K. A CT-based machine learning model for using clinical-radiomics to predict malignant cerebral edema after stroke: a two-center study. Front Neurosci 2024; 18:1443486. [PMID: 39420983 PMCID: PMC11484034 DOI: 10.3389/fnins.2024.1443486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose This research aimed to create a machine learning model for clinical-radiomics that utilizes unenhanced computed tomography images to assess the likelihood of malignant cerebral edema (MCE) in individuals suffering from acute ischemic stroke (AIS). Methods The research included 179 consecutive patients with AIS from two different hospitals. These patients were randomly assigned to training (n = 143) and validation (n = 36) sets with an 8:2 ratio. Using 3DSlicer software, the radiomics features of regions impacted by infarction were derived from unenhanced CT scans. The radiomics features linked to MCE were pinpointed through a consistency test, Student's t test and the least absolute shrinkage and selection operator (LASSO) method for selecting features. Clinical parameters associated with MCE were also identified. Subsequently, machine learning models were constructed based on clinical, radiomics, and clinical-radiomics. Ultimately, the efficacy of these models was evaluated by measuring the operating characteristics of the subjects through their area under the curve (AUCs). Results Logistic regression (LR) was found to be the most effective machine learning algorithm, for forecasting the MCE. In the training and validation cohorts, the AUCs of clinical model were 0.836 and 0.773, respectively, for differentiating MCE patients; the AUCs of radiomics model were 0.849 and 0.818, respectively; the AUCs of clinical and radiomics model were 0.912 and 0.916, respectively. Conclusion This model can assist in predicting MCE after acute ischemic stroke and can provide guidance for clinical treatment and prognostic assessment.
Collapse
Affiliation(s)
| | - Gang Xie
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yue Zhang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Junlin Li
- North Sichuan Medical College, Nanchong, China
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Wuli Tang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Ling Yang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Kang Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
9
|
Maniaci A, Lavalle S, Gagliano C, Lentini M, Masiello E, Parisi F, Iannella G, Cilia ND, Salerno V, Cusumano G, La Via L. The Integration of Radiomics and Artificial Intelligence in Modern Medicine. Life (Basel) 2024; 14:1248. [PMID: 39459547 PMCID: PMC11508875 DOI: 10.3390/life14101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
With profound effects on patient care, the role of artificial intelligence (AI) in radiomics has become a disruptive force in contemporary medicine. Radiomics, the quantitative feature extraction and analysis from medical images, offers useful imaging biomarkers that can reveal important information about the nature of diseases, how well patients respond to treatment and patient outcomes. The use of AI techniques in radiomics, such as machine learning and deep learning, has made it possible to create sophisticated computer-aided diagnostic systems, predictive models, and decision support tools. The many uses of AI in radiomics are examined in this review, encompassing its involvement of quantitative feature extraction from medical images, the machine learning, deep learning and computer-aided diagnostic (CAD) systems approaches in radiomics, and the effect of radiomics and AI on improving workflow automation and efficiency, optimize clinical trials and patient stratification. This review also covers the predictive modeling improvement by machine learning in radiomics, the multimodal integration and enhanced deep learning architectures, and the regulatory and clinical adoption considerations for radiomics-based CAD. Particular emphasis is given to the enormous potential for enhancing diagnosis precision, treatment personalization, and overall patient outcomes.
Collapse
Affiliation(s)
- Antonino Maniaci
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (S.L.); (C.G.)
| | - Salvatore Lavalle
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (S.L.); (C.G.)
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (S.L.); (C.G.)
| | - Mario Lentini
- ASP Ragusa, Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
| | - Edoardo Masiello
- Radiology Unit, Department Clinical and Experimental, Experimental Imaging Center, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Parisi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, ENT Section, University of Catania, Via S. Sofia, 78, 95125 Catania, Italy;
| | - Giannicola Iannella
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy;
| | - Nicole Dalia Cilia
- Department of Computer Engineering, University of Enna “Kore”, 94100 Enna, Italy;
- Institute for Computing and Information Sciences, Radboud University Nijmegen, 6544 Nijmegen, The Netherlands
| | - Valerio Salerno
- Department of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy;
| | - Giacomo Cusumano
- University Hospital Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy;
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Luigi La Via
- University Hospital Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy;
| |
Collapse
|
10
|
Zhu N, Meng X, Wang Z, Hu Y, Zhao T, Fan H, Niu F, Han J. Radiomics in Diagnosis, Grading, and Treatment Response Assessment of Soft Tissue Sarcomas: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:3982-3992. [PMID: 38772802 DOI: 10.1016/j.acra.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate radiomics in soft tissue sarcomas (STSs) for diagnostic accuracy, grading, and treatment response assessment, with a focus on clinical relevance. METHODS In this diagnostic accuracy study, radiomics was applied using multiple MRI sequences and AI classifiers, with histopathological diagnosis as the reference standard. Statistical analysis involved meta-analysis, random-effects model, and Deeks' funnel plot asymmetry test. RESULTS Among 579 unique titles and abstracts, 24 articles were included in the systematic review, with 21 used for meta-analysis. Radiomics demonstrated a pooled sensitivity of 84% (95% CI: 80-87) and specificity of 63% (95% CI: 56-70), AUC of 0.93 for diagnosis, sensitivity of 84% (95% CI: 82-87) and specificity of 73% (95% CI: 68-77), AUC of 0.91 for grading, and sensitivity of 83% (95% CI: 67-94) and specificity of 67% (95% CI: 59-74), AUC of 0.87 for treatment response assessment. CONCLUSION Radiomics exhibits potential for accurate diagnosis, grading, and treatment response assessment in STSs, emphasizing the need for standardization and prospective trials. CLINICAL RELEVANCE STATEMENT Radiomics offers precise tools for STS diagnosis, grading, and treatment response assessment, with implications for optimizing patient care and treatment strategies in this complex malignancy.
Collapse
Affiliation(s)
- Nana Zhu
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Xianghong Meng
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China
| | - Zhi Wang
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China.
| | - Yongcheng Hu
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Tingting Zhao
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Hongxing Fan
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Feige Niu
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Jun Han
- The Department of Radiology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Li Q, Hong R, Zhang P, Hou L, Bao H, Bai L, Zhao J. A clinical-radiomics nomogram based on spectral CT multi-parameter images for preoperative prediction of lymph node metastasis in colorectal cancer. Clin Exp Metastasis 2024; 41:639-653. [PMID: 38767757 DOI: 10.1007/s10585-024-10293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
To develop a clinical-radiomics nomogram based on spectral CT multi-parameter images for predicting lymph node metastasis in colorectal cancer. A total of 76 patients with colorectal cancer and 156 lymph nodes were included. The clinical data of the patients were collected, including gender, age, tumor location and size, preoperative tumor markers, etc. Three sets of conventional images in the arterial, venous, and delayed phases were obtained, and six sets of spectral images were reconstructed using the arterial phase spectral data, including virtual monoenergetic images (40 keV, 70 keV, 100 keV), iodine density maps, iodine no water maps, and virtual non-contrast images. Radiomics features of lymph nodes were extracted from the above images, respectively. Univariate analysis and least absolute shrinkage and selection operator (LASSO) regression were used to select features. A clinical model was constructed based on age and carcinoembryonic antigen (CEA) levels. The radiomics features selected were used to generate a composed radiomics signature (Com-RS). A nomogram was developed using age, CEA, and the Com-RS. The models' prediction efficiency, calibration, and clinical application value were evaluated by the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis, respectively. The nomogram outperforms the clinical model and the Com-RS (AUC = 0.879, 0.824). It is well calibrated and has great clinical application value. This study developed a clinical-radiomics nomogram based on spectral CT multi-parameter images, which can be used as an effective tool for preoperative personalized prediction of lymph node metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, The Third Hospital of Hebei Medical University, Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Rui Hong
- Department of Radiology, The Third Hospital of Hebei Medical University, Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Ping Zhang
- Department of Radiology, The Third Hospital of Hebei Medical University, Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Liting Hou
- Department of Radiology, The Third Hospital of Hebei Medical University, Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Hailun Bao
- Department of Radiology, The Third Hospital of Hebei Medical University, Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Lin Bai
- Department of Radiology, The Third Hospital of Hebei Medical University, Ziqiang Road, Shijiazhuang, 050000, Hebei, China.
| | - Jian Zhao
- Department of Radiology, The Third Hospital of Hebei Medical University, Ziqiang Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
12
|
Muttillo EM, Li Causi FS, La Franca A, Lucarini A, Arrivi G, Di Cicco L, Castagnola G, Scarinci A, Mazzuca F, Balducci G, Mercantini P. Sidedness and Molecular Pattern in Defining the Risk of Lymph Node Metastasis in Nonmetastatic Colorectal Cancer: Single-Center Retrospective Study. Cancers (Basel) 2024; 16:3314. [PMID: 39409934 PMCID: PMC11475558 DOI: 10.3390/cancers16193314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Lymphadenectomy plays a central role in the treatment of localized colon cancer. While in left colon cancer the D3 lymphadenectomy/CME is considered the standard of care, lymphatic stations to be removed in right colon cancer are still a matter of discussion. The individuation of LNM risk factors could help in choosing the lymphadenectomy in right-sided tumors. This study aims to analyze the correlation of histopathological and molecular characteristics with lymph node metastasis, both in right- and left-sided colon cancer, and their impact on survival; Methods: We conducted a single-center observational retrospective study. The following data were collected and analyzed for each patient: demographics, histopathological and molecular data, and intraoperative and perioperative data. Statistical analyses were performed, including descriptive statistics, multivariate logistic regression and survival analysis; Results: An association between tumor size (pT, p < 0.001), grading (p = 0.013), budding (p < 0.001), LVI (79,4% p < 0.001) and LNM was observed. A multivariate analysis identified pT4 (OR 5.45, p < 0.001) and LVI+ (OR 10.7, p < 0.001) as significant predictors of LNM. Right-sided patients presented a worse OS when associated with LNM, while no significant difference was observed in N0 patients; Conclusions: histological and molecular analysis can help identify high risk patients, which could benefit from extended lymphadenectomies. These patients could be ideal candidates for the D3 lymphadenectomy/CME.
Collapse
Affiliation(s)
- Edoardo Maria Muttillo
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
- Department of Digestive Surgery, Hopital Edouard Herriot, 69003 Lyon, France
| | - Francesco Saverio Li Causi
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| | - Alice La Franca
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| | - Alessio Lucarini
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| | - Giulia Arrivi
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (G.A.); (F.M.)
| | - Leonardo Di Cicco
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| | - Giorgio Castagnola
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| | - Andrea Scarinci
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| | - Federica Mazzuca
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (G.A.); (F.M.)
| | - Genoveffa Balducci
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| | - Paolo Mercantini
- Department of Medical Surgical Science and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00198 Rome, Italy; (E.M.M.); (A.L.F.); (A.L.); (L.D.C.); (G.C.); (A.S.); (G.B.); (P.M.)
| |
Collapse
|
13
|
Ou J, Zhou HY, Qin HL, Wang YS, Gou YQ, Luo H, Zhang XM, Chen TW. Baseline CT radiomics features to predict pathological complete response of advanced esophageal squamous cell carcinoma treated with neoadjuvant chemotherapy using paclitaxel and cisplatin. Eur J Radiol 2024; 181:111763. [PMID: 39341168 DOI: 10.1016/j.ejrad.2024.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE To develop a CT radiomics model to predict pathological complete response (pCR) of advanced esophageal squamous cell carcinoma (ESCC) toneoadjuvant chemotherapy using paclitaxel and cisplatin. MATERIALS AND METHODS 326 consecutive patients with advanced ESCC from two hospitals undergoing baseline contrast-enhanced CT followed by neoadjuvant chemotherapy using paclitaxel and cisplatin were enrolled, including 115 patients achieving pCR and 211 patients without pCR. Of the 271 cases from 1st hospital, 188 and 83 cases were randomly allocated to the training and test cohorts, respectively. The 55 patients from a second hospital were assigned as an external validation cohort. Region of interest was segmented on the baseline thoracic contrast-enhanced CT. Useful radiomics features were generated by dimension reduction using least absolute shrinkage and selection operator. The optimal radiomics features were chosen using support vector machine (SVM). Discriminating performance was assessed with area under the receiver operating characteristic curve (ROC) and F-1score. The calibration curves and Brier score were used to evaluate the predictive accuracy. RESULTS Eight radiomics features were selected to create radiomics models related to pCR of advanced ESCC (P-values < 0.01 for both the training and test cohorts). SVM model showed the best performance (AUCs = 0.929, 0.868 and 0.866, F-1scores = 0.857, 0.847 and 0.737 in the training, test and external validation cohorts, respectively). The calibration curves and Brier scores indicated goodness-of-fit and its great predictive accuracy. CONCLUSION CT radiomics models could well help predict pCR of advanced ESCC, and SVM model could be a suitable predictive model.
Collapse
Affiliation(s)
- Jing Ou
- The First Clinical College of Jinan University, and Jinan University First Affiliated Hospital, Guangzhou, Guangdong 510630, China; Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hai-Ying Zhou
- The First Clinical College of Jinan University, and Jinan University First Affiliated Hospital, Guangzhou, Guangdong 510630, China; Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hui-Lin Qin
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yue-Su Wang
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yue-Qin Gou
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hui Luo
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiao-Ming Zhang
- The First Clinical College of Jinan University, and Jinan University First Affiliated Hospital, Guangzhou, Guangdong 510630, China; Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Tian-Wu Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
14
|
Ji X, Zhou B, Huang H, Jiang W, Wang J, Ding W, Wang Z, Sun X. Development and validation of a prognostic nomogram in patients aged ≥65 years with stage I-II non-small cell lung cancer treated with stereotactic body radiotherapy. J Geriatr Oncol 2024; 15:102067. [PMID: 39288506 DOI: 10.1016/j.jgo.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/18/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION This study aims to discern the efficacy and toxicity of stereotactic body radiotherapy (SBRT) in older adults with stage I-II non-small cell lung cancer (NSCLC) and establish a prognostic nomogram for these patients. MATERIALS AND METHODS One hundred forty-two patients (aged ≥65 years) with clinically-confirmed stage I-II NSCLC treated with SBRT from 2009 to 2020 were enrolled in the study. Primary end points included overall survival (OS), progression free survival (PFS), cumulative incidences of local failure (LF), regional failure (RF), distant failure (DF), and toxicity. A nomogram for OS was developed and validated internally using one thousand bootstrap resamplings. RESULTS The median times to LF, RF, and DF were 22.1 months, 26.9 months and 24.1 months, respectively. The 1-, 3-, and 5-year PFS rates from the start of SBRT were 79.4 %, 53.1 %, and 38.9 %, respectively. Performance status, pre-SBRT platelet to lymphocyte ratio (PLR), and planning tumor volume (PTV) were predictive of PFS. The 1-, 3-, and 5-year OS rates from the start of SBRT were 90.8 %, 67.9 % and 47.6 %, respectively. In multivariate analysis, good performance status, a low level of pre-SBRT PLR, and small tumor size were associated with better prognosis, all of which were included in the nomogram. The model showed optimal discrimination, with a C-index of 0.651 and good calibration. The most common adverse reactions were grade 1-2, such as anemia, cough, and fatigue. DISCUSSION SBRT is a reasonable treatment modality for early-stage NSCLC in older adults. It achieved good survival outcomes and low toxicity. The proposed nomogram may be able to estimate individual outcomes for these patients.
Collapse
Affiliation(s)
- Xiaoqin Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhou
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hua Huang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wanrong Jiang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiasheng Wang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Ding
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhen Wang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangdong Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Chen Y, Zhang Z, Ni H, Yu G, Huang J, Lyu H. Development and internal validation of a clinical-radiomic nomogram for predicting bowel resection in acute superior mesenteric venous thrombosis. Abdom Radiol (NY) 2024:10.1007/s00261-024-04567-3. [PMID: 39276187 DOI: 10.1007/s00261-024-04567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Affiliation(s)
- Yongchun Chen
- Department of Radiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhongjing Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haizhen Ni
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guanfeng Yu
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingyong Huang
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Heping Lyu
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
16
|
Mao R, Li J. Construction of a molecular diagnostic system for neurogenic rosacea by combining transcriptome sequencing and machine learning. BMC Med Genomics 2024; 17:232. [PMID: 39272052 PMCID: PMC11396881 DOI: 10.1186/s12920-024-02008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Patients with neurogenic rosacea (NR) frequently demonstrate pronounced neurological manifestations, often unresponsive to conventional therapeutic approaches. A molecular-level understanding and diagnosis of this patient cohort could significantly guide clinical interventions. In this study, we amalgamated our sequencing data (n = 46) with a publicly accessible database (n = 38) to perform an unsupervised cluster analysis of the integrated dataset. The eighty-four rosacea patients were partitioned into two distinct clusters. Neurovascular biomarkers were found to be elevated in cluster 1 compared to cluster 2. Pathways in cluster 1 were predominantly involved in neurotransmitter synthesis, transmission, and functionality, whereas cluster 2 pathways were centered on inflammation-related processes. Differential gene expression analysis and WGCNA were employed to delineate the characteristic gene sets of the two clusters. Subsequently, a diagnostic model was constructed from the identified gene sets using linear regression methodologies. The model's C index, comprising genes PNPLA3, CUX2, PLIN2, and HMGCR, achieved a remarkable value of 0.9683, with an area under the curve (AUC) for the training cohort's nomogram of 0.9376. Clinical characteristics from our dataset (n = 46) were assessed by three seasoned dermatologists, forming the NR validation cohort (NR, n = 18; non-neurogenic rosacea, n = 28). Upon application of our model to NR diagnosis, the model's AUC value reached 0.9023. Finally, potential therapeutic candidates for both patient groups were predicted via the Connectivity Map. In summation, this study unveiled two clusters with unique molecular phenotypes within rosacea, leading to the development of a precise diagnostic model instrumental in NR diagnosis.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Hong Y, Chen X, Sun W, Li G. MRI-based radiomics features for prediction of pathological deterioration upgrading in rectal tumor. Acad Radiol 2024:S1076-6332(24)00620-2. [PMID: 39271380 DOI: 10.1016/j.acra.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Our aim is to develop and validate an MRI-based diagnostic model for predicting pathological deterioration upgrading in rectal tumor. METHODS This retrospective study included 158 eligible patients from January 2017 to November 2023. The patients were divided into a training group (n = 110) and a validation group (n = 48). Radiomics features were extracted from T2-weighted images to create a radiomics score model. Significant factors identified through multifactor analysis were used to develop the final clinical feature model. By combining these two models, an combined radiomics-clinical model was established. The model's performance was evaluated using Receiver Operating Characteristic (ROC) analysis and the Area Under the ROC Curve (AUC). RESULTS A total of 1197 features were extracted, with 11 features selected for calculating the radiomics score to establish the radiomics model. This model demonstrated good predictive performance for pathological upgrading in both the training and validation groups (AUC of 0.863 and 0.861, respectively). Clinical factors such as chief complaint and differential carcinoembryonic antigen levels showed statistical significance (P < 0.05). The clinical model, incorporating these factors, yielded AUC values of 0.669 and 0.651 for the training and validation groups, respectively. Furthermore, the radiomics-clinical combined model outperformed the individual models in predicting preoperative pathological upgrading in both the training and validation groups (AUC of 0.932 and 0.907, respectively). CONCLUSIONS A radiomics-clinical model, which combines clinical features with radiomics features based on MRI, can predict pathological deterioration upgrading in patients with rectal tumor and provide valuable insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Yongping Hong
- Department of Anorectal Surgery, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Xingxing Chen
- Department of Clincal Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Wei Sun
- Department of Radiology, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Guofeng Li
- Department of Anorectal Surgery, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Panahi M, Hosseini MS. Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson's disease motor subtypes in early-stages. Sci Rep 2024; 14:20708. [PMID: 39237644 PMCID: PMC11377437 DOI: 10.1038/s41598-024-71860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
This study aimed to develop and validate a multi-modality radiomics approach using T1-weighted and diffusion tensor imaging (DTI) to differentiate Parkinson's disease (PD) motor subtypes, specifically tremor-dominant (TD) and postural instability gait difficulty (PIGD), in early disease stages. We analyzed T1-weighted and DTI scans from 140 early-stage PD patients (70 TD, 70 PIGD) and 70 healthy controls from the Parkinson's Progression Markers Initiative database. Radiomics features were extracted from 16 brain regions of interest. After harmonization and feature selection, four machine learning classifiers were trained and evaluated for both three-class (HC vs TD vs PIGD) and binary (TD vs PIGD) classification tasks. The light gradient boosting machine (LGBM) classifier demonstrated the best overall performance. For the three-class classification, LGBM achieved an accuracy of 85% and an area under the receiver operating characteristic curve (AUC) of 0.94 using combined T1 and DTI features. In the binary classification task, LGBM reached an accuracy of 95% and AUC of 0.95. Key discriminative features were identified in the Thalamus, Amygdala, Hippocampus, and Substantia Nigra for the three-group classification, and in the Pallidum, Amygdala, Hippocampus, and Accumbens for binary classification. The combined T1 + DTI approach consistently outperformed single-modality classifications, with DTI alone showing particularly low performance (AUC 0.55-0.62) in binary classification. The high accuracy and AUC values suggest that this approach could significantly improve early diagnosis and subtyping of PD. These findings have important implications for clinical management, potentially enabling more personalized treatment strategies based on early, accurate subtype identification.
Collapse
Affiliation(s)
- Mehdi Panahi
- Department of Computer Engineering, Payame Noor University Erbil Branch, Erbil, Iraq.
| | | |
Collapse
|
19
|
Zhou H, Zhao Q, Xie Q, Peng Y, Chen M, Huang Z, Lin Z, Yao T. Preoperative prediction model of lymph node metastasis in the inguinal and femoral region based on radiomics and artificial intelligence. Int J Gynecol Cancer 2024; 34:1437-1444. [PMID: 39089728 DOI: 10.1136/ijgc-2024-005580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE To predict preoperative inguinal lymph node metastasis in vulvar cancer patients using a machine learning model based on imaging features and clinical data from pelvic magnetic resonance imaging (MRI). METHODS 52 vulvar cancer patients were divided into a training set (n=37) and validation set (n=15). Clinical data and MRI images were collected, and regions of interest were delineated by experienced radiologists. A total of 1688 quantitative imaging features were extracted using the Radcloud platform. Dimensionality reduction and feature selection were applied, resulting in a radiomics signature. Clinical characteristics were screened, and a combined model integrating the radiomics signature and significant clinical features was constructed using logistic regression. Four machine learning classifiers (K nearest neighbor, random forest, adaptive boosting, and latent dirichlet allocation) were trained and validated. Model performance was evaluated using the receiver operating characteristic curve and the area under the curve (AUC), as well as decision curve analysis. RESULTS The radiomics score significantly differentiated between lymph node metastasis positive and negative patients in both the training and validation sets. The combined model demonstrated excellent discrimination, with AUC values of 0.941 and 0.933 in the training and validation sets, respectively. The calibration curve and decision curve analysis confirmed the model's high predictive accuracy and clinical utility. Among the machine learning classifiers, latent dirichlet allocation and random forest models achieved AUC values >0.7 in the validation set. Integrating all four classifiers resulted in a total model with an AUC of 0.717 in the validation set. CONCLUSION Radiomics combined with artificial intelligence can provide a new method for prediction of inguinal lymph node metastasis of vulvar cancer before surgery.
Collapse
Affiliation(s)
- Haijian Zhou
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingsheng Xie
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Peng
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengjie Chen
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zixin Huang
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
20
|
Wang H, Zhang J, Li Y, Wang D, Zhang T, Yang F, Li Y, Zhang Y, Yang L, Li P. Deep-learning features based on F18 fluorodeoxyglucose positron emission tomography/computed tomography ( 18F-FDG PET/CT) to predict preoperative colorectal cancer lymph node metastasis. Clin Radiol 2024; 79:e1152-e1158. [PMID: 38955636 DOI: 10.1016/j.crad.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Abstract
AIM The objective of this study was to create and authenticate a prognostic model for lymph node metastasis (LNM) in colorectal cancer (CRC) that integrates clinical, radiomics, and deep transfer learning features. MATERIALS AND METHODS In this study, we analyzed data from 119 CRC patients who underwent F18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scanning. The patient cohort was divided into training and validation subsets in an 8:2 ratio, with an additional 33 external data points for testing. Initially, we conducted univariate analysis to screen clinical parameters. Radiomics features were extracted from manually drawn images using pyradiomics, and deep-learning features, radiomics features, and clinical features were selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression and Spearman correlation coefficient. We then constructed a model by training a support vector machine (SVM), and evaluated the performance of the prediction model by comparing the area under the curve (AUC), sensitivity, and specificity. Finally, we developed nomograms combining clinical and radiological features for interpretation and analysis. RESULTS The deep learning radiomics (DLR) nomogram model, which was developed by integrating deep learning, radiomics, and clinical features, exhibited excellent performance. The area under the curve was (AUC = 0.934, 95% confidence interval [CI]: 0.884-0.983) in the training cohort, (AUC = 0.902, 95% CI: 0.769-1.000) in the validation cohort, and (AUC = 0.836, 95% CI: 0.673-0.998) in the test cohort. CONCLUSION We developed a preoperative predictive machine-learning model using deep transfer learning, radiomics, and clinical features to differentiate LNM status in CRC, aiding in treatment decision-making for patients.
Collapse
Affiliation(s)
- H Wang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - J Zhang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - Y Li
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - D Wang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - T Zhang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - F Yang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - Y Li
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - Y Zhang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - L Yang
- PET/MR Department, Harbin Medical University Cancer Hospital, Haping Road, Nangang District, Harbin, Heilongjiang Province, China.
| | - P Li
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
21
|
Shu K, Wang K, Zhang R, Wang C, Cai Z, Liu K, Lin H, Zeng Y, Cao Z, Lai C, Yan Z, Lu Y. Pituitary MRI Radiomics Improves Diagnostic Performance of Growth Hormone Deficiency in Children Short Stature: A Multicenter Radiomics Study. Acad Radiol 2024; 31:3783-3792. [PMID: 38796401 DOI: 10.1016/j.acra.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
RATIONALE AND OBJECTIVES To develop an efficient machine-learning model using pituitary MRI radiomics and clinical data to differentiate growth hormone deficiency (GHD) from idiopathic short stature (ISS), making the diagnostic process more acceptable to patients and their families. MATERIALS AND METHODS A retrospective cohort of 297 GHD and 300 ISS children (4-12 years) were enrolled as training and validation cohorts (8:2 ratio). An external cohort from another institution (49 GHD and 51 ISS) was employed as the testing cohort. Radiomics features extracted from the anterior pituitary gland on sagittal T1-weighted image (1.5 T or 3.0 T) were used to develop a radiomics model after feature selection. Hematological biomarkers were selected to create a clinical model and combine with the optimal radiomics features to create a clinical-radiomics model. The area under the receive operating characteristic curve (AUC) and Delong test compared the diagnostic performance of the previously mentioned three models across different validation and testing cohorts. RESULTS 17 radiomics features were selected for the radiomics model, and total protein, total cholesterol, free triiodothyronine, and triglyceride were utilized for the clinical model. In the training and validation cohorts, the diagnostic performance of the clinical-radiomics model (AUC=0.820 and 0.801) was comparable to the radiomics model (AUC=0.812 and 0.779, both P >0.05), both outperforming the clinical model (AUC=0.575 and 0.593, P <0.001). In the testing cohort, the clinical-radiomics model exhibited the highest AUC of 0.762 than the clinical and radiomics model (AUC=0.604 and 0.741, respectively, P <0.05). In addition, the clinical and radiomics models demonstrated similar diagnostic performance in the testing cohort (P >0.05). CONCLUSION Integrating radiomics features from conventional pituitary MRI with clinical indicators offers a minimally invasive approach for identifying GHD and shows robustness in a multicenter setting.
Collapse
Affiliation(s)
- Kun Shu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Keren Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ruifang Zhang
- Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chenyan Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zheng Cai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hu Lin
- Department of Endocrinology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Zeng
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd, China
| | - Zirui Cao
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd, China
| | - Can Lai
- Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang Province, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang Province, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
Liu W, Wang W, Guo M, Zhang H. Tumor habitat and peritumoral region evolution-based imaging features to assess risk categorization of thymomas. Clin Radiol 2024; 79:e1117-e1125. [PMID: 38862335 DOI: 10.1016/j.crad.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
AIM To develop an aggregate model that integrated clinical data, habitat characteristics, and intratumoral and peritumoral features to assess the risk categorization of thymomas. MATERIALS AND METHODS We retrospectively analyzed 140 thymoma patients (70 low-risk and 70 high-risk), including pathological data. The patients were randomly divided into training cohort (n = 114) and test cohort (n = 26). The k-means clustering was utilized to partition the primary tumor into habitats based on intratumoral radiomic features, 6 distinct habitats were identified. By expanding the region of interest (ROI) mask, 2 peritumoral regions were obtained. Finally, 7 clinical characteristics, 3 habitat values, 20 radiomic features were utilized to develop an aggregated model, to predict the risk of thymoma. Shapley additive explanations (SHAP) interpretation was used for features importance ranking. The accuracy and area under curve (AUC) were used to analyze the performance of the models. RESULTS The aggregated model, which utilized the XGBoost classifier, demonstrated the best performance with an AUC of 0.811 and an accuracy of 0.769. In comparison, the radiomic model produced an AUC of 0.654 and an accuracy of 0.692. Additionally, the Intratumoral + peritumoral model exhibited an AUC of 0.728 and an accuracy of 0.769. CONCLUSION Our study establishes a novel tool to predict the risk of thymoma with a good performance. If prospectively validated, the model may refine thymoma patient selection for risk-adaptative therapy and improve prognosis.
Collapse
Affiliation(s)
- W Liu
- School of Health Management, China Medical University, Shenyang City, Liaoning Province, PR China.
| | - W Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, PR China.
| | - M Guo
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, PR China.
| | - H Zhang
- Department of Radiology, Liaoning Cancer Hospital and Institute, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
23
|
Xu Z, Wang YH, Cheng ZY, Feng YZ, Li XC, Zhou Q, Cai XR. Combined radiomics nomogram of different machine learning models for preoperative distinguishing intraspinal schwannomas and meningiomas: a multicenter and comparative study. Clin Radiol 2024; 79:e1108-e1116. [PMID: 38849236 DOI: 10.1016/j.crad.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
AIMS The objective of our study was to establish and verify a novel combined model based on multiparameter magnetic resonance imaging (MRI) radiomics and clinical features to distinguish intraspinal schwannomas from meningiomas. MATERIALS AND METHODS This research analyzed the preoperative magnetic resonance (MR) images and clinical characteristics of 209 patients with intraspinal tumors who received tumor resection at three institutions. 159 individuals from institutions 1 and 2 were randomly assigned into a training group (n=111) and a test group (n=48) in a 7-3 ratio. A nomogram was constructed using the training cohort and was internally and externally verified in the test cohort and an independent validation cohort (n=50). Model performance was assessed utilizing the area under the curve (AUC) of receiver operating characteristics (ROC), decision curve analysis (DCA), and calibration curves. RESULTS The nomogram exhibited superior predictive efficacy in distinguishing between spinal schwannomas and meningiomas when compared to both the radiomics model and the clinical model. The nomogram yielded AUCs of 0.994, 0.962, and 0.949 in the training, test, and external validation cohorts, respectively, indicating its exceptional differentiating ability. The DCAs demonstrated that the nomogram yielded the best net benefit. The calibration curves indicated that the nomogram got good agreement between the predicted and the actual observation. CONCLUSION This research suggests that the nomogram incorporating clinical and radiomic features may be an effective auxiliary tool for distinguishing between intraspinal schwannomas and meningiomas, and has important clinical significance for clinical decision-making and prognosis prediction.
Collapse
Affiliation(s)
- Z Xu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou 510630, Guangdong, China
| | - Y-H Wang
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou 510630, China; Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiangxi Road, Guangzhou, Guangdong 510120, China
| | - Z-Y Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou 510630, Guangdong, China
| | - Y-Z Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou 510630, Guangdong, China
| | - X-C Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiangxi Road, Guangzhou, Guangdong 510120, China.
| | - Q Zhou
- Department of Radiology, Third Affiliated Hospital of Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou 510630, China.
| | - X-R Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
24
|
Zheng Y, Chen X, Zhang H, Ning X, Mao Y, Zheng H, Dai G, Liu B, Zhang G, Huang D. Multiparametric MRI-based radiomics nomogram for the preoperative prediction of lymph node metastasis in rectal cancer: A two-center study. Eur J Radiol 2024; 178:111591. [PMID: 39013271 DOI: 10.1016/j.ejrad.2024.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE To develop a radiomic nomogram based on multiparametric magnetic resonance imaging for the preoperative prediction of lymph node metastasis (LNM) in rectal cancer. METHODS This retrospective study included 318 patients with pathologically proven rectal adenocarcinoma from two hospitals. Radiomic features were extracted from T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging scans of the training cohort, and the radsore model was then constructed. The combined model was obtained by integrating the Radscore and clinical models. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic effectiveness of each model, and the best-performing model was used to develop the nomogram. RESULTS The Radscore and clinical models exhibited similar diagnostic efficacy (DeLong's test, P > 0.05). The AUC of the combined model was significantly higher than those of the clinical and Radscore models in the training cohort (AUC: 0.837 vs. 0.763 and 0.787, P: 0.02120 and 0.02309) and the external validation cohort (AUC: 0.880 vs. 0.797 and 0.779, P: 0.02310 and 0.02471). However, the diagnostic performance of the three models was comparable in the internal validation cohort (P > 0.05). Thus, among the three models, the combined model exhibited the highest diagnostic efficiency. The calibration curve exhibited satisfactory consistency between the nomogram predictions and the actual results. DCA confirmed the considerable clinical usefulness of the nomogram. CONCLUSION The radiomics nomogram can accurately and noninvasively predict LNM in rectal cancer before surgery, serving as a convenient visualization tool for informing treatment decisions, including the choice of surgical approach and the need for neoadjuvant therapy.
Collapse
Affiliation(s)
- Yongfei Zheng
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Xu Chen
- Hangzhou Dianzi University Zhuoyue Honors College, Hangzhou, Zhejiang Province, China
| | - He Zhang
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Xiaoxiang Ning
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yichuan Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hailan Zheng
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Guojiao Dai
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Binghui Liu
- Department of Pathology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Guohua Zhang
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China.
| | - Danjiang Huang
- Department of Radiology, Huangyan Hospital, Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Wang G, Guo Q, Shi D, Zhai H, Luo W, Zhang H, Ren Z, Yan G, Ren K. Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases. J Magn Reson Imaging 2024; 60:1178-1189. [PMID: 38006286 DOI: 10.1002/jmri.29150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Previous studies have used different imaging sequences and different enhanced phases for breast lesion calsification in radiomics. The optimal sequence and contrast enhanced phase is unclear. PURPOSE To identify the optimal magnetic resonance imaging (MRI) radiomics model for lesion clarification, and to simulate its incremental value for multiparametric MRI (mpMRI)-guided biopsy. STUDY TYPE Retrospective. POPULATION 329 female patients (138 malignant, 191 benign), divided into a training set (first site, n = 192) and an independent test set (second site, n = 137). FIELD STRENGTH/SEQUENCE 3.0-T, fast spoiled gradient-echo and fast spin-echo T1-weighted imaging (T1WI), fast spin-echo T2-weighted imaging (T2WI), echo-planar diffusion-weighted imaging (DWI), and fast spoiled gradient-echo contrast-enhanced MRI (CE-MRI). ASSESSMENT Two breast radiologists with 3 and 10 years' experience developed radiomics model on CE-MRI, CE-MRI + DWI, CE-MRI + DWI + T2WI, CE-MRI + DWI + T2WI + T1WI at each individual phase (P) and for multiple combinations of phases. The optimal radiomics model (Rad-score) was identified as having the highest area under the receiver operating characteristic curve (AUC) in the test set. Specificity was compared between a traditional mpMRI model and an integrated model (mpMRI + Rad-score) at sensitivity >98%. STATISTICAL TESTS Wilcoxon paired-samples signed rank test, Delong test, McNemar test. Significance level was 0.05 and Bonferroni method was used for multiple comparisons (P = 0.007, 0.05/7). RESULTS For radiomics models, CE-MRI/P3 + DWI + T2WI achieved the highest performance in the test set (AUC = 0.888, 95% confidence interval: 0.833-0.944). The integrated model had significantly higher specificity (55.3%) than the mpMRI model (31.6%) in the test set with a sensitivity of 98.4%. DATA CONCLUSION The CE-MRI/P3 + DWI + T2WI model is the optimized choice for breast lesion classification in radiomics, and has potential to reduce benign biopsies (100%-specificity) from 68.4% to 44.7% while retaining sensitivity >98%. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qiu Guo
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huige Zhai
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Wenbin Luo
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhendong Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen university, Xiamen, Fujian, China
| |
Collapse
|
26
|
Chen H, Xu C, Jin L, Wang Z, Xu J, Zou Y, Jin G, Luo L, Lin H, Chen W, Zheng D, Liu Y, Liu Z. Predicting the risk of glaucoma-related adverse events following secondary intraocular lens implantation in paediatric eyes: a 3-year study. Br J Ophthalmol 2024; 108:1269-1274. [PMID: 38164543 DOI: 10.1136/bjo-2023-323171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
AIMS To establish and evaluate predictive models for glaucoma-related adverse events (GRAEs) following secondary intraocular lens (IOL) implantation in paediatric eyes. METHODS 205 children (356 aphakic eyes) receiving secondary IOL implantation at Zhongshan Ophthalmic Center with a 3-year follow-up were enrolled. Cox proportional hazard model was used to identify predictors of GRAEs and developed nomograms. Model performance was evaluated with time-dependent receiver operating characteristic (ROC) curves, decision curve analysis, Kaplan-Meier curves and validated internally through C-statistics and calibration plot of the bootstrap samples. RESULTS Older age at secondary IOL implantation (HR=1.5, 95% CI: 1.03 to 2.19), transient intraocular hypertension (HR=9.06, 95% CI: 2.97 to 27.67) and ciliary sulcus implantation (HR=14.55, 95% CI: 2.11 to 100.57) were identified as risk factors for GRAEs (all p<0.05). Two nomograms were established. At postoperatively 1, 2 and 3 years, model 1 achieved area under the ROC curves (AUCs) of 0.747 (95% CI: 0.776 to 0.935), 0.765 (95% CI: 0.804 to 0.936) and 0.748 (95% CI: 0.736 to 0.918), and the AUCs of model 2 were 0.881 (95% CI: 0.836 to 0.926), 0.895 (95% CI: 0.852 to 0.938) and 0.848 (95% CI: 0.752 to 0.945). Both models demonstrated fine clinical net benefit and performance in the interval validation. The Kaplan-Meier curves showing two distinct risk groups were well discriminated and robust in both models. An online risk calculator was constructed. CONCLUSION Two nomograms could sensitively and accurately identify children at high risk of GRAEs after secondary IOL implantation to help early identification and timely intervention.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Chaoqun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Zhenyu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Jingmin Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Yingshi Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Guangming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, People's Republic of China
| |
Collapse
|
27
|
Xia F, Wei W, Wang J, Duan Y, Wang K, Zhang C. Machine learning model for non-alcoholic steatohepatitis diagnosis based on ultrasound radiomics. BMC Med Imaging 2024; 24:221. [PMID: 39164667 PMCID: PMC11334577 DOI: 10.1186/s12880-024-01398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Non-Alcoholic Steatohepatitis (NASH) is a crucial stage in the progression of Non-Alcoholic Fatty Liver Disease(NAFLD). The purpose of this study is to explore the clinical value of ultrasound features and radiological analysis in predicting the diagnosis of Non-Alcoholic Steatohepatitis. METHOD An SD rat model of hepatic steatosis was established through a high-fat diet and subcutaneous injection of CCl4. Liver ultrasound images and elastography were acquired, along with serum data and histopathological results of rat livers.The Pyradiomics software was used to extract radiomic features from 2D ultrasound images of rat livers. The rats were then randomly divided into a training set and a validation set, and feature selection was performed through dimensionality reduction. Various machine learning (ML) algorithms were employed to build clinical diagnostic models, radiomic models, and combined diagnostic models. The efficiency of each diagnostic model for diagnosing NASH was evaluated using Receiver Operating Characteristic (ROC) curves, Clinical Decision Curve Analysis (DCA), and calibration curves. RESULTS In the machine learning radiomic model for predicting the diagnosis of NASH, the Area Under the Curve (AUC) of ROC curve for the clinical radiomic model in the training set and validation set were 0.989 and 0.885, respectively. The Decision Curve Analysis revealed that the clinical radiomic model had the highest net benefit within the probability threshold range of > 65%. The calibration curve in the validation set demonstrated that the clinical combined radiomic model is the optimal method for diagnosing Non-Alcoholic Steatohepatitis. CONCLUSION The combined diagnostic model constructed using machine learning algorithms based on ultrasound image radiomics has a high clinical predictive performance in diagnosing Non-Alcoholic Steatohepatitis.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), NO.2 Zheshan West Road, Wuhu, 241000, China
| | - Junli Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Yayang Duan
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Kun Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| |
Collapse
|
28
|
Song X, Zhang H, Han Y, Lou S, Zhao E, Dong Y, Yang C. Based on hematoma and perihematomal tissue NCCT imaging radiomics predicts early clinical outcome of conservatively treated spontaneous cerebral hemorrhage. Sci Rep 2024; 14:18546. [PMID: 39122887 PMCID: PMC11315882 DOI: 10.1038/s41598-024-69249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a very serious kind of stroke. If the outcome of patients can be accurately assessed at the early stage of disease occurrence, it will be of great significance to the patients and clinical treatment. The present study was conducted to investigate whether non-contrast computer tomography (NCCT) models of hematoma and perihematomal tissues could improve the accuracy of short-term prognosis prediction in ICH patients with conservative treatment. In this retrospective analysis, a total of 166 ICH patients with conservative treatment during hospitalization were included. Patients were randomized into a training group (N = 132) and a validation group (N = 34) in a ratio of 8:2, and the functional outcome at 90 days after clinical treatment was assessed by the modified Rankin Scale (mRS). Radiomic features of hematoma and perihematomal tissues of 5 mm, 10 mm, 15 mm were extracted from NCCT images. Clinical factors were analyzed by univariate and multivariate logistic regression to identify independent predictive factors. In the validation group, the mean area under the ROC curve (AUC) of the hematoma was 0.830, the AUC of the perihematomal tissue within 5 mm, 10 mm, 15 mm was 0.792, 0.826, 0.774, respectively, and the AUC of the combined model of hematoma and perihematomal tissue within 10 mm was 0.795. The clinical-radiomics nomogram consisting of five independent predictors and radiomics score (Rad-score) of the hematoma model were used to assess 90-day functional outcome in ICH patients with conservative treatment. Our findings found that the hematoma model had better discriminative efficacy in evaluating the early prognosis of conservatively managed ICH patients. The visual clinical-radiomics nomogram provided a more intuitive individualized risk assessment for 90-day functional outcome in ICH patients with conservative treatment. The hematoma could remain the primary therapeutic target for conservatively managed ICH patients, emphasizing the need for future clinical focus on the biological significance of the hematoma itself.
Collapse
Affiliation(s)
- Xuelin Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Hao Zhang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuxuan Han
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shiyun Lou
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Endong Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yang Dong
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chao Yang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
29
|
Zhou Y, Feng P, Tian F, Fong H, Yang H, Zhu H. A CT-based radiomics model for predicting lymph node metastasis in hepatic alveolar echinococcosis patients to support lymph node dissection. Eur J Med Res 2024; 29:409. [PMID: 39113113 PMCID: PMC11304587 DOI: 10.1186/s40001-024-01999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Hepatic alveolar echinococcosis (AE) is a severe zoonotic parasitic disease, and accurate preoperative prediction of lymph node (LN) metastasis in AE patients is crucial for disease management, but it remains an unresolved challenge. The aim of this study was to establish a radiomics model for the preoperative prediction of LN metastasis in hepatic AE patients. METHODS A total of 100 hepatic AE patients who underwent hepatectomy and hepatoduodenal ligament LN dissection at Qinghai Provincial People's Hospital between January 2016 and August 2023 were included in the study. The patients were randomly divided into a training set and a validation set at an 8:2 ratio. Radiomic features were extracted from three-dimensional images of the hepatoduodenal ligament LNs delineated on arterial phase computed tomography (CT) scans of hepatic AE patients. Least absolute shrinkage and selection operator (LASSO) regression was applied for data dimensionality reduction and feature selection. Multivariate logistic regression analysis was performed to develop a prediction model, and the predictive performance of the model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS A total of 7 radiomics features associated with LN status were selected using LASSO regression. The classification performances of the training set and validation set were consistent, with area under the operating characteristic curve (AUC) values of 0.928 and 0.890, respectively. The model also demonstrated good stability in subsequent validation. CONCLUSION In this study, we established and evaluated a radiomics-based prediction model for LN metastasis in patients with hepatic AE using CT imaging. Our findings may provide a valuable reference for clinicians to determine the occurrence of LN metastasis in hepatic AE patients preoperatively, and help guide the implementation of individualized surgical plans to improve patient prognosis.
Collapse
Affiliation(s)
- Yinshu Zhou
- First School of Clinical Medicine, Jinan University, No.601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Pengcai Feng
- General Surgery Department, Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China
| | - Fengyuan Tian
- General Surgery Department, Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China
| | - Hin Fong
- First School of Clinical Medicine, Jinan University, No.601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Haoran Yang
- School of Medicine, Jinan University, No.601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Haihong Zhu
- General Surgery Department, Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China.
| |
Collapse
|
30
|
Liu Q, Si H, Li Y, Zhou W, Yu J, Bian Y, Wang C. Development and Validation of Prediction Models for Incident Reversible Cognitive Frailty Based on Social-Ecological Predictors Using Generalized Linear Mixed Model and Machine Learning Algorithms: A Prospective Cohort Study. J Appl Gerontol 2024:7334648241270052. [PMID: 39105424 DOI: 10.1177/07334648241270052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
This study aimed to develop and validate prediction models for incident reversible cognitive frailty (RCF) based on social-ecological predictors. Older adults aged ≥60 years from China Health and Retirement Longitudinal Study (CHARLS) 2011-2013 survey were included as training set (n = 1230). The generalized linear mixed model (GLMM), eXtreme Gradient Boosting, support vector machine, random forest, and Binary Mixed Model forest were used to develop prediction models. All models were evaluated internally with 5-fold cross-validation and evaluated externally via CHARLS 2013-2015 survey (n = 1631). Only GLMM showed good discrimination (AUC = 0.765, 95% CI = 0.736, 0.795) in training set, and all models showed fair discrimination (AUC = 0.578-0.667, 95% CI = 0.545, 0.725) in internal and external validation. All models showed acceptable calibration, overall prediction performance, and clinical usefulness in training and validation sets. Older adults were divided into three groups using risk score based on GLMM, which could assist healthcare providers to predict incident RCF, facilitating early identification of high-risk population.
Collapse
Affiliation(s)
- Qinqin Liu
- School of Nursing, Peking University, Beijing, China
| | - Huaxin Si
- School of Public Health, Peking University, Beijing, China
| | - Yanyan Li
- School of Nursing, Peking University, Beijing, China
| | - Wendie Zhou
- School of Nursing, Peking University, Beijing, China
| | - Jiaqi Yu
- School of Nursing, Peking University, Beijing, China
| | - Yanhui Bian
- School of Nursing, Peking University, Beijing, China
| | - Cuili Wang
- School of Nursing, Peking University, Beijing, China
| |
Collapse
|
31
|
Ma Q, Lu X, Chen Q, Gong H, Lei J. Multiphases DCE-MRI Radiomics Nomogram for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer. Acad Radiol 2024:S1076-6332(24)00365-9. [PMID: 39107190 DOI: 10.1016/j.acra.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 08/09/2024]
Abstract
RATIONALE AND OBJECTIVES Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics had been used to evaluate lymphovascular invasion (LVI) in patients with breast cancer. However, no studies had explored the associations between features from delayed phase as well as multiphases DCE-MRI and the LVI status. Thus, we aimed to develop an efficient nomogram based on multiphases DCE-MRI to predict the LVI status in invasive (IBC) breast cancer patients. MATERIALS AND METHODS A retrospective analysis was conducted on preoperative clinical, pathological, and DCE-MRI data of 173 breast cancer patients. All patients were randomly assigned into training set (n=121) and validation set (n=52) in 7:3 ratio. The clinical, pathologic, and conventional MRI characteristics were then subjected to univariate and multivariate logistic regression analysis, and the clinical risk factors with P < 0.05 in the multivariate logistic regression were used to build clinical models. Different single-phase models (early phase, peak phase, and terminal phase), as well as a multiphases model integrating radiomics features from multiple phases, were established. Furthermore, a preoperative radiomics nomogram model was constructed by combining the rad-score of the multiphases model with clinicopathologic independent risk factors. Finally, the performance of the multiphases model, clinical model, and rad-score was compared using receiver operating characteristic (ROC) curves, area under the curve (AUC) values, and decision curve analysis (DCA). The clinical utility of the rad-score was evaluated using calibration curves, and Delong test was used to compare the differences in AUC values among the different models. RESULTS The axillary lymph nodes (ALN) status and Ki-67 had been identified as clinicopathologic independent predictors and a clinical model had been constructed. Image features that were extracted from the terminal phase of the DCE-MRI exhibited notably superior predictive performances compared to features from the other single phases. Particularly, in the multiphases model, terminal phase features were identified as potentially providing more predictive information. Among the nine features that were found to be associated with LVI in the multiphase model, one was derived from the early phase, two from the peak phase, and six from the terminal phase, indicating that terminal phase features contributed significantly more information towards predicting LVI. Evaluation of the nomogram performance revealed promising results in both the training set (AUCs: clinical model vs. multiphase model vs. nomogram=0.734 vs. 0.840 vs. 0.876) and the validation set (AUCs: clinical model vs. multiphase model vs. nomogram=0.765 vs. 0.753 vs. 0.832). CONCLUSION The DCE-MRI-based radiomics model demonstrated utility in predicting LVI status, features of the terminal phase offered more valuable information particularly. The preoperative radiomics nomogram enhanced the diagnostic capability of identifying LVI status in IBC patients, and might aid clinicians in making personalized treatment decisions.
Collapse
Affiliation(s)
- Qinqin Ma
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730000, China; The First Clinical Medicine School of Lanzhou University, Lanzhou 730000, China
| | - Xingru Lu
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China; Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou 730000, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou 730000, China
| | - Qitian Chen
- The General Hospital of Gansu Province in the Chinese Armed Police Force, Lanzhou 730000, China
| | - Hengxin Gong
- The First Clinical Medicine School of Lanzhou University, Lanzhou 730000, China
| | - Junqiang Lei
- The First Clinical Medicine School of Lanzhou University, Lanzhou 730000, China; Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China; Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou 730000, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
32
|
Wang B, Hu T, Shen R, Liu L, Qiao J, Zhang R, Zhang Z. A 18F-FDG PET/CT based radiomics nomogram for predicting disease-free survival in stage II/III colorectal adenocarcinoma. Abdom Radiol (NY) 2024:10.1007/s00261-024-04515-1. [PMID: 39096393 DOI: 10.1007/s00261-024-04515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVES This study aimed to establish a clinical nomogram model based on a radiomics signatures derived from 18F-fluorodeoxyglucose positron-emission tomography (18F-FDG PET/CT) and clinical parameters to predict disease-free survival (DFS) in patients with stage II/III colorectal adenocarcinoma. Understanding and predicting DFS in these patients is key to optimizing treatment strategies. METHODS A retrospective analysis included 332 cases from July 2011 to July 2021 at The Sixth Affiliated Hospital, Sun Yat-sen University, with PET/CT assessing radiomics features and clinicopathological features. Univariate Cox regression, the least absolute shrinkage and selection operator (LASSO) Cox, and multivariable Cox regression identified recurrence-related radiomics features. We used a weighted radiomics score (Rad-score) and independent risk factors to construct a nomogram. Evaluation involved time-dependent receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS The nomogram, incorporating Rad-score, pN, and pT demonstrated robust predictive ability for DFS in stage II/III colorectal adenocarcinoma. Training cohort areas under the curve (AUCs) were 0.78, 0.80, and 0.86 at 1, 2, and 3 years, respectively, and validation cohort AUCs were 0.79, 0.75, and 0.73. DCA and calibration curves affirmed the nomogram's clinical relevance. CONCLUSION The 18F-FDG PET/CT based radiomics nomogram, including Rad-score, pN, and pT, effectively predicted tumor recurrence in stage II/III colorectal adenocarcinoma, significantly enhancing prognostic stratification. Our findings highlight the potential of this nomogram as a guide for clinical decision making to improve patient outcomes.
Collapse
Affiliation(s)
- Bing Wang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianyuan Hu
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongfang Shen
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- The First People's Hospital of Xinjiang Kashgar Area, Kashgar, Xinjiang, China
| | - Lian Liu
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junwei Qiao
- The First People's Hospital of Xinjiang Kashgar Area, Kashgar, Xinjiang, China
| | - Rongqin Zhang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhanwen Zhang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Zhou S, Li J, Liu J, Dong S, Chen N, Ran Y, Liu H, Wang X, Yang H, Liu M, Chu H, Wang B, Li Y, Guo L, Zhou L. Depressive symptom as a risk factor for cirrhosis in patients with primary biliary cholangitis: Analysis based on Lasso-logistic regression and decision tree models. Brain Behav 2024; 14:e3639. [PMID: 39099389 PMCID: PMC11298689 DOI: 10.1002/brb3.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Depressive symptoms are frequently observed in patients with primary biliary cholangitis (PBC). The role of depressive symptoms on cirrhosis has not been fully noticed in PBC. We aimed to establish a risk model for cirrhosis that took depressive symptoms into account. METHODS Depressive symptoms were assessed by the 17-item Hamilton Depression Rating Scale (HAMD-17). HAMD-17 score was analyzed in relation to clinical parameters. Least absolute shrinkage and selection operator (Lasso)-logistic regression and decision tree models were used to explore the effect of depressive symptoms on cirrhosis. RESULTS The rate of depressive symptom in patients with PBC (n = 162) was higher than in healthy controls (n = 180) (52.5% vs. 16.1%; p < .001). HAMD-17 score was negatively associated with C4 levels and positively associated with levels of alkaline phosphatase (ALP), γ-glutamyl transpeptidase (GGT), total bilirubin (TB), Immunoglobulin (Ig) G, and IgM (r = -0.162, 0.197, 0.355, 0.203, 0.182, 0.314, p < .05). In Lasso-logistic regression analysis, HAMD-17 score, human leukocyte antigen (HLA)-DRB1*03:01 allele, age, ALP levels, and IgM levels (odds ratio [OR] = 1.087, 7.353, 1.075, 1.009, 1.005; p < 0.05) were independent risk factors for cirrhosis. Elevated HAMD-17 score was also a discriminating factor for high risk of cirrhosis in patients with PBC in decision tree model. CONCLUSIONS Depressive symptoms were associated with disease severity. Elevated HAMD-17 score was a risk factor for cirrhosis in patients with PBC.
Collapse
Affiliation(s)
- Simin Zhou
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Jiwen Li
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Jiangpeng Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Shijing Dong
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Nian Chen
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Haifeng Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Hui Yang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Man Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Hongyu Chu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Yanni Li
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Liping Guo
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical UniversityTianjinChina
| |
Collapse
|
34
|
Niu X, Cao J. Predicting lymph node metastasis in colorectal cancer patients: development and validation of a column chart model. Updates Surg 2024; 76:1301-1310. [PMID: 38954377 PMCID: PMC11341625 DOI: 10.1007/s13304-024-01884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024]
Abstract
Lymph node metastasis (LNM) is one of the crucial factors in determining the optimal treatment approach for colorectal cancer. The objective of this study was to establish and validate a column chart for predicting LNM in colon cancer patients. We extracted a total of 83,430 cases of colon cancer from the Surveillance, Epidemiology, and End Results (SEER) database, spanning the years 2010-2017. These cases were divided into a training group and a testing group in a 7:3 ratio. An additional 8545 patients from the years 2018-2019 were used for external validation. Univariate and multivariate logistic regression models were employed in the training set to identify predictive factors. Models were developed using logistic regression, LASSO regression, ridge regression, and elastic net regression algorithms. Model performance was quantified by calculating the area under the ROC curve (AUC) and its corresponding 95% confidence interval. The results demonstrated that tumor location, grade, age, tumor size, T stage, race, and CEA were independent predictors of LNM in CRC patients. The logistic regression model yielded an AUC of 0.708 (0.7038-0.7122), outperforming ridge regression and achieving similar AUC values as LASSO regression and elastic net regression. Based on the logistic regression algorithm, we constructed a column chart for predicting LNM in CRC patients. Further subgroup analysis based on gender, age, and grade indicated that the logistic prediction model exhibited good adaptability across all subgroups. Our column chart displayed excellent predictive capability and serves as a useful tool for clinicians in predicting LNM in colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaoqiang Niu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiaqing Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
35
|
Zhang S, Wang J, Sun S, Zhang Q, Zhai Y, Wang X, Ge P, Shi Z, Zhang D. CT Angiography Radiomics Combining Traditional Risk Factors to Predict Brain Arteriovenous Malformation Rupture: a Machine Learning, Multicenter Study. Transl Stroke Res 2024; 15:784-794. [PMID: 37311939 DOI: 10.1007/s12975-023-01166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to develop a machine learning model for predicting brain arteriovenous malformation (bAVM) rupture using a combination of traditional risk factors and radiomics features. This multicenter retrospective study enrolled 586 patients with unruptured bAVMs from 2010 to 2020. All patients were grouped into the hemorrhage (n = 368) and non-hemorrhage (n = 218) groups. The bAVM nidus were segmented on CT angiography images using Slicer software, and radiomic features were extracted using Pyradiomics. The dataset included a training set and an independent testing set. The machine learning model was developed on the training set and validated on the testing set by merging numerous base estimators and a final estimator based on the stacking method. The area under the receiver operating characteristic (ROC) curve, precision, and the f1 score were evaluated to determine the performance of the model. A total of 1790 radiomics features and 8 traditional risk factors were contained in the original dataset, and 241 features remained for model training after L1 regularization filtering. The base estimator of the ensemble model was Logistic Regression, whereas the final estimator was Random Forest. In the training set, the area under the ROC curve of the model was 0.982 (0.967-0.996) and 0.893 (0.826-0.960) in the testing set. This study indicated that radiomics features are a valuable addition to traditional risk factors for predicting bAVM rupture. In the meantime, ensemble learning can effectively improve the performance of a prediction model.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junjie Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaochen Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
36
|
Zhang T, Li J, Wang G, Li H, Song G, Deng K. Application of computed tomography-based radiomics analysis combined with lung cancer serum tumor markers in the identification of lung squamous cell carcinoma and lung adenocarcinoma. J Cancer Res Ther 2024; 20:1186-1194. [PMID: 39206980 DOI: 10.4103/jcrt.jcrt_79_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To establish a prediction model of lung cancer classification by computed tomography (CT) radiomics with the serum tumor markers (STM) of lung cancer. MATERIALS AND METHODS Two-hundred NSCLC patients were enrolled in our study. Clinical data including age, sex, and STM (squamous cell carcinoma [SCC], neuron-specific enolase [NSE], carcinoembryonic antigen [CEA], pro-gastrin-releasing peptide [PRO-GRP], and cytokeratin 19 fragment [cYFRA21-1]) were collected. A radiomics signature was generated from the training set using the least absolute shrinkage and selection operator (LASSO) algorithm. The risk factors were identified using multivariate logistic regression analysis, and a radiomics nomogram based on the radiomics signature and clinical features was constructed. The capability of the nomogram was evaluated using the training set and validated using the validation set. A correction curve and the Hosmer-Lemeshow test were used to evaluate the predictive performance of the radiomics model for the training and test sets. RESULTS Twenty-nine of 1234 radiomics parameters were screened as important factors for establishing the radiomics model. The training (area under the curve [AUC] = 0.925; 95% confidence interval [CI]: 0.885-0.966) and validation sets (AUC = 0.921; 95% CI: 0.854-0.989) showed that the CT radiomics signature, combined with STM, accurately predicted lung squamous cell carcinoma and lung adenocarcinoma. Moreover, the logistic regression model showed good performance based on the Hosmer-Lemeshow test in the training (P = 0.954) and test sets (P = 0.340). Good calibration curve consistency also indicated the good performance of the nomogram. CONCLUSION The combination of the CT radiomics signature and lung cancer STM performed well for the pathological classification of NSCLC. Compared with the radiomics signature method, the nomogram based on the radiomics signature and clinical factors had better performance for the differential diagnosis of NSCLC.
Collapse
Affiliation(s)
- Tongrui Zhang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jun Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangli Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huafeng Li
- Organization of Personnel Division, Shandong Medical College, Jinan, China
| | - Gesheng Song
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Kai Deng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
37
|
Ai Y, Zhu X, Zhang Y, Li W, Li H, Zhao Z, Zhang J, Ning B, Li C, Zheng Q, Zhang J, Jin J, Li Y, Xie C, Jin X. MRI radiomics nomogram integrating postoperative adjuvant treatments in recurrence risk prediction for patients with early-stage cervical cancer. Radiother Oncol 2024; 197:110328. [PMID: 38761884 DOI: 10.1016/j.radonc.2024.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND PURPOSE Adjuvant treatments are valuable to decrease the recurrence rate and improve survival for early-stage cervical cancer patients (ESCC), Therefore, recurrence risk evaluation is critical for the choice of postoperative treatment. A magnetic resonance imaging (MRI) based radiomics nomogram integrating postoperative adjuvant treatments was constructed and validated externally to improve the recurrence risk prediction for ESCC. MATERIAL AND METHODS 212 ESCC patients underwent surgery and adjuvant treatments from three centers were enrolled and divided into the training, internal validation, and external validation cohorts. Their clinical data, pretreatment T2-weighted images (T2WI) were retrieved and analyzed. Radiomics models were constructed using machine learning methods with features extracted and screen from sagittal and axial T2WI. A nomogram for recurrence prediction was build and evaluated using multivariable logistic regression analysis integrating radiomic signature and adjuvant treatments. RESULTS A total of 8 radiomic features were screened out of 1020 extracted features. The extreme gradient boosting (XGboost) model based on MRI radiomic features performed best in recurrence prediction with an area under curve (AUC) of 0.833, 0.822 in the internal and external validation cohorts, respectively. The nomogram integrating radiomic signature and clinical factors achieved an AUC of 0.806, 0.718 in the internal and external validation cohorts, respectively, for recurrence risk prediction for ESCC. CONCLUSION In this study, the nomogram integrating T2WI radiomic signature and clinical factors is valuable to predict the recurrence risk, thereby allowing timely planning for effective treatments for ESCC with high risk of recurrence.
Collapse
Affiliation(s)
- Yao Ai
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyang Zhu
- Department of Radiotherapy, the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, China
| | - Yu Zhang
- Department of Information Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenlong Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Heng Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeshuo Zhao
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jicheng Zhang
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Boda Ning
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenyu Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao Zheng
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juebin Jin
- Department of Medical Engineering, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiran Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiance Jin
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
38
|
Zhao S, Ding Y, Gan L, Yang P, Xie Y, Hu Y, Chen J, Wang X, Huang Z, Zhou B. Evaluation of split renal dysfunction using radiomics based on magnetic resonance diffusion-weighted imaging. Med Phys 2024; 51:5226-5235. [PMID: 38801337 DOI: 10.1002/mp.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Accurate and noninvasive assessment of split renal dysfunction is crucial, while there is lack of corresponding method clinically. PURPOSE To investigate the feasibility of using diffusion-weighted imaging (DWI)-based radiomics models to evaluate split renal dysfunction. METHODS We enrolled patients with impaired and normal renal function undergoing renal DWI examination. Glomerular filtration rate (GFR, mL/min) was measured using 99mTc-DTPA scintigraphy, which is reference standard of GFR measurement. The kidneys were classified into normal (GFR ≥40), mildly impaired (20≤ GFR < 40), moderately impaired (10≤ GFR < 20), and severely impaired (GFR < 10) renal function groups. Optimized subsets of radiomics features were selected from renal DWI images and radiomics scores (Rad-score) calculated to discriminate groups with different renal function. The radiomics model (Rad-score based) was developed in a training cohort and validated in a test cohort. Evaluations were conducted on the discrimination, calibration, and clinical application of the method. RESULTS The final analysis included 330 kidneys. Logistic regression was used to develop three radiomics models, model A, B, and C, which were used to distinguish normal from impaired, mild from moderate, and moderate from severe renal function, respectively. The area under the curve of the three models were 0.822, 0.704, and 0.887 in the training cohort and 0.843, 0.717, and 0.897 in the test cohort, respectively, indicating efficient discrimination performance. CONCLUSIONS DWI-based radiomics models have potential for evaluating split renal dysfunction and discriminating between normal and impaired renal function groups and their subgroups.
Collapse
Affiliation(s)
- Shengchao Zhao
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yi Ding
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Gan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pei Yang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanliang Xie
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Hu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
39
|
Yan R, Qin S, Xu J, Zhao W, Xin P, Xing X, Lang N. A comparison of 2D and 3D magnetic resonance imaging-based intratumoral and peritumoral radiomics models for the prognostic prediction of endometrial cancer: a pilot study. Cancer Imaging 2024; 24:100. [PMID: 39085930 PMCID: PMC11293005 DOI: 10.1186/s40644-024-00743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Accurate prognostic assessment is vital for the personalized treatment of endometrial cancer (EC). Although radiomics models have demonstrated prognostic potential in EC, the impact of region of interest (ROI) delineation strategies and the clinical significance of peritumoral features remain uncertain. Our study thereby aimed to explore the predictive performance of varying radiomics models for the prediction of LVSI, DMI, and disease stage in EC. METHODS Patients with 174 histopathology-confirmed EC were retrospectively reviewed. ROIs were manually delineated using the 2D and 3D approach on T2-weighted MRI images. Six radiomics models involving intratumoral (2Dintra and 3Dintra), peritumoral (2Dperi and 3Dperi), and combined models (2Dintra + peri and 3Dintra + peri) were developed. Models were constructed using the logistic regression method with five-fold cross-validation. Area under the receiver operating characteristic curve (AUC) was assessed, and was compared using the Delong's test. RESULTS No significant differences in AUC were observed between the 2Dintra and 3Dintra models, or the 2Dperi and 3Dperi models in all prediction tasks (P > 0.05). Significant difference was observed between the 3Dintra and 3Dperi models for LVSI (0.738 vs. 0.805) and DMI prediction (0.719 vs. 0.804). The 3Dintra + peri models demonstrated significantly better predictive performance in all 3 prediction tasks compared to the 3Dintra model in both the training and validation cohorts (P < 0.05). CONCLUSIONS Comparable predictive performance was observed between the 2D and 3D models. Combined models significantly improved predictive performance, especially with 3D delineation, suggesting that intra- and peritumoral features can provide complementary information for comprehensive prognostication of EC.
Collapse
Affiliation(s)
- Ruixin Yan
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Siyuan Qin
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jiajia Xu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Weili Zhao
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Peijin Xin
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoying Xing
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
40
|
Li C, Hu J, Zhang Z, Wei C, Chen T, Wang X, Dai Y, Shen J. Biparametric MRI of the prostate radiomics model for prediction of pelvic lymph node metastasis in prostate cancers : a two-centre study. BMC Med Imaging 2024; 24:185. [PMID: 39054441 PMCID: PMC11271060 DOI: 10.1186/s12880-024-01372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Exploring the value of adding correlation analysis (radiomic features (RFs) of pelvic metastatic lymph nodes and primary lesions) to screen RFs of primary lesions in the feature selection process of establishing prediction model. METHODS A total of 394 prostate cancer (PCa) patients (263 in the training group, 74 in the internal validation group and 57 in the external validation group) from two tertiary hospitals were included in the study. The cases with pelvic lymph node metastasis (PLNM) positive in the training group were diagnosed by biopsy or MRI with a short-axis diameter ≥ 1.5 cm, PLNM-negative cases in the training group and all cases in validation group were underwent both radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND). The RFs of PLNM-negative lesion and PLNM-positive tissues including primary lesions and their metastatic lymph nodes (MLNs) in the training group were extracted from T2WI and apparent diffusion coefficient (ADC) map to build the following two models by fivefold cross-validation: the lesion model, established according to the primary lesion RFs selected by t tests and absolute shrinkage and selection operator (LASSO); the lesion-correlation model, established according to the primary lesion RFs selected by Pearson correlation analysis (RFs of primary lesions and their MLNs, correlation coefficient > 0.9), t test and LASSO. Finally, we compared the performance of these two models in predicting PLNM. RESULTS The AUC and the DeLong test of AUC in the lesion model and lesion-correlation model were as follows: training groups (0.8053, 0.8466, p = 0.0002), internal validation group (0.7321, 0.8268, p = 0.0429), and external validation group (0.6445, 0.7874, p = 0.0431), respectively. CONCLUSION The lesion-correlation model established by features of primary tumors correlated with MLNs has more advantages than the lesion model in predicting PLNM.
Collapse
Affiliation(s)
- Chunxing Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of MRI Room, Yancheng First Hospital Affiliated Hospital of NanJing University Medical School, Yancheng, China
| | - Jisu Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhiyuan Zhang
- School of Medical Imaging, Biomedical Engineering, Xuzhou Medical University, Xuzhou, China
| | - Chaogang Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
41
|
Liu Q, Si H, Li Y, Zhou W, Yu J, Bian Y, Wang C. Development and validation of a risk scoring tool for predicting incident reversible cognitive frailty among community-dwelling older adults: A prospective cohort study. Geriatr Gerontol Int 2024. [PMID: 39048538 DOI: 10.1111/ggi.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
AIM Reversible cognitive frailty (RCF) is an ideal target to prevent asymptomatic cognitive impairment and dependency. This study aimed to develop and validate prediction models for incident RCF. METHODS A total of 1230 older adults aged ≥60 years from China Health and Retirement Longitudinal Study 2011-2013 survey were included as the training set. The modified Poisson regression and three machine learning algorithms including eXtreme Gradient Boosting, support vector machine and random forest were used to develop prediction models. All models were evaluated internally with fivefold cross-validation, and evaluated externally using a temporal validation method through the China Health and Retirement Longitudinal Study 2013-2015 survey. RESULTS The incidence of RCF was 27.4% in the training set and 27.5% in the external validation set. A total of 13 important predictors were selected to develop the model, including age, education, contact with their children, medical insurance, vision impairment, heart diseases, medication types, self-rated health, pain locations, loneliness, self-medication, night-time sleep and having running water. All models showed acceptable or approximately acceptable discrimination (AUC 0.683-0.809) for the training set, but fair discrimination (AUC 0.568-0.666) for the internal and external validation. For calibration, only modified Poisson regression and eXtreme Gradient Boosting were acceptable in the training set. All models had acceptable overall prediction performance and clinical usefulness. Older adults were divided into three groups by the risk scoring tool constructed based on modified Poisson regression: low risk (≤24), median risk (24-29) and high risk (>29). CONCLUSIONS This risk tool could assist healthcare providers to predict incident RCF among older adults in the next 2 years, facilitating early identification of a high-risk population of RCF. Geriatr Gerontol Int 2024; ••: ••-••.
Collapse
Affiliation(s)
- Qinqin Liu
- School of Nursing, Peking University, Beijing, China
| | - Huaxin Si
- School of Public Health, Peking University, Beijing, China
| | - Yanyan Li
- School of Nursing, Peking University, Beijing, China
| | - Wendie Zhou
- School of Nursing, Peking University, Beijing, China
| | - Jiaqi Yu
- School of Nursing, Peking University, Beijing, China
| | - Yanhui Bian
- School of Nursing, Peking University, Beijing, China
| | - Cuili Wang
- School of Nursing, Peking University, Beijing, China
| |
Collapse
|
42
|
Hu W, Wen F, Zhao M, Li X, Luo P, Jiang G, Yang H, Herth FJF, Zhang X, Zhang Q. Endobronchial Ultrasound-Based Support Vector Machine Model for Differentiating between Benign and Malignant Mediastinal and Hilar Lymph Nodes. Respiration 2024; 103:675-685. [PMID: 39038439 DOI: 10.1159/000540467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
INTRODUCTION The aim of the study was to establish an ultrasonographic radiomics machine learning model based on endobronchial ultrasound (EBUS) to assist in diagnosing benign and malignant mediastinal and hilar lymph nodes (LNs). METHODS The clinical and ultrasonographic image data of 197 patients were retrospectively analyzed. The radiomics features extracted by EBUS-based radiomics were analyzed by the least absolute shrinkage and selection operator. Then, we used a support vector machine (SVM) algorithm to establish an EBUS-based radiomics model. A total of 205 lesions were randomly divided into training (n = 143) and validation (n = 62) groups. The diagnostic efficiency was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS A total of 13 stable radiomics features with non-zero coefficients were selected. The SVM model exhibited promising performance in both groups. In the training group, the SVM model achieved an ROC area under the curve (AUC) of 0.892 (95% CI: 0.885-0.899), with an accuracy of 85.3%, sensitivity of 93.2%, and specificity of 79.8%. In the validation group, the SVM model had an ROC AUC of 0.906 (95% CI: 0.890-0.923), an accuracy of 74.2%, a sensitivity of 70.3%, and a specificity of 74.1%. CONCLUSION The EBUS-based radiomics model can be used to differentiate mediastinal and hilar benign and malignant LNs. The SVM model demonstrated excellent potential as a diagnostic tool in clinical practice.
Collapse
Affiliation(s)
- Wenjia Hu
- Department of Ultrasound, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Feifei Wen
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China,
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China,
| | - Mengyu Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangnan Li
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Peiyuan Luo
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guancheng Jiang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huizhen Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Felix J F Herth
- Department of Pneumology and Respiratory Care Medicine, Thoraxklinik and Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, China
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, China
| |
Collapse
|
43
|
Hao Y, Zheng J, Li W, Zhao W, Zheng J, Wang H, Ren J, Zhang G, Zhang J. Ultra-high b-value DWI in rectal cancer: image quality assessment and regional lymph node prediction based on radiomics. Eur Radiol 2024:10.1007/s00330-024-10958-3. [PMID: 38992110 DOI: 10.1007/s00330-024-10958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES This study aims to evaluate image quality and regional lymph node metastasis (LNM) in patients with rectal cancer (RC) on multi-b-value diffusion-weighted imaging (DWI). METHODS This retrospective study included 199 patients with RC who had undergone multi-b-value DWI. Subjective (five-point Likert scale) and objective assessments of quality images were performed on DWIb1000, DWIb2000, and DWIb3000. Patients were randomly divided into a training (n = 140) or validation cohort (n = 59). Radiomics features were extracted within the whole volume tumor on ADC maps (b = 0, 1000 s/mm2), DWIb1000, DWIb2000, and DWIb3000, respectively. Five prediction models based on selected features were developed using logistic regression analysis. The performance of radiomics models was evaluated with a receiver operating characteristic curve, calibration, and decision curve analysis (DCA). RESULTS The mean signal intensity of the tumor (SItumor), signal-to-noise ratio (SNR), and artifact and anatomic differentiability score gradually were decreased as the b-value increased. However, the contrast-to-noise (CNR) on DWIb2000 was superior to those of DWIb1000 and DWIb3000 (4.58 ± 0.86, 3.82 ± 0.77, 4.18 ± 0.84, p < 0.001, respectively). The overall image quality score of DWIb2000 was higher than that of DWIb3000 (p < 0.001) and showed no significant difference between DWIb1000 and DWIb2000 (p = 0.059). The area under curve (AUC) value of the radiomics model based on DWIb2000 (0.728) was higher than conventional ADC maps (0.690), DWIb1000 (0.699), and DWIb3000 (0.707), but inferior to multi-b-value DWI (0.739) in predicting LNM. CONCLUSION DWIb2000 provides better lesion conspicuity and LNM prediction than DWIb1000 and DWIb3000 in RC. CLINICAL RELEVANCE STATEMENT DWIb2000 offers satisfactory visualization of lesions. Radiomics features based on DWIb2000 can be applied for preoperatively predicting regional lymph node metastasis in rectal cancer, thereby benefiting the stratified treatment strategy. KEY POINTS Lymph node staging is required to determine the best treatment plan for rectal cancer. DWIb2000 provides superior contrast-to-noise ratio and lesion conspicuity and its derived radiomics best predict lymph node metastasis. DWIb2000 may be recommended as the optimal b-value in rectal MRI protocol.
Collapse
Affiliation(s)
- Yongfei Hao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanqing Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanting Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianmin Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, China
| | - Guangwen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
44
|
Feng FW, Jiang FY, Liu YQ, Sun Q, Hong R, Hu CH, Hu S. Radiomics analysis of dual-layer spectral-detector CT-derived iodine maps for predicting tumor deposits in colorectal cancer. Eur Radiol 2024:10.1007/s00330-024-10918-x. [PMID: 38987399 DOI: 10.1007/s00330-024-10918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/24/2024] [Accepted: 05/25/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE To investigate the value of radiomics analysis of dual-layer spectral-detector computed tomography (DLSCT)-derived iodine maps for predicting tumor deposits (TDs) preoperatively in patients with colorectal cancer (CRC). MATERIALS AND METHODS A total of 264 pathologically confirmed CRC patients (TDs + (n = 80); TDs - (n = 184)) who underwent preoperative DLSCT from two hospitals were retrospectively enrolled, and divided into training (n = 124), testing (n = 54), and external validation cohort (n = 86). Conventional CT features and iodine concentration (IC) were analyzed and measured. Radiomics features were derived from venous phase iodine maps from DLSCT. The least absolute shrinkage and selection operator (LASSO) was performed for feature selection. Finally, a support vector machine (SVM) algorithm was employed to develop clinical, radiomics, and combined models based on the most valuable clinical parameters and radiomics features. Area under receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis were used to evaluate the model's efficacy. RESULTS The combined model incorporating the valuable clinical parameters and radiomics features demonstrated excellent performance in predicting TDs in CRC (AUCs of 0.926, 0.881, and 0.887 in the training, testing, and external validation cohorts, respectively), which outperformed the clinical model in the training cohort and external validation cohorts (AUC: 0.839 and 0.695; p: 0.003 and 0.014) and the radiomics model in two cohorts (AUC: 0.922 and 0.792; p: 0.014 and 0.035). CONCLUSION Radiomics analysis of DLSCT-derived iodine maps showed excellent predictive efficiency for preoperatively diagnosing TDs in CRC, and could guide clinicians in making individualized treatment strategies. CLINICAL RELEVANCE STATEMENT The radiomics model based on DLSCT iodine maps has the potential to aid in the accurate preoperative prediction of TDs in CRC patients, offering valuable guidance for clinical decision-making. KEY POINTS Accurately predicting TDs in CRC patients preoperatively based on conventional CT features poses a challenge. The Radiomics model based on DLSCT iodine maps outperformed conventional CT in predicting TDs. The model combing DLSCT iodine maps radiomics features and conventional CT features performed excellently in predicting TDs.
Collapse
Affiliation(s)
- Fei-Wen Feng
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei-Yu Jiang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan-Qing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Medical Imaging, Soochow University, Suzhou, China
| | - Qi Sun
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Hong
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Hong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Medical Imaging, Soochow University, Suzhou, China.
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Medical Imaging, Soochow University, Suzhou, China.
| |
Collapse
|
45
|
Qi H, Hou Y, Zheng Z, Zheng M, Sun X, Xing L. MRI radiomics predicts the efficacy of EGFR-TKI in EGFR-mutant non-small-cell lung cancer with brain metastasis. Clin Radiol 2024; 79:515-525. [PMID: 38637187 DOI: 10.1016/j.crad.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 04/20/2024]
Abstract
AIM To develop and validate models based on magnetic resonance imaging (MRI) radiomics for predicting the efficacy of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in EGFR-mutant non-small-cell lung cancer (NSCLC) patients with brain metastases. MATERIALS AND METHODS 117 EGFR-mutant NSCLC patients with brain metastases who received EGFR-TKI treatment were included in this study from January 1, 2014 to December 31, 2021. Patients were randomly divided into training and validation cohorts in a ratio of 2:1. Radiomics features extracted from brain MRI were screened by least absolute shrinkage and selection operator (LASSO) algorithm. Logistic regression analysis and Cox proportional hazard regression analysis were used to screen clinical risk factors. Clinical (C), radiomics (R), and combined (C + R) nomograms were constructed in models predicting short-term efficacy and intracranial progression-free survival (iPFS), respectively. Calibration curves, Harrell's concordance index (C-index), and decision curve analysis (DCA) were used to evaluate the performance of models. RESULTS Overall response rate (ORR) was 57.3% and median iPFS was 12.67 months. The C + R nomograms were more effective. In the short-term efficacy model, the C-indexes of C + R nomograms in training cohort and validation cohort were 0.860 (0.820-0.901, 95%CI) and 0.843 (0.783-0.904, 95%CI). In iPFS model, the C-indexes of C + R nomograms in training cohort and validation cohort were 0.837 (0.751-0.923, 95%CI) and 0.850 (0.763-0.937, 95%CI). CONCLUSION The C + R nomograms were more effective in predicting EGFR-TKI efficacy of EGFR-mutant NSCLC patients with brain metastases than single clinical or radiomics nomograms.
Collapse
Affiliation(s)
- H Qi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Y Hou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Z Zheng
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - M Zheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - X Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - L Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
46
|
Dong H, Xi Y, Liu K, Chen L, Li Y, Pan X, Zhang X, Ye X, Ding Z. A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study. Eur J Radiol 2024; 176:111532. [PMID: 38820952 DOI: 10.1016/j.ejrad.2024.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE To develop a Radiological-Radiomics (R-R) combined model for differentiation between minimal invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA) of lung adenocarcinoma (LUAD) and evaluate its predictive performance. METHODS The clinical, pathological, and imaging data of a total of 509 patients (522 lesions) with LUAD diagnosed by surgical pathology from 2 medical centres were retrospectively collected, with 392 patients (402 lesions) from center 1 trained and validated using a five-fold cross-validation method, and 117 patients (120 lesions) from center 2 serving as an independent external test set. The least absolute shrinkage and selection operator (LASSO) method was utilized to filter features. Logistic regression was used to construct three models for predicting IA, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve curves (ROCs) were plotted, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy. RESULTS The R-R model for IA prediction achieved an AUC of 0.918 (95 % CI: 0.889-0.947), a sensitivity of 80.3 %, a specificity of 88.2 %, and an accuracy of 82.1 % in the training set. In the validation set, this model exhibited an AUC of 0.906 (95 % CI: 0.842-0.970), a sensitivity of 79.9 %, a specificity of 88.1 %, and an accuracy of 81.8 %. In the external test set, the AUC was 0.894 (95 % CI: 0.824-0.964), a sensitivity of 84.8 %, a specificity of 78.6 %, and an accuracy of 83.3 %. CONCLUSION The R-R model showed excellent diagnostic performance in differentiating MIA and IA, which can provide a certain reference for clinical diagnosis and surgical treatment plans.
Collapse
Affiliation(s)
- Hao Dong
- Department of Radiology, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Yuzhen Xi
- Department of Radiology, 903rd Hospital of PLA, Hangzhou, China
| | - Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Chen
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Yang Li
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Xianpan Pan
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Xingwei Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - XiaoDan Ye
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, China.
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
47
|
Liu J, Fang S, Cheng L, Wang L, Wang Y, Gao L, Liu Y. A web-based dynamic predictive model for postoperative nausea and vomiting in patient receiving gynecological laparoscopic surgery. J Obstet Gynaecol Res 2024; 50:1216-1228. [PMID: 38644529 DOI: 10.1111/jog.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE The aim of this study was to develop a web-based dynamic prediction model for postoperative nausea and vomiting (PONV) in patients undergoing gynecologic laparoscopic surgery. METHODS The patients (N = 647) undergoing gynecologic laparoscopic surgery were included in this observational study. The candidate risk-factors related to PONV were included through literature search. Lasso regression was utilized to screen candidate risk-factors, and the variables with statistical significance were selected in multivariable logistic model building. The web-based dynamic Nomogram was used for model exhibition. Accuracy and validity of the experimental model (EM) were evaluated by generating receiver operating characteristic (ROC) curves and calibration curves. Hosmer-Lemeshow test was used to evaluate the goodness of fit of the model. Decision curve analysis (DCA) was used to evaluate the clinical practicability of the risk prediction model. RESULTS Ultimately, a total of five predictors including patient-controlled analgesia (odds ratio [OR], 4.78; 95% confidence interval [CI], 1.98-12.44), motion sickness (OR, 4.80; 95% CI, 2.71-8.65), variation of blood pressure (OR, 4.30; 95% CI, 2.41-7.91), pregnancy vomiting history (OR, 2.21; 95% CI, 1.44-3.43), and pain response (OR, 1.64; 95% CI, 1.48-1.83) were selected in model building. Assessment of the model indicates the discriminating power of EM was adequate (ROC-areas under the curve, 93.0%; 95% CI, 90.7%-95.3%). EM showed better accuracy and goodness of fit based on the results of the calibration curve. The DCA curve of EM showed favorable clinical benefits. CONCLUSIONS This dynamic prediction model can determine the PONV risk in patients undergoing gynecologic laparoscopic surgery.
Collapse
Affiliation(s)
- Jiang Liu
- School of Nursing, Shandong Second Medical University, Weifang, China
| | | | - Lin Cheng
- School of Nursing, Shandong Second Medical University, Weifang, China
| | - Liwei Wang
- School of Nursing, Shandong Second Medical University, Weifang, China
| | - Yuwen Wang
- School of Nursing, Shandong Second Medical University, Weifang, China
| | - Lunan Gao
- School of Nursing, Shandong Second Medical University, Weifang, China
| | - Yuxiu Liu
- School of Nursing, Shandong Second Medical University, Weifang, China
| |
Collapse
|
48
|
Wang H, Zhang X, Zhen L, Liu H, Liu X. A preliminary probabilistic nomogram model for predicting renal arteriolar damage in IgA nephropathy from clinical parameters. Front Immunol 2024; 15:1435838. [PMID: 39011045 PMCID: PMC11246907 DOI: 10.3389/fimmu.2024.1435838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background IgA nephropathy (IgAN) is a significant contributor to chronic kidney disease (CKD). Renal arteriolar damage is associated with IgAN prognosis. However, simple tools for predicting arteriolar damage of IgAN remain limited. We aim to develop and validate a nomogram model for predicting renal arteriolar damage in IgAN patients. Methods We retrospectively analyzed 547 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator (LASSO) regression and logistic regression were applied to screen for factors associated with renal arteriolar damage in patients with IgAN. A nomogram was developed to evaluate the renal arteriolar damage in patients with IgAN. The performance of the proposed nomogram was evaluated based on a calibration plot, ROC curve (AUC) and Harrell's concordance index (C-index). Results In this study, patients in the arteriolar damage group had higher levels of age, mean arterial pressure (MAP), serum creatinine, serum urea nitrogen, serum uric acid, triglycerides, proteinuria, tubular atrophy/interstitial fibrosis (T1-2) and decreased eGFR than those without arteriolar damage. Predictors contained in the prediction nomogram included age, MAP, eGFR and serum uric acid. Then, a nomogram model for predicting renal arteriolar damage was established combining the above indicators. Our model achieved well-fitted calibration curves and the C-indices of this model were 0.722 (95%CI 0.670-0.774) and 0.784 (95%CI 0.716-0.852) in the development and validation groups, respectively. Conclusion With excellent predictive abilities, the nomogram may be a simple and reliable tool to predict the risk of renal arteriolar damage in patients with IgAN.
Collapse
Affiliation(s)
| | | | | | | | - Xuemei Liu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Li S, Zhang L, Yang B, Huang Y, Guan Y, Huang N, Wu Y, Wang W, Wang Q, Cai H, Sun Y, Xu Z, Wu Q. Development and Validation of a Community-Based Prediction Model for Depression in Elderly Patients with Diabetes: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2024; 17:2627-2638. [PMID: 38974949 PMCID: PMC11225955 DOI: 10.2147/dmso.s465052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024] Open
Abstract
Background In elderly diabetic patients, depression is often overlooked because professional evaluation requires psychiatrists, but such specialists are lacking in the community. Therefore, we aimed to create a simple depression screening model that allows earlier detection of depressive disorders in elderly diabetic patients by community health workers. Methods The prediction model was developed in a primary cohort that consisted of 210 patients with diabetes, and data were gathered from December 2022 to February 2023. The independent validation cohort included 99 consecutive patients from February 2023 to March 2023. Multivariable logistic regression analysis was used to develop the predictive model. We incorporated common demographic characteristics, diabetes-specific factors, family structure characteristics, the self-perceived burden scale (SPBS) score, and the family APGAR (adaptation, partnership, growth, affection, resolution) score. The performance of the nomogram was assessed with respect to its calibration (calibration curve, the Hosmer-Lemeshow test), discrimination (the area under the curve (AUC)), and clinical usefulness (Decision curve analysis (DCA)). Results The prediction nomogram incorporated 5 crucial factors such as glucose monitoring status, exercise status, monthly income, sleep disorder status, and the SPBS score. The model demonstrated strong discrimination in the primary cohort, with an AUC of 0.839 (95% CI, 0.781-0.897). This discriminative ability was further validated in the validation cohort, with an AUC of 0.857 (95% CI, 0.779-0.935). Moreover, the nomogram exhibited satisfactory calibration. DCA suggested that the prediction of depression in elderly patients with diabetes mellitus was of great clinical value. Conclusion The prediction model provides precise and user-friendly guidance for community health workers in preliminary screenings for depression among elderly patients with diabetes.
Collapse
Affiliation(s)
- Shanshan Li
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
- Jiangsu Engineering Research Centers for Cardiovascular and Cerebrovascular Disease and Cancer Prevention and Control, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Boyi Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuqi Guan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Nanbo Huang
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Yingnan Wu
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Wenshuo Wang
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Qing Wang
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Haochen Cai
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Yong Sun
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Zijun Xu
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| | - Qin Wu
- Medical College, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
- Jiangsu Engineering Research Centers for Cardiovascular and Cerebrovascular Disease and Cancer Prevention and Control, Jiangsu Vocational College of Medicine, Yancheng, People’s Republic of China
| |
Collapse
|
50
|
Wang Q, Zhou Y, Yang H, Zhang J, Zeng X, Tan Y. MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma. Med Phys 2024; 51:4673-4686. [PMID: 38642400 DOI: 10.1002/mp.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Preoperative microvascular invasion (MVI) of liver cancer is an effective method to reduce the recurrence rate of liver cancer. Hepatectomy with extended resection and additional adjuvant or targeted therapy can significantly improve the survival rate of MVI+ patients by eradicating micrometastasis. Preoperative prediction of MVI status is of great clinical significance for surgical decision-making and the selection of other adjuvant therapy strategies to improve the prognosis of patients. PURPOSE Established a radiomics machine learning model based on multimodal MRI and clinical data, and analyzed the preoperative prediction value of this model for microvascular invasion (MVI) of hepatocellular carcinoma (HCC). METHOD The preoperative liver MRI data and clinical information of 130 HCC patients who were pathologically confirmed to be pathologically confirmed were retrospectively studied. These patients were divided into MVI-positive group (MVI+) and MVI-negative group (MVI-) based on postoperative pathology. After a series of dimensionality reduction analysis, six radiomic features were finally selected. Then, linear support vector machine (linear SVM), support vector machine with rbf kernel function (rbf-SVM), logistic regression (LR), Random forest (RF) and XGBoost (XGB) algorithms were used to establish the MVI prediction model for preoperative HCC patients. Then, rbf-SVM with the best predictive performance was selected to construct the radiomics score (R-score). Finally, we combined R-score and clinical-pathology-image independent predictors to establish a combined nomogram model and corresponding individual models. The predictive performance of individual models and combined nomogram was evaluated and compared by receiver operating characteristic curve (ROC). RESULT Alpha-fetoprotein concentration, peritumor enhancement, maximum tumor diameter, smooth tumor margins, tumor growth pattern, presence of intratumor hemorrhage, and RVI were independent predictors of MVI. Compared with individual models, the final combined nomogram model (AUC: 0.968, 95% CI: 0.920-1.000) constructed by radiometry score (R-score) combined with clinicopathological parameters and apparent imaging features showed the optimal predictive performance. CONCLUSION This multi-parameter combined nomogram model had a good performance in predicting MVI of HCC, and had certain auxiliary value for the formulation of surgical plan and evaluation of prognosis.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center For Medical Imaging In Jiangxi Province, Nanchang, China
| | - Yongjie Zhou
- Department of Radiology, Jiangxi Cancer Hospital, Nanchang, China
| | - Hongan Yang
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center For Medical Imaging In Jiangxi Province, Nanchang, China
| | - Jingrun Zhang
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center For Medical Imaging In Jiangxi Province, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center For Medical Imaging In Jiangxi Province, Nanchang, China
| | - Yongming Tan
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center For Medical Imaging In Jiangxi Province, Nanchang, China
| |
Collapse
|