1
|
Efil SC, Bilgin B, Ceylan F, Karakaş H, Karahan İ, Özsan SN, Kosku H, Yaman Ş, Bülent Akıncı M, Dede DŞ, Yalçın B, Nahit Şendur MA. A current comprehensive role of immune-checkpoint inhibitors in resectable non-small cell lung cancer: A narrative review. J Oncol Pharm Pract 2024; 30:1214-1239. [PMID: 38860323 DOI: 10.1177/10781552241260864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVE The objective of this article is to review the efficacy, safety, and evidence for current use and potential future uses of immune-checkpoint inhibitors (ICIs) in the management of resectable non-small cell lung cancer (NSCLC). DATA SOURCES A literature review was carried out through PubMed to identify completed and ongoing clinical trials evaluating the use, efficacy, and safety of ICIs in the management of resectable NSCLC. DATA SUMMARY To date, four phase 3 trials have emerged that have changed our treatment practice concerning the utilization of ICIs during the adjuvant and neoadjuvant settings. The IMpower010 and KEYNOTE-091 trials examined the application of adjuvant atezolizumab and pembrolizumab, respectively, following surgical resection and adjuvant chemotherapy. In the CheckMate 816 trial, the combination of nivolumab and chemotherapy as a neoadjuvant therapy received approval for patients with resectable NSCLC. Also, for patients with resectable NSCLC, the use of a pembrolizumab and chemotherapy combination as a perioperative therapy received approval based on the results of the KEYNOTE-671 trial. Apart from these trials, there are numerous phase 2 and phase 3 trials, some of which have been published while others are still in progress. CONCLUSION Despite the promising outcomes from these trials there remain several unanswered questions. In this review, we will assess clinical trials involving adjuvant, neoadjuvant, and perioperative ICIs, aiming to address the unresolved questions related to these therapeutic approaches.
Collapse
Affiliation(s)
- Safa Can Efil
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
| | - Burak Bilgin
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
- Department of Medical Oncology, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, TR 06031, Turkey
| | - Furkan Ceylan
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
| | - Hilal Karakaş
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
| | - İrfan Karahan
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
| | - Sema Nur Özsan
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
| | - Hakan Kosku
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
| | - Şebnem Yaman
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
- Department of Medical Oncology, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, TR 06031, Turkey
| | - Muhammed Bülent Akıncı
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
- Department of Medical Oncology, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, TR 06031, Turkey
| | - Didem Şener Dede
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
- Department of Medical Oncology, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, TR 06031, Turkey
| | - Bülent Yalçın
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
- Department of Medical Oncology, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, TR 06031, Turkey
| | - Mehmet Ali Nahit Şendur
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, TR 06800, Turkey
- Department of Medical Oncology, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, TR 06031, Turkey
| |
Collapse
|
2
|
Deboever N, Eisenberg M, Hofstetter WL, Mehran RJ, Rice DC, Roth J, Sepesi B, Swisher SG, Vaporciyan AA, Walsh GL, Antonoff MB, Rajaram R. Financial Toxicity in Patients With Resected Lung Cancer. Ann Surg 2023; 278:1038-1044. [PMID: 37249193 DOI: 10.1097/sla.0000000000005926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES To describe financial toxicity (FT) in patients with resected lung cancer and identify risk factors in this population. BACKGROUND FT describes the financial burden associated with cancer care and its impact on the quality of survivorship. Few prior studies have examined FT in patients with lung cancer. METHODS Patients who underwent lung cancer resection at our institution between January 1, 2016 and December 31, 2021, were surveyed to gather demographic information and evaluate FT using a validated questionnaire. A multivariable model was built to identify risk factors for FT. RESULTS Of the total, 1477 patients were contacted, of whom 463 responded (31.3%). Most patients were stage I (n = 349, 75.4%) and lobectomy was performed often (n = 290, 62.8%). There were 196 patients (42.3%) who experienced FT. Upon multivariable analyses, divorced marital status [odds ratio (OR) = 3.658, 95% CI: 1.180-11.337], household income <$40,000 (OR = 2.544, 95% CI: 1.003-6.455), credit score below 739 (OR = 2.744, 95% CI: 1.326-5.679), clinical stage >I (OR = 2.053, 95% CI: 1.088-3.877), and change in work hours or work cessation (all P < 0.05) were associated with FT. Coping mechanisms, such as decreased spending on food or clothing and increased use of savings or borrowing money, were more likely to be reported by patients experiencing FT than those who did not ( P < 0.001). CONCLUSIONS Patients undergoing lung cancer resection often experienced significant financial stress with several identifiable risk factors. FT should be considered early in the care of these patients to alleviate detrimental coping mechanisms and enhance their quality of survivorship.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Cascone T, Leung CH, Weissferdt A, Pataer A, Carter BW, Godoy MCB, Feldman H, William WN, Xi Y, Basu S, Sun JJ, Yadav SS, Rojas Alvarez FR, Lee Y, Mishra AK, Chen L, Pradhan M, Guo H, Sinjab A, Zhou N, Negrao MV, Le X, Gay CM, Tsao AS, Byers LA, Altan M, Glisson BS, Fossella FV, Elamin YY, Blumenschein G, Zhang J, Skoulidis F, Wu J, Mehran RJ, Rice DC, Walsh GL, Hofstetter WL, Rajaram R, Antonoff MB, Fujimoto J, Solis LM, Parra ER, Haymaker C, Wistuba II, Swisher SG, Vaporciyan AA, Lin HY, Wang J, Gibbons DL, Jack Lee J, Ajami NJ, Wargo JA, Allison JP, Sharma P, Kadara H, Heymach JV, Sepesi B. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: the phase 2 platform NEOSTAR trial. Nat Med 2023; 29:593-604. [PMID: 36928818 PMCID: PMC10033402 DOI: 10.1038/s41591-022-02189-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/15/2022] [Indexed: 03/18/2023]
Abstract
Neoadjuvant ipilimumab + nivolumab (Ipi+Nivo) and nivolumab + chemotherapy (Nivo+CT) induce greater pathologic response rates than CT alone in patients with operable non-small cell lung cancer (NSCLC). The impact of adding ipilimumab to neoadjuvant Nivo+CT is unknown. Here we report the results and correlates of two arms of the phase 2 platform NEOSTAR trial testing neoadjuvant Nivo+CT and Ipi+Nivo+CT with major pathologic response (MPR) as the primary endpoint. MPR rates were 32.1% (7/22, 80% confidence interval (CI) 18.7-43.1%) in the Nivo+CT arm and 50% (11/22, 80% CI 34.6-61.1%) in the Ipi+Nivo+CT arm; the primary endpoint was met in both arms. In patients without known tumor EGFR/ALK alterations, MPR rates were 41.2% (7/17) and 62.5% (10/16) in the Nivo+CT and Ipi+Nivo+CT groups, respectively. No new safety signals were observed in either arm. Single-cell sequencing and multi-platform immune profiling (exploratory endpoints) underscored immune cell populations and phenotypes, including effector memory CD8+ T, B and myeloid cells and markers of tertiary lymphoid structures, that were preferentially increased in the Ipi+Nivo+CT cohort. Baseline fecal microbiota in patients with MPR were enriched with beneficial taxa, such as Akkermansia, and displayed reduced abundance of pro-inflammatory and pathogenic microbes. Neoadjuvant Ipi+Nivo+CT enhances pathologic responses and warrants further study in operable NSCLC. (ClinicalTrials.gov registration: NCT03158129 .).
Collapse
Affiliation(s)
- Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cheuk H Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annikka Weissferdt
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett W Carter
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Myrna C B Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hope Feldman
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William N William
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Hospital BP, a Beneficencia Portuguesa de Sao Paulo, Sao Paulo, Brazil
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Jing Sun
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shalini S Yadav
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank R Rojas Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Younghee Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aditya K Mishra
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lili Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monika Pradhan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiping Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Zhou
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bonnie S Glisson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank V Fossella
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravi Rajaram
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Y Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim J Ajami
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Allison
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Deboever N, Eisenberg M, Chidi A, Sepesi B. The role of immunotherapy and targeted therapy in the multimodal therapy for resectable lung cancer. J Surg Oncol 2023; 127:275-281. [PMID: 36630093 DOI: 10.1002/jso.27166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 01/12/2023]
Abstract
As the immunotherapeutic milieu in resectable nonsmall cell lung cancer continues to evolve, the field of thoracic oncology actively moves towards better patient selection based on biomarkers and oncogenic drivers. In this article, we review the current standard of oncologic care in this population and discuss the ongoing phase III clinical trials investigating the use of immunotherapy or targeted therapy in the perioperative period. We also discuss genotyping initiatives, biomarkers, and trial endpoints.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Eisenberg
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexis Chidi
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Chen LN, Wei AZ, Shu CA. Neoadjuvant immunotherapy in resectable non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231163798. [PMID: 37007633 PMCID: PMC10052589 DOI: 10.1177/17588359231163798] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
The advent of immune checkpoint inhibition has pushed the treatment paradigm for resectable non-small-cell lung cancer (NSCLC) toward neoadjuvant therapy. A growing number of promising trials have examined the utility of neoadjuvant immunotherapy, both alone and in combination with other modalities such as radiation therapy (RT) and chemotherapy. The phase II LCMC3 and NEOSTAR trials demonstrated a role for neoadjuvant immunotherapy in inducing meaningful pathologic responses, and another phase II trial established the feasibility of combining neoadjuvant durvalumab with RT. Significant interest in neoadjuvant chemoimmunotherapy resulted in the conduct of multiple successful phase II trials including the Columbia trial, NADIM, SAKK 16/14, and NADIM II. Across these trials, neoadjuvant chemoimmunotherapy led to high rates of pathologic response and improved surgical outcomes without compromising surgical timing or feasibility. CheckMate-816, which was a randomized phase III trial studying neoadjuvant nivolumab in addition to chemotherapy, definitively established a benefit for neoadjuvant chemoimmunotherapy compared to chemotherapy alone for resectable NSCLC. Despite the growing literature and success of these trials, several outstanding questions remain, including the relationship between pathologic response and patient survival, the role of biomarkers such as programmed death ligand 1 and circulating tumor DNA in determining patient selection and treatment course, and the utility of additional adjuvant therapies. Longer follow-up of CheckMate-816 and other ongoing phase III trials may help address these questions. Ultimately, the complexity of managing resectable NSCLC highlights the importance of a multidisciplinary approach to patient care.
Collapse
|
6
|
Yoon DW, Kim CH, Hwang S, Choi YL, Cho JH, Kim HK, Choi YS, Kim J, Shim YM, Shin S, Lee HY. Reappraising the clinical usability of consolidation-to-tumor ratio on CT in clinical stage IA lung cancer. Insights Imaging 2022; 13:103. [PMID: 35715654 PMCID: PMC9206049 DOI: 10.1186/s13244-022-01235-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Ground-glass opacity (GGO) on computed tomography is associated with prognosis in early-stage non-small cell lung cancer (NSCLC) patients. However, the stratification of the prognostic value of GGO is controversial. We aimed to evaluate clinicopathologic characteristics of early-stage NSCLC based on the consolidation-to-tumor ratio (CTR), conduct multi-pronged analysis, and stratify prognosis accordingly. Methods We retrospectively investigated 944 patients with clinical stage IA NSCLC, who underwent curative-intent lung resection between August 2018 and January 2020. The CTR was measured and used to categorize patients into six groups (1, 0%; 2, 0–25%; 3, 25–50%; 4, 50–75%; 5, 75–100%; and 6, 100%). Results Pathologic nodal upstaging was found in 1.8% (group 4), 9.0% (group 5), and 17.4% (group 6), respectively. The proportion of patients with a high grade of tumor-infiltrating lymphocytes tended to decrease as the CTR increased. In a subtype analysis of patients with adenocarcinoma, all of the patients with predominant micro-papillary patterns were in the CTR > 50% groups, and most of the patients with predominant solid patterns were in group 6 (47/50, 94%). The multivariate analysis demonstrated that CTR 75–100% (hazard ratio [HR], 3.85; 95% confidence interval [CI], 1.58–9.36) and CTR 100% (HR, 5.58; 95% CI, 2.45–12.72) were independent prognostic factors for DFS, regardless of tumor size. Conclusion We demonstrated that the CTR could provide various noninvasive clinicopathological information. A CTR of more than 75% is the factor associated with a poor prognosis and should be considered when making therapeutic plans for patients with early-stage NSCLC.
Collapse
Affiliation(s)
- Dong Woog Yoon
- Department of Thoracic and Cardiovascular Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Chu Hyun Kim
- Center for Health Promotion, Samsung Medical Center, Seoul, Korea
| | - Soohyun Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Sumin Shin
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea. .,Department of Thoracic and Cardiovascular Surgery, School of Medicine, Ewha Womans University, Mok-dong Hospital, Seoul, Korea.
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| |
Collapse
|
7
|
Affiliation(s)
- Charles A Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine
- Mount Sinai-National Jewish Health Respiratory Institute
- Tisch Cancer Center Icahn School of Medicine at Mount Sinai New York, New York
| |
Collapse
|
8
|
Issels RD, Noessner E, Lindner LH, Schmidt M, Albertsmeier M, Blay JY, Stutz E, Xu Y, Buecklein V, Altendorf-Hofmann A, Abdel-Rahman S, Mansmann U, von Bergwelt-Baildon M, Knoesel T. Immune infiltrates in patients with localised high-risk soft tissue sarcoma treated with neoadjuvant chemotherapy without or with regional hyperthermia: A translational research program of the EORTC 62961-ESHO 95 randomised clinical trial. Eur J Cancer 2021; 158:123-132. [PMID: 34666214 DOI: 10.1016/j.ejca.2021.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The EORTC 62961-ESHO 95 randomised trial showed improved long-term survival of patients with high-risk soft-tissue sarcoma by adding regional hyperthermia to neoadjuvant chemotherapy. We hypothesised that immune infiltrate of patients treated with neoadjuvant therapy associate with clinical outcome. METHODS Tumour infiltrating lymphocytes (TILs) and CD8, FOXP3, PD-1, and PD-L1 were evaluated in sequential biopsies of patients after four cycles of therapy. RESULTS From a subgroup of 109 patients who had been randomised between July 1997 and November 2006 to neoadjuvant chemotherapy (53 patients) or neoadjuvant chemotherapy with regional hyperthermia (56 patients), 137 biopsies were obtained. TILs increased in paired second biopsies independent of treatment allocation (p < 0.001). FOXP3 regulatory T cells decreased (p = 0.002), and PD-L1 expression of tumours became undetectable. In the multivariate analysis, post-treatment high TILs correlated to LPFS (HR: 0.34; 95% CI 0.15-0.75; p = 0.008) and DFS (HR: 0.38; 95% CI 0.17-0.82; p = 0.015). In comparing post-treatment immune infiltrate between treatment arms, tumour response was associated with neoadjuvant chemotherapy with regional hyperthermia (p = 0.013) and high TILs (p = 0.064). High CD8 cell infiltration was associated with improved LPFS (HR: 0.27; 95% CI 0.09-0.79; Log-rank p = 0.011) and DFS (HR: 0.25; 95% CI 0.09-0.73; Log-rank p = 0.006). Improved survival at 10 years was associated with immune infiltrate after neoadjuvant chemotherapy with regional hyperthermia. CONCLUSION Preoperative therapy re-programs a non-inflamed tumour at baseline into an inflamed tumour. The post-treatment immune infiltrate became predictive for clinical outcomes. The combination with regional hyperthermia primes the tumour microenvironment, enabling enhanced anti-tumour immune activity in high-risk soft tissue sarcomas. TRIAL REGISTRATION ClinicalTrials.gov, NCT00003052.
Collapse
Affiliation(s)
- Rolf D Issels
- Department of Medicine III, University Hospital, LMU, Marchioninistr.15, Munich, 81377, Germany.
| | - Elfriede Noessner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital, LMU, Marchioninistr.15, Munich, 81377, Germany
| | - Michael Schmidt
- Munich Cancer Registry, Institute of Medical Information Processing, Biometry and Epidemiology, LMU, Munich, Germany
| | - Markus Albertsmeier
- Department of General, Visceral and Transplantation Surgery, LMU Munich, Munich, Germany
| | - Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, 28 Rue Laennec1, Lyon, 69373, France
| | - Emanuel Stutz
- Dept. of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern Freiburgstr.18, Switzerland
| | - Yujun Xu
- Institute of Medical Informatics, Biometry and Epidemiology (IBE), LMU Munich, Germany
| | - Veit Buecklein
- Department of Medicine III, University Hospital, LMU, Marchioninistr.15, Munich, 81377, Germany
| | | | - Sultan Abdel-Rahman
- Department of Medicine III, University Hospital, LMU, Marchioninistr.15, Munich, 81377, Germany
| | - Ulrich Mansmann
- Institute of Medical Informatics, Biometry and Epidemiology (IBE), LMU Munich, Germany
| | - Michael von Bergwelt-Baildon
- Deutsches Konsortium für Translationale Krebsforschung, Bayrisches Zentrum für Krebsforschung, and Comprehensive Cancer Center LMU, Munich, Germany
| | - Thomas Knoesel
- Institute of Pathology, LMU, Thalkirchner Str.36, Munich, 80337, Germany
| |
Collapse
|
9
|
Wimmer S, Deloch L, Hader M, Derer A, Grottker F, Weissmann T, Hecht M, Gostian AO, Fietkau R, Frey B, Gaipl US. Hypofractionated Radiotherapy Upregulates Several Immune Checkpoint Molecules in Head and Neck Squamous Cell Carcinoma Cells Independently of the HPV Status While ICOS-L Is Upregulated Only on HPV-Positive Cells. Int J Mol Sci 2021; 22:ijms22179114. [PMID: 34502022 PMCID: PMC8430967 DOI: 10.3390/ijms22179114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
While the treatment of squamous cell carcinoma of the head and neck (HNSCC) with radiotherapy (RT) is complemented more and more by immunotherapy in clinical trials, little is known about the impact of the human papillomavirus (HPV) status or the applied RT scheme on the immune phenotype of the tumor cells. Therefore, we aimed to examine the impact of the HPV status of four human HNSCC cell lines on cell death and the expression of immune checkpoint molecules (ICMs) after RT with either hypofractionation irradiation (5x3.0Gy) or a high single dose (1x19.3Gy) via multicolor flow cytometry and quantitative PCR at an early time point after therapy. In our study, 5x3.0Gy RT induced high numbers of early and late apoptotic cells independent of the HPV status, but necrosis was only increased in the HPV-positive UM-Scc-47 cells. Generally, the immune stimulatory ICMs (CD70, CD137-L, ICOS-L) were less affected by RT compared to the immune suppressive ones (PD-L1, PD-L2, and the herpesvirus entry mediator (HVEM)). A significant higher surface expression of the analyzed ICMs was found after hypofractionated RT compared to a single high dose; however, regardless of the HPV status, with the exception of ICOS-L. Here, HPV-positive HNSCC tumor cells showed a stronger response to 5x3.0Gy than HPV-negative ones. On the RNA level, only minor alterations of ICMs were observed following RT, with the exception of the HPV negative cell line CAL33 treated with 5x3.0Gy, where PD-L2, HVEM and CD70 were significantly increased. We conclude that the HPV status may not distinctly predict immunological responses following RT, and thus cannot be used as a single predictive marker for therapy responses in HNSCC. In contrast, the patient-specific individual expression of ICMs following RT is preferable for the targeted patient selection for immune therapy directed against distinct ICM.
Collapse
Affiliation(s)
- Sebastian Wimmer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Michael Hader
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Fridolin Grottker
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Antoniu-Oreste Gostian
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.W.); (L.D.); (M.H.); (A.D.); (F.G.); (T.W.); (M.H.); (R.F.); (B.F.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8544-258; Fax: +49-9131-8539-335
| |
Collapse
|