1
|
Dotaniya ML, Meena MD, Choudhary RL, Meena MK, Meena VD, Singh H, Lakaria BL, Jat RS, Rai PK, Kumar K, Doutaniya RK, Singh H. Dynamics of major plant nutrients and enzymatic activities in soil influenced by application of biochar and organic waste. PLoS One 2024; 19:e0307487. [PMID: 39475937 PMCID: PMC11524486 DOI: 10.1371/journal.pone.0307487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024] Open
Abstract
The concentration of salt ions influences the availability and plant nutrients dynamics in the soil. Proper management of these ions can enhance food grain production, helping to feed the growing population. In this experiment, nine fertility combinations were followed to enhance the soil organic carbon and reduce the salt toxicity and monitor the plant nutrient availability. An incubation experiment was conducted for the period of one year with different organic soil amendments in combinations including biochar (BC), pressmud (PM), and farm yard manure (FYM) as follow: T1-control, T2-RDF, T3-FYM (10 t/ha), T4-PM (10 t/ha), T5-BC (10 t/ha), T6-FYM (5 t/ha) + PM (5 t/ha), T7-FYM (5 t/ha) + BC (5 t/ha), T8-PM (5 t/ha) + BC (5 t/ha), T9-FYM (5 t/ha) + BC (2.5 t/ha) + PM (2.5 t/ha). Results showed that addition of organic substance (10 t/ha) significantly (p < 0.05) affected soil pH and electric conductivity. Plant nutrient availability (N, K, and S) was also influenced by application of organic substance (10 t/ha). Organic C and available N were recorded the highest in the treatment T7 (FYM-5 t/ha + BC -5 t/ha); whereas, the highest available K and S were observed in treatment T5 (BC-10 t/ha). The microbial soil fertility indicators (alkaline phosphatases, arylsulphatase, dehydrogenase activity and microbial biomass carbon) were measured the highest in FYM (5 t/ha) + BC (5 t/ha) applied treatment. In conclusion, application of organic substance 10 t/ha (biochar alone or with FYM) improved the plant nutrient availability and soil microbial activities in saline soil. It could be a suitable option for enhancing the soil fertility in saline soils.
Collapse
Affiliation(s)
- M. L. Dotaniya
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - M. D. Meena
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - R. L. Choudhary
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - M. K. Meena
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - V. D. Meena
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - Harvir Singh
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - Brij Lal Lakaria
- ICAR- Indian Institute of Soil and Water Conservation, Research Centre, Chandigarh, India
| | - R. S. Jat
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - P. K. Rai
- ICAR-Directorate of Rapeseed- Mustard Research, Bharatpur, India
| | - Kuldeep Kumar
- ICAR- Indian Institute of Soil and Water Conservation, Research Centre, Kota, India
| | - R. K. Doutaniya
- Department of Agronomy, SKN College of Agriculture, Jobner, India
| | | |
Collapse
|
2
|
Patro A, Dwivedi S, Thakur A, Sahoo PK, Biswas JK. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024; 27:110812. [PMID: 39310752 PMCID: PMC11416529 DOI: 10.1016/j.isci.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
This review highlights the application of biochar (BC) for attaining different SDGs (SDG 6: clean water and sanitation, SDG 7: affordable and clean energy, SDG 13: climate action, and SDG 15: life on land). These goals coincide with the various existing environmental problems including wastewater treatment, soil amendment, greenhouse gas remediation, and bioenergy generation. So, the review encompasses the various mechanisms involved in the BC-assisted treatment and reclamation of water, pollutant immobilization and enhancing soil properties, reduction of greenhouse gas emission during the wastewater treatment process and soil amendment mechanisms, bioenergy generation through various electrode material, biodiesel production, and many more. The review also explains the various drawbacks and limitations of BC application to the available environmental issues. Conclusively, it was apprehended that BC is an appropriate material for several environmental applications. More research interventions are further required to analyze the applicability of different BC materials for attaining other available SDGs.
Collapse
Affiliation(s)
- Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Anjali Thakur
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
3
|
Adekiya AO, Ayorinde BB, Ogunbode T. Combined lime and biochar application enhances cowpea growth and yield in tropical Alfisol. Sci Rep 2024; 14:1389. [PMID: 38228713 PMCID: PMC10791736 DOI: 10.1038/s41598-024-52102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024] Open
Abstract
It is essential to increase the pH of tropical soils in order to reduce acidity and promote soil and crop productivity. Therefore, experiments were carried out in 2020 and 2021 to assess the impacts of biochar and lime on the chemical properties, growth, nodulation, and yield of cowpea (Vigna unguiculata). The study involved various levels of lime (CaCO3) and wood biochar (ranging from 0 to 10 t ha-1), organized in a factorial combination. The treatments were arranged in a randomized complete block design and replicated three times. The application of lime and biochar, either separately or in combination, led to improvements in soil chemical properties such as pH, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), and cation exchange capacity (CEC), as well as enhancements in the growth, nodulation, and yield of cowpea when compared to the control. Lime and biochar alone and combined reduced exchangeable acidity (Al + H) relative to the control. Cowpea yield increased with lime rate up to a point, but then decreases. The highest cowpea yield is achieved at a lime rate of 2.5 t ha-1, whereas cowpea yield increased as the Biochar rate increased from 0 up to 10 t ha-1. There was a significant correlation between pH and cowpea pod weight in both years (2020 and 2021). The R values were - 0.615 and - 0.444 for years 2020 and year 2021 respectively at P < 0.05. At higher lime levels combined with biochar, there were considerable reductions in cowpea yield, and this decrease can be attributed to unfavorable soil pH conditions. Relative to 2.5 t ha-1 lime + 5 t ha-1 biochar, 10 t ha-1 lime + 10 t ha-1 biochar, reduced cowpea grain yield by 853% in 2020 and 845% in 2021. Since there were no significant differences between the effects of 2.5 t ha-1 lime + 5 t ha-1 biochar, 2.5 t ha-1 lime + 7.5 t ha-1 biochar, and 2.5 t ha-1 lime + 10 t ha-1 biochar applications on cowpea yield, therefore to prevent waste of Biochar, 2.5 t ha-1 lime + 5 t ha-1 biochar is recommended for production of cowpea.
Collapse
Affiliation(s)
- Aruna Olasekan Adekiya
- Agriculture Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun State, Nigeria.
| | | | - Timothy Ogunbode
- Agriculture Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
4
|
Boughattas I, Zitouni N, Mkhinini M, Missawi O, Helaoui S, Hattab S, Mokni M, Bousserrhine N, Banni M. Combined toxicity of Cd and 2,4-dichlorophenoxyacetic acid on the earthworm Eisenia andrei under biochar amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34915-34931. [PMID: 36525191 DOI: 10.1007/s11356-022-24628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Due to anthropogenic activities, various pollutants can be found in agricultural soil, such as cadmium (Cd) and 2,4-dichlorophenoxyacetic acid (2,4-D). They are highly toxic and can have a negative impact on soil fertility. For remediation strategies, biochar has acquired considerable attention due to its benefits for agriculture. However, we should recognize the ecological risk posed by biochar use. In addition, little is known about its non-desirable effects on soil organisms such as earthworms, especially in the case of soil remediation. In this study, earthworms (Eisenia andrei) were exposed to soil contaminated with Cd (0.7 mg/kg), (2,4-D) (7 mg/kg), and a mixture of the two in the presence and absence of biochar (2%). A 7- and 14-day incubation experiment was carried out for this purpose. Cd and 2,4-D uptakes in earthworms' tissues, oxidative stress, cytotoxic response, DNA damage, histopathological changes, and gene expression level were assessed. Results suggested that biochar increased the bioavailability of Cd and 2,4-D and the frequency of micronuclei (MNi) and decreased the lysosomal membrane stability (LMS) in earthworms. Also, histopathological examination detected numerous alterations in animals exposed to the contaminants without any amelioration when biochar was added. The biochemical response of earthworms in terms of oxidative stress demonstrates that in the presence of biochar, animals tend to alleviate the toxicity of Cd and 2,4-D. This was also supported by transcriptomic analyses where expression gene levels related to oxidative stress were upregulated in earthworms exposed to Cd and 2,4-D + biochar. The present investigation brought new insights concerning the use of biochar in agriculture.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia.
- Regional Field Crops Research Center of Beja, Beja, Tunisia.
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Sondes Helaoui
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Sabrine Hattab
- Regional Research Centre in Horticulture and Organic Agriculture, Chott Mariem, 4042, Sousse, Tunisia
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban Systems, University Paris-Est Créteil, cedex 94010, Creteil, France
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
- Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| |
Collapse
|
5
|
Cao X, Reichel R, Wissel H, Brüggemann N. Improving nitrogen retention of cattle slurry with oxidized biochar: An incubation study with three different soils. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1-12. [PMID: 36327389 DOI: 10.1002/jeq2.20424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/11/2022] [Indexed: 06/09/2023]
Abstract
The application of livestock slurry in soils can lead to nitrogen (N) losses through ammonia (NH3 ) emission or nitrate (NO3 - ) leaching. Oxidized biochar has great potential to mitigate N losses due to its strong adsorption capacity; however, the effects of oxidized biochar in different soils treated with slurry are currently unclear. Here, we investigated the effect of untreated and oxidized biochar (applied at a rate of 50 kg C m-3 slurry) on reducing N losses in a laboratory experiment with three different soils (loamy sand, sandy loam, loam) amended with cattle slurry at an application rate of 73 kg N ha-1 . Oxidized biochar reduced NH3 emissions by 64-75% in all soils, whereas untreated biochar reduced NH3 emissions by 61% only in the loamy sand. Oxidized biochar significantly reduced the NO3 - content in the soil solution of the loamy sand in the early phase of the incubation and led to a significantly higher NO3 - concentration in the same soil compared with the slurry-only treatment at the end of the experiment, indicating a significant increase in NO3 - retention in this organic C-poor soil. We conclude that oxidized biochar can reduce N losses, both in the form of NH3 emission and NO3 - leaching, from cattle slurry applied to soil, particularly in soil with soil organic carbon content <1% and pH <5 (i.e., oxidized biochar can serve as a means for improving the quality of marginal and acidic soils).
Collapse
Affiliation(s)
- Xinyue Cao
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Rüdiger Reichel
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Holger Wissel
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Nicolas Brüggemann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| |
Collapse
|
6
|
Yang W, Zhang L. Biochar and cow manure organic fertilizer amendments improve the quality of composted green waste as a growth medium for the ornamental plant Centaurea Cyanus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45474-45486. [PMID: 35149944 DOI: 10.1007/s11356-022-19144-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
This study is aimed to examine the combined effects of biochar (BC) and cow manure organic fertilizer (CM) added to composted green waste (CGW) on the growth of Centaurea cyanus L. (cornflower) plants. With a constant amount of CGW, the research adjusted the addition ratios of BC as 0%, 15%, 2and 5%, and CM as 0%, 10%, 20%, respectively (the base of % is the volume of CGW). According to the above proportion, the growth media were prepared to culture cornflower seedlings. After a cultivation period of 180 days, growth indexes, ornamental indexes, and nutrient content of cornflower plants were measured to identify the optimal combination of BC and CM. The results showed that the additives BC and CM could significantly improve the plant growth and the nutrient content of cornflower plants, especially when added the two simultaneously. Compared with CGW without amendments, CGW amended with 15% BC and 10% CM increased shoots fresh weight, roots fresh weight, total nitrogen content, flower number, and total chlorophyll content of cornflower plants by 159.1%, 25.0%, 68.9%, 218.8%, and 26.4%, respectively. In conclusion, BC and CM addition could improve the quality and increase the agronomic value of CGW, and the CGW amended with 15% BC and 10% CM was an ideal growth media for cornflower plant.
Collapse
Affiliation(s)
- Wan Yang
- College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Effects of Biochar Application on Vegetation Growth, Cover, and Erosion Potential in Sloped Cultivated Soil Derived from Mudstone. Processes (Basel) 2022. [DOI: 10.3390/pr10020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soil degradation is a crucial problem, particularly in tropical and subtropical areas. Prevention or reduction of soil erosion requires strategies based on thorough rapid vegetation cover (VC) and favorable soil quality in subtropical and tropical areas. This study applied wood biochar (WB) and rice husk biochar (RHB) in a mudstone soil, which is widely distributed in Southern Taiwan, to investigate the effects of biochar application on soil erosion and vegetation restoration. The standard erosion unit plots (22.13 m in length and 9% in slope gradient) were set up to determine the relationship among soil losses, VC, and natural rainfall characteristics with and without biochar application. The results indicated that biochar application increased the growth rate (identified by cover ratio) of Bahia grass (Paspalum notatum Flüggé) by 2–2.6 times within 40 days compared with control (without biochar application) and increased VC by 20% after 120 days of treatment. The biochar application could effectively reduce soil losses by 60% at least in the mudstone soil. A well-predicted regression function of soil loss with VC and rainfall kinetic energy was established (amount of soil lost = −0.435 × ln VC + 0.54 × RKE, r = 0.89, p < 0.01).
Collapse
|
8
|
Bellè SL, Riotte J, Backhaus N, Sekhar M, Jouquet P, Abiven S. Tailor-made biochar systems: Interdisciplinary evaluations of ecosystem services and farmer livelihoods in tropical agro-ecosystems. PLoS One 2022; 17:e0263302. [PMID: 35089983 PMCID: PMC8797206 DOI: 10.1371/journal.pone.0263302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
Organic matter management is key to sustain ecosystem services provided by soils. However, it is rarely considered in a holistic view, considering local resources, agro-environmental effects and harmonization with farmers' needs. Organic inputs, like compost and biochar, could represent a sustainable solution to massive current challenges associated to the intensification of agriculture, in particular for tropical regions. Here we assess the potential of agricultural residues as a resource for farmer communities in southwestern India to reduce their dependency on external inputs and sustain ecosystem services. We propose a novel joint evaluation of farmers' aspirations together with agro-environmental effects of organic inputs on soils. Our soil quality evaluation showed that biochar alone or with compost did not improve unilaterally soils in the tropics (Anthroposol, Ferralsol and Vertisol). Many organic inputs led to an initial decrease in water-holding capacities of control soils (-27.3%: coconut shell biochar with compost on Anthroposol). Responses to organic matter inputs for carbon were strongest for Ferralsols (+33.4% with rice husk biochar), and mostly positive for Anthroposols and Vertisols (+12.5% to +13.8% respectively). Soil pH responses were surprisingly negative for Ferralsols and only positive if biochar was applied alone (between -5.6% to +1.9%). For Anthroposols and Vertisols, highest increases were achieved with rice husk biochar + vermicomposts (+7.2% and +5.2% respectively). Our socio-economic evaluation showed that farmers with a stronger economical position showed greater interest towards technology like biochar (factor 1.3 to 1.6 higher for farmers cultivating Anthroposols and/or Vertisols compared to Ferralsols), while poorer farmers more skepticism, which may lead to an increased economical gap within rural communities if technologies are not implemented with long-term guidance. These results advocate for an interdisciplinary evaluation of agricultural technology prior to its implementation as a development tool in the field.
Collapse
Affiliation(s)
| | - Jean Riotte
- Géosciences Environnement Toulouse, Université Paul-Sabatier, IRD, CNRS, Toulouse, France
- Indo-French Cell for Water Science, Indian Institute of Science, Bangalore, Karnataka, India
| | - Norman Backhaus
- Department of Geography, University of Zurich, Zurich, Switzerland
- University Research Priority Programme (URPP) Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Muddu Sekhar
- Indo-French Cell for Water Science, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Civil Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pascal Jouquet
- Indo-French Cell for Water Science, Indian Institute of Science, Bangalore, Karnataka, India
- Institut d’écologie et des Sciences de l’environnement, IESS-Paris UMR Sorbonne Université, UPEC, CNRS, IRD, INRAe, FEST Team, Bondy, France
| | - Samuel Abiven
- Département de Géosciences, Laboratoire de Géologie, CNRS – École Normale Supérieure, PSL University, Institut Pierre Simon Laplace, Paris, France
- CEREEP-Ecotron Ile De France, ENS, CNRS, PSL University, St-Pierre-lès-Nemours, France
| |
Collapse
|
9
|
Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HMN. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113762. [PMID: 34543967 DOI: 10.1016/j.jenvman.2021.113762] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Biochar is a well-known carbon material with diversified functionalities and excellent physicochemical characteristics with high wastewater treatment potential. This review aims to summarize recent advancements in the development of biochar and biochar-based nanohybrid materials as a potential tool for the removal of harmful organic compounds such as synthetic dyes/effluents. The formation of biochar using pyrolysis of renewable feedstocks and their applications in various industries are explained hereafter. The characteristics and construction of biochar-based hybrid materials are explained in detail. Diversity of feedstocks, including municipal wastes, industrial byproducts, agricultural, and forestry residues, endows different biochar types with a wide structural variety. The production of cost-effective biochar drives the interest in manipulating biochars and induces desire functionality using nanoscale reinforcements. Various types of biochars, such as magnetic biochar, layered nanomaterial coated biochar, nanometallic oxide composites, chemically and physically functionalized biochar, have been produced. With the aid of nanomaterial, hybrid biochar exhibits a high potential to remove toxic contaminants. Depending upon biochar type, dyes/effluents can be removed via different mechanisms, including the Fenton process, photocatalytic degradation, π-π interaction, electrostatic interaction, and physical adsorption. In conclusion, desired physicochemical features, and tunable surface properties of biochar present high potential material in removing organic dyes and other effluents. The blended biochar with different materials/nanomaterials endows broader development and multi-functional opportunities for treating dyes/effluents.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
10
|
Mak-Mensah E, Sam FE, Safnat Kaito IOI, Zhao W, Zhang D, Zhou X, Wang X, Zhao X, Wang Q. Influence of tied-ridge with biochar amendment on runoff, sediment losses, and alfalfa yield in northwestern China. PeerJ 2021; 9:e11889. [PMID: 34527437 PMCID: PMC8401753 DOI: 10.7717/peerj.11889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background Loss of organic matter and mineral nutrients to soil erosion in rain-fed agriculture is a serious problem globally, especially in China’s Loess Plateau. As a result, increasing rainwater usage efficiency by tied-ridge-furrow rainwater harvesting with biochar is expected to improve agricultural productivity. Nonetheless, with limited knowledge on tied-ridge-furrow rainwater harvesting with biochar, small-scale farmers face the challenge of adoption, thus, the rationale for this study. Materials and methods A field experiment was conducted to determine the influence of open-ridging (OR) and tied-ridging (TR) with bio-degradable film on ridges and biochar in furrows on runoff, sediment losses, soil moisture, fodder yield, and water use efficiency (WUE) on sloped land, using flat planting (FP) without ridges and furrows as control, during alfalfa-growing year (2020). Results Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%) were decreased with biochar to the extent where sediment was decreased in flat planting (33%), open ridging (43%), and tied ridging (44%) as well. The mean runoff efficiency was lower in flat planting (31%), open ridging (45%), and tied ridging (50%) in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, soil temperature on ridges of TR was higher than that on OR, which was higher than FP during alfalfa growing season. Soil temperature in furrows during alfalfa growing season in biochar and no-biochar plots were in the order FP > OR > TR. Mean soil water storage for FP, OR, and TR, in biochar plots was higher than in no-biochar plots. This indicates biochar has a beneficial impact on open riding. Total annual net fodder yield (NFY) was significantly (p = 0.00) higher in treatments in the order TR > OR > FP. Tied ridging had a significant effect on actual fodder yield (AFY) in biochar plots, while open ridging significantly affected AFY in no-biochar plots. Annual total mean NFY and AFY increased by 8% and 11% in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, water use efficiency was in the order TR > OR > FP. Conclusively, water use efficiency was significantly higher (p = 0.01) in biochar plots compared to no-biochar plots. Conclusion When crop production is threatened by soil erosion and drought, mulched tied-ridge with biochar is beneficial to crop growth in rain-fed agriculture, according to this research. Smallholder farmers should be trained on applying this technique for water-saving to mitigate runoff, soil erosion, sediment losses, and improve food security in semiarid areas.
Collapse
Affiliation(s)
- Erastus Mak-Mensah
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Faisal Eudes Sam
- College of Food Science and Engineering, Gansu Agricultural University, Gansu Key Laboratory of Viticulture and Enology, Lanzhou, Gansu Province, China
| | | | - Wucheng Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Dengkui Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xujiao Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiaoyun Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiaole Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Qi Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
11
|
Ahmad Z, Mosa A, Zhan L, Gao B. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review. CHEMOSPHERE 2021; 278:130378. [PMID: 33838428 DOI: 10.1016/j.chemosphere.2021.130378] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Biochar, over the last two decades, has become the focal point of agro-environmental research given its unique functionality, cost-effectiveness and recyclability potentials. It has been studied intensively as an efficient scavenger for the decontamination of several organic and inorganic pollutants. However, the ability of biochar to modulate nitrogen (N) dynamics in soil and terrestrial ecosystems remains controversial. This work deliberates on the premise that biochar functionality enables maximizing N use efficiency by reducing the potential losses induced by volatilization/emission and runoff/leaching as well as stimulating available N inputs derived from symbiotic and nonsymbiotic biological nitrogen fixation (BNF) and N mineralization/retention. For this purpose, we carried out a critical review on different intriguing dimensions surrounding the potentiality of biochar to modulate the complicated reactions of soil N cycle with emphasis on its pros and cons. Previous studies in the literature have shown contradictory results with a noticeable significant effect of biochar toward stimulating available N inputs and reducing its losses under short-term laboratory experimentations. However, long-term field investigations have indicated minimal or negative effects in this regard. Furthermore, some of the experimentations lack appropriate controls or fail to account for inputs or losses associated with biochar particles. It is thus of great importance to contextualise lab-scale experimentations based on real field data to provide a holistic approach for understanding the complicated reactions responsible for modulating N cycle in the charosphere. Additionally, biochar functionalization should be highlighted in the foreseeable research to develop fit-for-purpose forms tailored in agro-environmental applications.
Collapse
Affiliation(s)
- Zahoor Ahmad
- Department of Soil and Climate Sciences, Faculty of Agricultural Sciences, The University of Haripur, KPK, Pakistan.
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| |
Collapse
|
12
|
Mounissamy VC, Parihar RS, Dwivedi AK, Saha JK, Rajendiran S, Lakaria BL, Patra AK. Effects of Co-composting of Municipal Solid Waste and Pigeon Pea Biochar on Heavy Metal Mobility in Soil and Translocation to Leafy Vegetable Spinach. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:536-544. [PMID: 33506325 DOI: 10.1007/s00128-020-03096-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
An experiment was conducted to study the effects of co-composted products of municipal solid waste (MSW) and pigeon pea biochar (PPB) on heavy metal mobility in soil and its uptake by spinach. Application of municipal solid waste biochar co-compost (MSWBC) significantly (p ≤ 0.05) reduced the heavy metal content in spinach leaves and roots compared to municipal solid waste compost (MSWC) amended soil. The percent decrease in spinach leaf following the application of MSWBC-10% PPB compared to MSWC was 20.62%, 28.95%, 36.02%, 41.88%, 41.50%, and 41.23% for Cu, Cd, Pb, Cr, Ni, and Zn, respectively. The dry matter yield of spinach and soil organic carbon (SOC) content in soil amended with MSWBC-10% PPB was significantly increased by 32.75% and 47.73%; and 17.62% and 27.45% relative to control and MSWC amended soil. The study concludes that co-composted product, MSWBC, stabilized heavy metals in MSW, reduced their uptake by spinach and thus making it a viable option for safe disposal of MSW.
Collapse
Affiliation(s)
| | | | - Anil Kumar Dwivedi
- Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh, 482004, India
| | - Jayanta Kumar Saha
- ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal, Madhya Pradesh, 462 038, India
| | - Selladurai Rajendiran
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka, 560 089, India
| | - Brij Lal Lakaria
- ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal, Madhya Pradesh, 462 038, India
| | - Ashok Kumar Patra
- ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal, Madhya Pradesh, 462 038, India
| |
Collapse
|
13
|
Natalio F, Corrales TP, Feldman Y, Lew B, Graber ER. Sustainable Lightweight Biochar-Based Composites with Electromagnetic Shielding Properties. ACS OMEGA 2020; 5:32490-32497. [PMID: 33376886 PMCID: PMC7758945 DOI: 10.1021/acsomega.0c04639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Global warming has prompted a search for new materials that capture and sink carbon dioxide (CO2). Biochar is a derivative of biomass pyrolysis and a carbon sink mainly used to improve crop production. This work explores the underlying mechanism behind biochar's electric conductivity using a wide range of feedstocks and its combination with a binder (gypsum). This gypsum-biochar composite exhibits decreased density and flexural moduli with increasing biochar content, particularly after 20% w/w. Gypsum-biochar drywall-like composite prototypes display increasing shielding efficiency mostly in the microwave range as a function of biochar content, differing from other conventional metal (copper) and synthetic carbon-based materials. This narrow range of electromagnetic interference (EMI) shielding is attributed to natural alignment (isotropy) of the carbon ultrastructure (e.g., lignin) induced by heat and intrinsic interconnectivity in addition to traditional phenomena such as dissipation of surface currents and polarization in the electric field. These biomass-derived products could be used as sustainable lightweight materials in a future bio-based economy.
Collapse
Affiliation(s)
- Filipe Natalio
- Department
of Plant & Environmental Sciences, Weizmann
Institute of Science, Rehovot 7610001, Israel
- Kimmel
Center for Archeological Science, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Tomas P. Corrales
- Departamento
de Física, Universidad Técnica
Federico Santa María, Casilla 110-V, Valparaíso, Chile
| | - Yishay Feldman
- Chemical
Services Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beni Lew
- Institute
of Agricultural Engineering, The Volcani
Center, Agricultural Research Organization, P.O. Box 15159, Rishon LeTzion 7528809, Israel
| | - Ellen R. Graber
- Institute
of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, P.O. Box 15159, Rishon LeTzion 7528809, Israel
| |
Collapse
|
14
|
Wang D, Jiang P, Zhang H, Yuan W. Biochar production and applications in agro and forestry systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137775. [PMID: 32213399 DOI: 10.1016/j.scitotenv.2020.137775] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
Biochar is a product of biomass thermochemical conversion. Its yield and quality vary significantly with the production technology and process parameters, which also affect its performance in agro and forestry systems. In this review, biochar production technologies including slow pyrolysis, fast pyrolysis, gasification, and torrefaction were compared. The yield of biochar was found to decrease with faster heating rate or more oxygen available. The benefits of biochar application to agro and forestry systems were discussed. Improvements in soil health, plant growth, carbon sequestration, and greenhouse gas mitigation are apparent in many cases, but opposite results do exist, indicating that the beneficial aspect of biochar are limited to particular conditions such as the type of biochar used, the rate of application, soil type, climate, and crop species. Limitations of current studies and future research needed on biochar are also discussed. Specifically, the relationships among biochar production technologies, biochar properties, and biochar performance in agro and forestry systems must be better understood.
Collapse
Affiliation(s)
- Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian, China
| | - Peikun Jiang
- College of Environment and Resources, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- College of Environment and Resources, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang, China
| | - Wenqiao Yuan
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Rafique M, Ortas I, Ahmed IAM, Rizwan M, Afridi MS, Sultan T, Chaudhary HJ. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:672-680. [PMID: 31279144 DOI: 10.1016/j.jenvman.2019.06.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 05/13/2023]
Abstract
Non-renewable phosphorus (P) resources are intensively declining and recyclable P is high in demand for agricultural sector. Biochar as a renewable source of P and its physicochemical properties may improve the nutrients condition in the soil for plant availability. This study was designed to evaluate the interaction of biochar with soil microbes in differently textured and P-limited soils for P availability, root colonization and nutrient uptake by plants. Onion plants were grown in two differently textured soils with two types of biochar, with or without P application, three microbially inoculated treatments and uninoculated control. Plants were grown for 65 days and root-shoot biomass, nutrient concentration and mycorrhizal root colonization were analyzed. The WinRhizo was used to evaluate root attributes such as length, surface area and volume of roots. Biochar addition enhanced the nutrient uptake and plant biomass in the presence of P and microbial inoculants. Root colonization was notably increased in biochar + mycorrhizal inoculated plants. Biochar and soil type interactions may develop a unique behavior of nutrient uptake, root colonization, plant growth and root attributes. Biochar in combination with microbial inoculants could be considered a potentially renewable source of P fertilizer.
Collapse
Affiliation(s)
- Mazhar Rafique
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Soil Science and Plant Nutrition, Cukurova University, Adana, 1150, Turkey
| | - Ibrahim Ortas
- Department of Soil Science and Plant Nutrition, Cukurova University, Adana, 1150, Turkey
| | - Ibrahim A M Ahmed
- Department of Soil Science and Plant Nutrition, Cukurova University, Adana, 1150, Turkey
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | | | - Tariq Sultan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Hassan Javed Chaudhary
- Department of Soil Science and Plant Nutrition, Cukurova University, Adana, 1150, Turkey.
| |
Collapse
|
16
|
Wang Y, Zhong B, Shafi M, Ma J, Guo J, Wu J, Ye Z, Liu D, Jin H. Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. CHEMOSPHERE 2019; 219:510-516. [PMID: 30553211 DOI: 10.1016/j.chemosphere.2018.11.159] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 05/06/2023]
Abstract
Pot experiment was conducted to investigate the effects of wood biochar (5%), bamboo biochar (5%), rice straw biochar (5%) and Chinese walnut shell biochar (5%) on growth, accumulation of heavy metals in moso bamboo, soil physical properties, and solubility of heavy metals in soil. The results revealed that dry weight of moso bamboo was significantly increased in treatments of wood biochar (5%), rice straw biochar (5%) and Chinese walnut shell biochar (5%) except bamboo biochar (5%). Application of straw biochar (5%) was most effective in enhancing plants biomass, with increase of 157%, 113% and 111% in leaves, roots and stems of moso bamboo. All treatments of biochar have significantly improved soil electrical conductivity with maximum increase of 360% compared to CK. In case of heavy metals accumulation, application of 5% bamboo biochar, straw biochar and Chinese walnut shell biochar has reduced Cu uptake in roots by 15%, 35% and 26%, respectively. The biochars have significantly reduced solubility of soil heavy metals with maximum reduction of 58.91 mg kg-1 and 10.59 mg kg-1 of Cu and Pb with application of rice straw biochar. It is concluded that dry weight of moso bamboo was significantly enhanced by all treatments of biochar except bamboo biochar.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, PR China
| | - Bin Zhong
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, PR China
| | - Mohammad Shafi
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
| | - Jiawei Ma
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, PR China
| | - Jia Guo
- Zhejiang Chengbang Landscape Co., Ltd, 311300, PR China
| | - Jiasen Wu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, PR China
| | - Zhengqian Ye
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, PR China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Hexian Jin
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, PR China
| |
Collapse
|
17
|
Strachel R, Wyszkowska J, Baćmaga M. An Evaluation of the Effectiveness of Sorbents in the Remediation of Soil Contaminated with Zinc. WATER, AIR, AND SOIL POLLUTION 2018; 229:235. [PMID: 30046198 PMCID: PMC6028854 DOI: 10.1007/s11270-018-3882-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/20/2018] [Indexed: 05/26/2023]
Abstract
Zinc exerts negative effects on soil and contributing to the degradation of soil ecosystems. New solutions for restoring healthy soil activity are therefore needed. The aim of this study was to evaluate the effectiveness of sorbents in the biological remediation of soil contaminated with zinc. A pot experiment was conducted on loamy sand. The tested plant was maize (Zea mays). Soil was contaminated with zinc chloride doses of 0, 100, 300, and 900 mg Zn2+ kg-1 DM soil (dry matter of soil). Alginate, biochar, sepiolite, calcined halloysite, and a molecular sieve were added to soil in amounts corresponding to 2.5% of soil weight to minimize zinc's potentially toxic effects on the biological properties of soil. The application of zinc stimulated the proliferation of all analyzed microbial groups. Zinc exerted negative effects on the ecophysiological diversity (EP) of fungi and the activity of dehydrogenases, catalase, and acid phosphatase. The applied sorbents modified the microbiological and biochemical properties of soil. In zinc-contaminated soil, alginate, biochar, and molecular sieve increased the counts of organotrophic, oligotrophic, and actinobacteria. Sorbents were not highly effective in promoting fungal growth and exerted varied effects on the activity of soil enzymes. The molecular sieve stimulated the activity of all soil enzymes, excluding β-glucosidase. Alginate minimized the negative influence of zinc on dehydrogenases and acid phosphatase, and biochar-on catalase, sepiolite, and calcined halloysite -on acid phosphatase. By modifying the biological properties of soil, the tested sorbents contributed to an increase in maize yields and a decrease in zinc uptake by maize plants.
Collapse
Affiliation(s)
- Rafał Strachel
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Małgorzata Baćmaga
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
18
|
Mounissamy VC, Kundu S, Selladurai R, Saha JK, Biswas AK, Adhikari T, Patra AK. Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil Under Copper Stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:625-632. [PMID: 28889245 DOI: 10.1007/s00128-017-2173-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
An incubation study was undertaken to study microbial resilience capacity of acid soil amended with farmyard manure (FYM), charcoal and lime under copper (Cu) perturbation. Copper stress significantly reduced enzymatic activities and microbial biomass carbon (MBC) in soil. Percent reduction in microbial activity of soil due to Cu stress was 74.7% in dehydrogenase activity, 59.9% in MBC, 48.2% in alkaline phosphatase activity and 15.1% in acid phosphatase activity. Soil treated with FYM + charcoal showed highest resistance index for enzymatic activities and MBC. Similarly, the highest resilience index for acid phosphatase activity was observed in soil amended with FYM (0.40), whereas FYM + charcoal-treated soil showed the highest resilience indices for alkaline, dehydrogenase activity and MBC: 0.50, 0.22 and 0.25, respectively. This investigation showed that FYM and charcoal application, either alone or in combination, proved to be better than lime with respect to microbial functional resistance and resilience of acid soil under Cu perturbation.
Collapse
Affiliation(s)
| | - Samaresh Kundu
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462038, India
| | - Rajendiran Selladurai
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462038, India
| | - Jayanta Kumar Saha
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462038, India
| | - Ashish Kumar Biswas
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462038, India
| | - Tapan Adhikari
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462038, India
| | - Ashok Kumar Patra
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462038, India
| |
Collapse
|
19
|
Chen P, Li J, Wang HY, Zheng RL, Sun GX. Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21739-21749. [PMID: 28766144 DOI: 10.1007/s11356-017-9816-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/24/2017] [Indexed: 05/27/2023]
Abstract
Arsenic (As) removal through microbially driven biovolatilization can be explored as a potential method for As bioremediation. However, its effectiveness needs to be improved. Biostimulation with organic matter amendment and bioaugmentation with the inoculation of genetic engineered bacteria could be potential strategies for As removal and site remediation. Here, the experiments were conducted to evaluate the impacts of rice straw and biochar amendment, inoculation of genetic engineered Pseudomonas putida KT2440 (GE P. putida) with high As volatilization activity, on microbial mediated As volatilization and removal from three different arseniferous soils. In general, the addition of rice straw (5%) significantly enhanced As methylation and volatilization in comparison with corresponding non-amended soils. Biochar amendments and inoculation of the GE P. putida increased As methylation and volatilization, respectively, but less than that of rice straw addition. The effectiveness of As volatilizations are quite different in the various paddy soils. The combined amendments of rice straw and GE P. putida exhibited the highest As removal efficiency (483.2 μg/kg/year) in Dayu soil, with 1.2% volatilization of the total As annually. The highest water-soluble As concentration (0.73 mg/kg) in this soil could be responsible for highest As volatilization besides the rice straw and bacteria in this soil.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Hong-Yan Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Rui-Lun Zheng
- Research and Development Center for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| |
Collapse
|
20
|
Biochar from "Kon Tiki" flame curtain and other kilns: Effects of nutrient enrichment and kiln type on crop yield and soil chemistry. PLoS One 2017; 12:e0176378. [PMID: 28448621 PMCID: PMC5407783 DOI: 10.1371/journal.pone.0176378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/10/2017] [Indexed: 11/19/2022] Open
Abstract
Biochar application to soils has been investigated as a means of improving soil fertility and mitigating climate change through soil carbon sequestration. In the present work, the invasive shrub "Eupatorium adenophorum" was utilized as a sustainable feedstock for making biochar under different pyrolysis conditions in Nepal. Biochar was produced using several different types of kilns; four sub types of flame curtain kilns (deep-cone metal kiln, steel shielded soil pit, conical soil pit and steel small cone), brick-made traditional kiln, traditional earth-mound kiln and top lift up draft (TLUD). The resultant biochars showed consistent pH (9.1 ± 0.3), cation exchange capacities (133 ± 37 cmolc kg-1), organic carbon contents (73.9 ± 6.4%) and surface areas (35 to 215 m2/g) for all kiln types. A pot trial with maize was carried out to investigate the effect on maize biomass production of the biochars made with various kilns, applied at 1% and 4% dosages. Biochars were either pretreated with hot or cold mineral nutrient enrichment (mixing with a nutrient solution before or after cooling down, respectively), or added separately from the same nutrient dosages to the soil. Significantly higher CEC (P< 0.05), lower Al/Ca ratios (P< 0.05), and high OC% (P<0.001) were observed for both dosages of biochar as compared to non-amended control soils. Importantly, the study showed that biochar made by flame curtain kilns resulted in the same agronomic effect as biochar made by the other kilns (P > 0.05). At a dosage of 1% biochar, the hot nutrient-enriched biochar led to significant increases of 153% in above ground biomass production compared to cold nutrient-enriched biochar and 209% compared to biochar added separately from the nutrients. Liquid nutrient enhancement of biochar thus improved fertilizer effectiveness compared to separate application of biochar and fertilizer.
Collapse
|
21
|
Rasul F, Ahmad A, Arif M, Mian IA, Ali K, Qayyum MF, Hussain Q, Aon M, Latif S, Sakrabani R, Saghir M, Pan G, Shackley S. Biochar for Agriculture in Pakistan. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-48006-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
22
|
Xu X, Wu Z, Dong Y, Zhou Z, Xiong Z. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system. Sci Rep 2016; 6:38688. [PMID: 27929052 PMCID: PMC5144129 DOI: 10.1038/srep38688] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/10/2016] [Indexed: 11/12/2022] Open
Abstract
The CH4 emissions from soil were influenced by the changeable CH4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH4 production sites during the rice-growing seasons. This layer acted as the source of CH4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha−1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH4 concentrations and diffusive effluxes induced by N in paddy fields.
Collapse
Affiliation(s)
- Xin Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubing Dong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqiang Zhou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Yavari S, Malakahmad A, Sapari NB. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17928-17940. [PMID: 27255313 DOI: 10.1007/s11356-016-6943-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Biochar is the bio-solid material produced by pyrolysis. The biochar properties are controlled by feedstock and pyrolysis variables. In this study, the impacts of these production variables on biochar yield and physicochemical properties including pH, cation exchange capacity (CEC), total organic carbon (TOC) content, surface area, and pore volume and size were investigated. Rice husk (RH) and oil palm empty fruit bunches (EFB) were used as biomass. The biochars were produced at temperature range of 300 to 700 °C, heating rate of 3 to 10 °C/min and retention time of 1 to 3 h. The pyrolysis conditions were optimized using response surface methodology (RSM) technique to maximize the values of the responses. Analysis of variance (ANOVA) of the results demonstrated that the data fitted well to the linear and quadratic equations. Temperature was found to be the most effective parameter on the responses followed by retention time and heating rate, sequentially. CEC, TOC, surface area, and pore characteristics were evaluated as biochar properties determining their sorption potential. The optimum conditions for the maximum values of the properties were temperatures of 700 and 493.44 °C and time of 3 and 1 h for RH and EFB biochars, respectively. Heating rate at 3 °C/min was found to be the best rate for both biochars. The structure of EFB biomass was more sensitive to heating than rice husk. The biomass type and the production variables were demonstrated as the direct effective factors on biochar yield and physicochemical properties.
Collapse
Affiliation(s)
- Saba Yavari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri, Iskandar, Malaysia.
| | - Amirhossein Malakahmad
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri, Iskandar, Malaysia
| | - Nasiman B Sapari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri, Iskandar, Malaysia
| |
Collapse
|
24
|
Adejumo SA, Owolabi MO, Odesola IF. Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajar2015.9895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Conte P, Schmidt HP, Cimò G. Research and Application of Biochar in Europe. SSSA SPECIAL PUBLICATIONS 2015. [DOI: 10.2136/sssaspecpub63.2014.0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Pellegrino Conte
- Dipartimento di Scienze Agrarie e Forestali; Università degli Studi di Palermo, v.le delle Scienze ed.4; 90128-Palermo Italy
| | - Hans-Peter Schmidt
- Ithaka Institute for Carbon Intelligence; Ancienne Eglise 9, 1974-Arbaz Switzerland
| | - Giulia Cimò
- Dipartimento di Scienze Agrarie e Forestali; Università degli Studi di Palermo, v.le delle Scienze ed.4; 90128-Palermo Italy
| |
Collapse
|
26
|
Wang TT, Li YS, Jiang AC, Lu MX, Liu XJ, Yu XY. Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:401-406. [PMID: 25904088 DOI: 10.1007/s00128-015-1541-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
The sorption behavior of chlorantraniliprole (CAP) by biochar and effect of soil extracts on sorptivity in soil-biochar systems were examined. The results showed that biochar amendment could enhance the sorption of CAP in soils. The values of K F increased significantly when the soils were amended with 0.5 % BC850, which were from 1.54 to 196.5. The indigenous sorptivity of biochar was suppressed after it was applied to the soils. The degree of biochar sorptivity attenuation in different soil-biochar systems varied with the properties of soil water soluble matters. Sorption of CAP by biochar from the five soil extracts was found to be lower than that from a CaCl2 solution. The calculated K d values at C w of 0.01 mg kg(-1) for biochar sorption of CAP from CaCl2 solution were 21.4-26.6 times of that from soil extracts. Aging of biochar in soil extract reduced CAP sorption by up to 85 %.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Pesticide Biology and Ecology Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 20014, China
| | | | | | | | | | | |
Collapse
|
27
|
Yavari S, Malakahmad A, Sapari NB. Biochar efficiency in pesticides sorption as a function of production variables--a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13824-41. [PMID: 26250816 DOI: 10.1007/s11356-015-5114-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/22/2015] [Indexed: 05/27/2023]
Abstract
Biochar is a stabilized, carbon-rich by-product derived from pyrolysis of biomass. Recently, biochar has received extensive attentions because of its multi-functionality for agricultural and environmental applications. Biochar can contribute to sequestration of atmosphere carbon, improvement of soils quality, and mitigation of environmental contaminations. The capability of biochar for specific application is determined by its properties which are predominantly controlled by source material and pyrolysis route variables. The biochar sorption potential is a function of its surface area, pores volume, ash contents, and functional groups. The impacts of each production factors on these characteristics of biochar need to be well-understood to design efficient biochars for pesticides removal. The effects of biomass type on biochar sorptive properties are determined by relative amounts of its lingo-cellulosic compounds, minerals content, particles size, and structure. The highest treatment temperature is the most effective pyrolysis factor in the determination of biochar sorption behavior. The expansion of micro-porosity and surface area and also increase of biochar organic carbon content and hydrophobicity mostly happen by pyrolysis peak temperature rise. These changes make biochar suitable for immobilization of organic contaminants. Heating rate, gas pressure, and reaction retention time after the pyrolysis temperatures are sequentially important pyrolysis variables effective on biochar sorptive properties. This review compiles the available knowledge about the impacts of production variables on biochars sorptive properties and discusses the aging process as the main factor in post-pyrolysis alterations of biochars sorption capacity. The drawbacks of biochar application in the environment are summarized as well in the last section.
Collapse
Affiliation(s)
- Saba Yavari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Darul Ridzuan, Malaysia,
| | | | | |
Collapse
|
28
|
Foereid B. Biochar in Nutrient Recycling—The Effect and Its Use in Wastewater Treatment. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojss.2015.52004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Liu X, Zhang Y, Li Z, Feng R, Zhang Y. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. BIORESOURCE TECHNOLOGY 2014; 170:76-82. [PMID: 25125195 DOI: 10.1016/j.biortech.2014.07.077] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
In this study, thermal and physicochemical characterization results of corncob (CC) and its derived biochars were analyzed and differentiated from sawdust (SD) and cornstalk (CS). The pyrolysis temperature shows the largest effect on the yield of biochar produced compare with residing time, heating rate, and feedstock particle size. The CC-derived biochars produced at temperatures ranging from 300 to 600°C were analyzed. The CC was thermochemically altered to a stable biochar when the pyrolysis temperature was set to over 500°C. To deduce the reaction mechanism of the CC during the major thermal decomposition stage, 16 mechanisms in solid-state reactions were applied. The reaction order and nucleation mechanisms described the thermal decomposition of the CC. By using the best-fitted mechanisms, the kinetic parameters were calculated. The weight active energy of the CC was 122.42kJ/mol, which was the lowest value compared to those of CS and SD.
Collapse
Affiliation(s)
- Xuan Liu
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China
| | - Yang Zhang
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China
| | - Zifu Li
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China.
| | - Rui Feng
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China
| | - Yaozhong Zhang
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China
| |
Collapse
|
30
|
Liu X, Li Z, Zhang Y, Feng R, Mahmood IB. Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:1619-1626. [PMID: 24961565 DOI: 10.1016/j.wasman.2014.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Biochars have received increasing attention in recent years because of their soil improvement potential, contaminant immobilization properties, and ability to function as carbon sinks. This study adopted a pyrolytic process to prepare a series of biochars from dried human manure at varying temperatures. The thermal analysis of human manure and physicochemical properties of the resulting biochars illustrated that human manure can be a favorable feedstock for biochar production. In particular, the porous texture and nutrient-rich properties of biochars produced from human manure and may significantly enhance soil fertility when used as used soil additives. A temperature range of 500-600°C was optimal for human manure biochar production. Significantly, when the moisture content of the feedstock is lower than 57%, the system could not only harvest manure-derived biochar but also have a net energy output, which can be provide heat source for nearby users.
Collapse
Affiliation(s)
- Xuan Liu
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China
| | - Zifu Li
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China.
| | - Yaozhong Zhang
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China
| | - Rui Feng
- University of Science and Technology Beijing, Xueyuan Road 30, Beijing 100083, China
| | | |
Collapse
|
31
|
Scharenbroch BC, Meza EN, Catania M, Fite K. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:1372-1385. [PMID: 24216415 DOI: 10.2134/jeq2013.04.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Urban soil quality is often degraded and a challenging substrate for trees. This study was conducted to assess the impacts of biochar (BC), biosolids (BS), wood chips (WC), compost (COM), aerated compost tea (ACT), and a nitrogen plus potassium fertilizer (NK) for improving three typical urban soils and tree sapling growth. Across the three soil types, the most significant changes in soil properties were observed with BS and BC. Biosolids decreased soil pH and increased available N, N mineralization, and microbial respiration. Biochar increased total organic C. Increases in microbial respiration were also observed with NK, COM, and WC in only the sand soil. Leachate concentrations of dissolved organic C were greater with BS and COM, but nitrate in leachates did not differ among the treatments. The greatest and most significant increases in and growth were found with BS and BC. Tree growth was modeled from plant-available N and microbial respiration. The N content in the treatments appeared to be a strong determinant of tree growth for all treatments except BC. Nitrogen fertilizer, COM, and WC are the most common urban soil amendments and mulches in use today. This study provides evidence that BS and BC are acceptable, and possibly preferred, alternatives for improving urban soil quality and tree growth.
Collapse
|
32
|
Ali MA, Hoque MA, Kim PJ. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes. AMBIO 2013; 42:357-68. [PMID: 23015326 PMCID: PMC3606698 DOI: 10.1007/s13280-012-0349-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/30/2012] [Accepted: 09/03/2012] [Indexed: 05/13/2023]
Abstract
A field experiment was conducted in Bangladesh Agricultural University Farm to investigate the mitigating effects of soil amendments such as calcium carbide, calcium silicate, phosphogypsum, and biochar with urea fertilizer on global warming potentials (GWPs) of methane (CH4) and nitrous oxide (N2O) gases during rice cultivation under continuous and intermittent irrigations. Among the amendments phosphogypsum and silicate fertilizer, being potential source of electron acceptors, decreased maximum level of seasonal CH4 flux by 25-27 % and 32-38 % in continuous and intermittent irrigations, respectively. Biochar and calcium carbide amendments, acting as nitrification inhibitors, decreased N2O emissions by 36-40 % and 26-30 % under continuous and intermittent irrigations, respectively. The total GWP of CH4 and N2O gases were decreased by 7-27 % and 6-34 % with calcium carbide, phosphogypsum, and silicate fertilizer amendments under continuous and intermittent irrigations, respectively. However, biochar amendments increased overall GWP of CH4 and N2O gases.
Collapse
Affiliation(s)
- Muhammad Aslam Ali
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | | | | |
Collapse
|
33
|
Ventura M, Sorrenti G, Panzacchi P, George E, Tonon G. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:76-82. [PMID: 23673741 DOI: 10.2134/jeq2012.0250] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrogen leaching in croplands is a worldwide problem with implications both on human health and on the environment. Efforts should be taken to increase nutrient use efficiency and minimize N losses from terrestrial to water ecosystems. Soil-applied biochar has been reported to increase soil fertility and decrease nutrient leaching in tropical soils and under laboratory conditions. Our objective was to evaluate the effect of biochar addition on short-term N leaching from A soil horizon in a mature apple orchard growing on subalkaline soils located in the Po Valley (Italy). In spring 2009, 10 Mg of biochar per hectare was incorporated into the surface 20-cm soil layer by soil plowing. Cumulative nitrate (NO) and ammonium (NH) leaching was measured in treated and control plots 4 mo after the addition of biochar and the following year by using ion-exchange resin lysimeters installed below the plowed soil layer. Cumulative NO leaching was not affected by biochar after 4 mo, whereas in the following year it was significantly ( < 0.05) reduced by 75% over the control (from 5.5 to 1.4 kg ha). Conversely, NH leaching was very low and unaffected by soil biochar treatment. The present study shows that soil biochar addition can significantly decrease short-term nitrate leaching from the surface layer of a subalkaline soil under temperate climatic conditions.
Collapse
|
34
|
Prost K, Borchard N, Siemens J, Kautz T, Séquaris JM, Möller A, Amelung W. Biochar affected by composting with farmyard manure. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:164-72. [PMID: 23673751 DOI: 10.2134/jeq2012.0064] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g, and that of charcoal increased from 0.03 to 0.52 g g. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg; charcoal: from 0.03 to 3.52 g kg), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg; charcoal: from 3.2 to 377.2 mg kg), plant-available phosphorus (gasification coke: from 351 to 635 mg kg; charcoal: from 44 to 190 mg kg), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg; charcoal: from 0.6 to 8.5 g kg). The potential CEC increased from 22.4 to 88.6 mmol kg for the gasification coke and from 20.8 to 39.0 mmol kg for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars.
Collapse
|
35
|
|
36
|
McHenry MP. Carbon-based stock feed additives: a research methodology that explores ecologically delivered C biosequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:183-187. [PMID: 20355029 DOI: 10.1002/jsfa.3818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
There is considerable interest in reliable and practical methods to sequester carbon (C) into agricultural soils to both reduce atmospheric greenhouse gas concentrations and improve conventional productivity. This article outlines a research methodology to refine the efficacy and economics of using long-lived C species (biochars) as stock feed additives, produced from farm waste biomass, for ecologically delivered soil biosequestration, while generating renewable bioenergy. This article also draws attention to potential parallel outputs including annual feed use efficiency, fodder species expansion, soil nutrient retention, aquatic habitat protection, and forestry revegetation, using nitrogen-fixing perennial fodder plant species. A methodology to generate parallel results including standing fodder tree C sequestration, optimised production of Acacia spp. biochar, animal growth on high-tannin fodder with biochar feed additives, soil nutrient and stable C fractions, and economics of Acacia spp. bioenergy production. This form of research is contextually dependent on the regional agricultural production system, legislation, and surrounding ecosystem. Therefore, this article suggests the use of a scenario approach to include regionally specific levels of biochar integration with respect to the local prices for C, fossil fuels, meat and livestock, fertilisers, fodder, feed additives, water, renewable energy, revegetation and capital.
Collapse
Affiliation(s)
- Mark P McHenry
- School of Engineering and Energy, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
37
|
Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystems 2008. [DOI: 10.1007/s10021-008-9154-z] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|