1
|
Smith J, Solomons R, Volmer L, Lotz JW, Anthony J, Toorn RV. Intrapartum Basal Ganglia-Thalamic Pattern Injury. Am J Perinatol 2025; 42:134-138. [PMID: 35709721 DOI: 10.1055/a-1877-6569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Johan Smith
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lindi Volmer
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jan W Lotz
- Division of Radiodiagnosis, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - John Anthony
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
2
|
Lear CA, Dhillon SK, Nakao M, Lear BA, Georgieva A, Ugwumadu A, Stone PR, Bennet L, Gunn AJ. The peripheral chemoreflex and fetal defenses against intrapartum hypoxic-ischemic brain injury at term gestation. Semin Fetal Neonatal Med 2024; 29:101543. [PMID: 39455374 DOI: 10.1016/j.siny.2024.101543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Fetal hypoxemia is ubiquitous during labor and, when severe, is associated with perinatal death and long-term neurodevelopmental disability. Adverse outcomes are highly associated with barriers to care, such that developing countries have a disproportionate burden of perinatal injury. The prevalence of hypoxemia and its link to injury can be obscure, simply because the healthy fetus has robust coordinated defense mechanisms, spearheaded by the peripheral chemoreflex, such that hypoxemia only becomes apparent in the minority of cases associated with stillbirth, severe metabolic acidemia or adverse neurodevelopmental outcomes. This represents only the extreme end of the spectrum, when defense mechanisms have failed due to severe/prolonged hypoxemia, or the fetal defenses are compromised by additional risk factors. Understanding the fetal defenses to hypoxemia and when the fetus begins to decompensate is crucial to understanding perinatal health and disease, by linking antenatal health, intrapartum events, the neonatal trajectory and ultimately life-long neurodevelopmental health.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand.
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Masahiro Nakao
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
3
|
White TA, Miller SL, Sutherland AE, Allison BJ, Camm EJ. Perinatal compromise affects development, form, and function of the hippocampus part two; preclinical studies. Pediatr Res 2024; 95:1709-1719. [PMID: 38519795 PMCID: PMC11245392 DOI: 10.1038/s41390-024-03144-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
The hippocampus is a vital brain structure deep in the medial temporal lobe that mediates a range of functions encompassing emotional regulation, learning, memory, and cognition. Hippocampal development is exquisitely sensitive to perturbations and adverse conditions during pregnancy and at birth, including preterm birth, fetal growth restriction (FGR), acute hypoxic-ischaemic encephalopathy (HIE), and intrauterine inflammation. Disruptions to hippocampal development due to these conditions can have long-lasting functional impacts. Here, we discuss a range of preclinical models of prematurity and FGR and conditions that induce hypoxia and inflammation, which have been critical in elucidating the underlying mechanisms and cellular and subcellular structures implicated in hippocampal dysfunction. Finally, we discuss potential therapeutic targets to reduce the burden of these perinatal insults on the developing hippocampus. IMPACT: The review explores the preclinical literature examining the association between pregnancy and birth complications, and hippocampal form and function. The developmental processes and cellular mechanisms that are disrupted within the hippocampus following perinatal compromise are described, and potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Magawa S, Maki S, Nii M, Yamaguchi M, Tamaishi Y, Enomoto N, Takakura S, Toriyabe K, Kondo E, Ikeda T. Evaluation of fetal acidemia during delivery using the conventional 5-tier classification and Rainbow systems. PLoS One 2023; 18:e0287535. [PMID: 37352197 PMCID: PMC10289380 DOI: 10.1371/journal.pone.0287535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
The association between prepartum time-series fetal heart rate pattern changes and cord blood gas data at delivery was examined using the conventional 5-tier classification and the Rainbow system for 229 female patients who delivered vaginally. They were classified into three groups based on the results of umbilical cord blood gas analysis at delivery. The fetal heart rate pattern classifications were based on analysis of measurement taken at 10-min intervals, beginning at 120 min pre-delivery. The relationship between fetal heart rate pattern classification and cord blood pH at delivery changed over time. The 5-tier classification at each interval increased before delivery in the Mild and Severe groups compared with the Normal group. No significant differences were observed between acidemia groups. The Rainbow classification showed a significant differences between the acidemia groups at each interval, particularly during the prepartum period. A relationship between classification and outcome was evident before delivery for both the 5-tier classification and Rainbow system.
Collapse
Affiliation(s)
- Shoichi Magawa
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Shintaro Maki
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Masafumi Nii
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Mizuki Yamaguchi
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Yuya Tamaishi
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Naosuke Enomoto
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Sho Takakura
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Kuniaki Toriyabe
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Mie, Japan
| |
Collapse
|
5
|
Chandraharan E, Ghi T, Fieni S, Jia YJ. Optimizing the management of acute, prolonged decelerations and fetal bradycardia based on the understanding of fetal pathophysiology. Am J Obstet Gynecol 2023; 228:645-656. [PMID: 37270260 DOI: 10.1016/j.ajog.2022.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/05/2023]
Abstract
Any acute and profound reduction in fetal oxygenation increases the risk of anaerobic metabolism in the fetal myocardium and, hence, the risk of lactic acidosis. On the contrary, in a gradually evolving hypoxic stress, there is sufficient time to mount a catecholamine-mediated increase in the fetal heart rate to increase the cardiac output and redistribute oxygenated blood to maintain an aerobic metabolism in the fetal central organs. When the hypoxic stress is sudden, profound, and sustained, it is not possible to continue to maintain central organ perfusion by peripheral vasoconstriction and centralization. In case of acute deprivation of oxygen, the immediate chemoreflex response via the vagus nerve helps reduce fetal myocardial workload by a sudden drop of the baseline fetal heart rate. If this drop in the fetal heart rate continues for >2 minutes (American College of Obstetricians and Gynecologists' guideline) or 3 minutes (National Institute for Health and Care Excellence or physiological guideline), it is termed a prolonged deceleration, which occurs because of myocardial hypoxia, after the initial chemoreflex. The revised International Federation of Gynecology and Obstetrics guideline (2015) considers the prolonged deceleration to be a "pathologic" feature after 5 minutes. Acute intrapartum accidents (placental abruption, umbilical cord prolapse, and uterine rupture) should be excluded immediately, and if they are present, an urgent birth should be accomplished. If a reversible cause is found (maternal hypotension, uterine hypertonus or hyperstimulation, and sustained umbilical cord compression), immediate conservative measures (also called intrauterine fetal resuscitation) should be undertaken to reverse the underlying cause. In reversible causes of acute hypoxia, if the fetal heart rate variability is normal before the onset of deceleration, and normal within the first 3 minutes of the prolonged deceleration, then there is an increased likelihood of recovery of the fetal heart rate to its antecedent baseline within 9 minutes with the reversal of the underlying cause of acute and profound reduction in fetal oxygenation. The continuation of the prolonged deceleration for >10 minutes is termed "terminal bradycardia," and this increases the risk of hypoxic-ischemic injury to the deep gray matter of the brain (the thalami and the basal ganglia), predisposing to dyskinetic cerebral palsy. Therefore, any acute fetal hypoxia, which manifests as a prolonged deceleration on the fetal heart rate tracing, should be considered an intrapartum emergency requiring an immediate intervention to optimize perinatal outcome. In uterine hypertonus or hyperstimulation, if the prolonged deceleration persists despite stopping the uterotonic agent, then acute tocolysis is recommended to rapidly restore fetal oxygenation. Regular clinical audit of the management of acute hypoxia, including the "the onset of bradycardia to delivery interval," may help identify organizational and system issues, which may contribute to poor perinatal outcomes.
Collapse
Affiliation(s)
- Edwin Chandraharan
- Global Academy of Medical Education and Training, London, United Kingdom; Basildon University Hospital, Mid and South Essex NHS Foundation Trust, Basildon, United Kingdom.
| | - Tullio Ghi
- Obstetrics and Gynecology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Fieni
- Obstetrics and Gynecology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Yan-Ju Jia
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and Gynaecology/Tianjin Key Laboratory of Human Development and Reproductive Regulation/Affiliated Hospital of Obstetrics and Gynaecology of Nankai University, Tianjin, China
| |
Collapse
|
6
|
Lear CA, Westgate JA, Bennet L, Ugwumadu A, Stone PR, Tournier A, Gunn AJ. Fetal defenses against intrapartum head compression-implications for intrapartum decelerations and hypoxic-ischemic injury. Am J Obstet Gynecol 2023; 228:S1117-S1128. [PMID: 34801443 DOI: 10.1016/j.ajog.2021.11.1352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 01/27/2023]
Abstract
Uterine contractions during labor and engagement of the fetus in the birth canal can compress the fetal head. Its impact on the fetus is unclear and still controversial. In this integrative physiological review, we highlight evidence that decelerations are uncommonly associated with fetal head compression. Next, the fetus has an impressive ability to adapt to increased intracranial pressure through activation of the intracranial baroreflex, such that fetal cerebral perfusion is well-maintained during labor, except in the setting of prolonged systemic hypoxemia leading to secondary cardiovascular compromise. Thus, when it occurs, fetal head compression is not necessarily benign but does not seem to be a common contributor to intrapartum decelerations. Finally, the intracranial baroreflex and the peripheral chemoreflex (the response to acute hypoxemia) have overlapping efferent effects. We propose the hypothesis that these reflexes may work synergistically to promote fetal adaptation to labor.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St. George's University of London, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alexane Tournier
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand.
| |
Collapse
|
7
|
Lear CA, Georgieva A, Beacom MJ, Wassink G, Dhillon SK, Lear BA, Mills OJ, Westgate JA, Bennet L, Gunn AJ. Fetal heart rate responses in chronic hypoxaemia with superimposed repeated hypoxaemia consistent with early labour: a controlled study in fetal sheep. BJOG 2023. [PMID: 36808862 DOI: 10.1111/1471-0528.17425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
OBJECTIVE Deceleration area (DA) and capacity (DC) of the fetal heart rate can help predict risk of intrapartum fetal compromise. However, their predictive value in higher risk pregnancies is unclear. We investigated whether they can predict the onset of hypotension during brief hypoxaemia repeated at a rate consistent with early labour in fetal sheep with pre-existing hypoxaemia. DESIGN Prospective, controlled study. SETTING Laboratory. SAMPLE Chronically instrumented, unanaesthetised near-term fetal sheep. METHODS One-minute complete umbilical cord occlusions (UCOs) were performed every 5 minutes in fetal sheep with baseline pa O2 <17 mmHg (hypoxaemic, n = 8) and >17 mmHg (normoxic, n = 11) for 4 hours or until arterial pressure fell <20 mmHg. MAIN OUTCOME MEASURES DA, DC and arterial pressure. RESULTS Normoxic fetuses showed effective cardiovascular adaptation without hypotension and mild acidaemia (lowest arterial pressure 40.7 ± 2.8 mmHg, pH 7.35 ± 0.03). Hypoxaemic fetuses developed hypotension (lowest arterial pressure 20.8 ± 1.9 mmHg, P < 0.001) and acidaemia (final pH 7.07 ± 0.05). In hypoxaemic fetuses, decelerations showed faster falls in FHR over the first 40 seconds of UCOs but the final deceleration depth was not different to normoxic fetuses. DC was modestly higher in hypoxaemic fetuses during the penultimate (P = 0.04) and final (P = 0.012) 20 minutes of UCOs. DA was not different between groups. CONCLUSION Chronically hypoxaemic fetuses had early onset of cardiovascular compromise during labour-like brief repeated UCOs. DA was unable to identify developing hypotension in this setting, while DC only showed modest differences between groups. These findings highlight that DA and DC thresholds need to be adjusted for antenatal risk factors, potentially limiting their clinical utility.
Collapse
Affiliation(s)
- C A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - A Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - M J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - G Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - S K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - B A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - O J Mills
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - J A Westgate
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - L Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - A J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
8
|
Tarvonen MJ, Lear CA, Andersson S, Gunn AJ, Teramo KA. Increased variability of fetal heart rate during labour: a review of preclinical and clinical studies. BJOG 2022; 129:2070-2081. [PMID: 35596699 PMCID: PMC9796294 DOI: 10.1111/1471-0528.17234] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
Increased fetal heart rate variability (FHRV) in intrapartum cardiotocographic recording has been variably defined and poorly understood, limiting its clinical utility. Both preclinical (animal) and clinical (human) evidence support that increased FHRV is observed in the early stage of intrapartum fetal hypoxaemia but can also be observed in a subset of fetuses during the preterminal stage of repeated hypoxaemia. This review of available evidence provides data and expert opinion on the pathophysiology of increased FHRV, its clinical significance and a stepwise approach regarding the management of this pattern, and propose recommendations for standardisation of related terminology.
Collapse
Affiliation(s)
- Mikko J. Tarvonen
- Department of Obstetrics and GynaecologyUniversity of Helsinki, and Helsinki University HospitalHelsinkiFinland
| | - Christopher A. Lear
- Fetal Physiology and Neuroscience GroupDepartment of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Sture Andersson
- Children’s Hospital, Paediatric Research CentreUniversity of Helsinki, and Helsinki University HospitalHelsinkiFinland
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience GroupDepartment of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Kari A. Teramo
- Department of Obstetrics and GynaecologyUniversity of Helsinki, and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
9
|
Smith J, Solomons R, Vollmer L, Langenegger EJ, Lotz JW, Andronikou S, Anthony J, van Toorn R. Intrapartum Basal Ganglia-Thalamic Pattern Injury and Radiologically Termed "Acute Profound Hypoxic-Ischemic Brain Injury" Are Not Synonymous. Am J Perinatol 2022; 39:1124-1131. [PMID: 33321532 DOI: 10.1055/s-0040-1721692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Human cases of acute profound hypoxic-ischemic (HI) injury (HII), in which the insult duration timed with precision had been identified, remains rare, and there is often uncertainty of the prior state of fetal health. STUDY DESIGN A retrospective analysis of 10 medicolegal cases of neonatal encephalopathy-cerebral palsy survivors who sustained intrapartum HI basal ganglia-thalamic (BGT) pattern injury in the absence of an obstetric sentinel event. RESULTS Cardiotocography (CTG) admission status was reassuring in six and suspicious in four of the cases. The median time from assessment by admission CTG or auscultation to birth was 687.5 minutes (interquartile range [IQR]: 373.5-817.5 minutes), while the median time interval between first pathological CTG and delivery of the infant was 179 minutes (IQR: 137-199.25 minutes). The mode of delivery in the majority of infants (60%) was by unassisted vaginal birth; four were delivered by delayed caesarean section. The median (IQR) interval between the decision to perform a caesarean section and delivery was 169 minutes (range: 124-192.5 minutes). CONCLUSION The study shows that if a nonreassuring fetal status develops during labor and is prolonged, a BGT pattern HI injury may result, in the absence of a perinatal sentinel event. Intrapartum BGT pattern injury and radiologically termed "acute profound HI brain injury" are not necessarily synonymous. A visualized magnetic resonance imaging (MRI) pattern should preferably solely reflect the patterns description and severity, rather than a causative mechanism of injury. KEY POINTS · BGT HI injury pattern on MRI may develop in the absence of a perinatal sentinel event.. · BGT pattern injury may not be synonymous with "acute profound HI brain injury.". · MRI pattern and severity thereof should be described rather than a causative mechanism of injury..
Collapse
Affiliation(s)
- Johan Smith
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lindi Vollmer
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eduard J Langenegger
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Jan W Lotz
- Division of Radiodiagnosis, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Savvas Andronikou
- Department of Radiology, the Children's Hospital of Philadelphia and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Anthony
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Lantto J, Erkinaro T, Haapsamo M, Huhta H, Alanne L, Kokki M, Ohtonen P, Bhide A, Acharya G, Räsänen J. Peripheral chemoreflex activation and cardiac function during hypoxemia in near-term fetal sheep without placental compromise. J Appl Physiol (1985) 2021; 131:1486-1495. [PMID: 34590908 DOI: 10.1152/japplphysiol.01111.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A drop in arterial oxygen content activates fetal chemoreflex including an increase in sympathetic activity leading to peripheral vasoconstriction and redistribution of blood flow to protect the brain, myocardium, and adrenal glands. By using a chronically instrumented fetal sheep model with intact placental circulation at near-term gestation, we investigated the relationship between peripheral chemoreflex activation induced by hypoxemia and central hemodynamics. A total of 17 Åland landrace sheep fetuses at 115-128/145 gestational days were instrumented. Carotid artery was catheterized in 10 fetuses and descending aorta in 7 fetuses. After a 4-day recovery, baseline measurements of fetal arterial blood pressures, blood gas values, and fetal cardiovascular hemodynamics by pulsed Doppler ultrasonography were obtained under isoflurane anesthesia. Comparable data to baseline were collected 10 min (acute hypoxemia) and 60 min (prolonged hypoxemia) after maternal hypo-oxygenation to saturation level of 70%-80% was achieved. During prolonged hypoxemia, pH and base excess (BE) were lower and lactate levels were higher in the descending aorta than in the carotid artery. During hypoxemia mean arterial blood pressure (MAP) in the descending aorta increased, whereas in the carotid artery, MAP decreased. In addition, right pulmonary artery pulsatility index values increased, and the diastolic component in the aortic isthmus blood flow velocity waveform became more retrograde, thus decreasing the aortic isthmus antegrade/retrograde blood flow (AoI Net Flow) ratio. Both fetal ventricular cardiac outputs were maintained even during prolonged hypoxemia when significant fetal metabolic acidemia developed. Fetal chemoreflex activation induced by hypoxemia decreased the perfusion pressure in the cerebral circulation. Fetal weight-indexed left ventricular cardiac output (LVCO) or AoI Net Flow ratio did not correlate with a drop in carotid artery blood pressure.NEW & NOTEWORTHY During fetal hypoxemia with intact placental circulation, peripheral chemoreflex was activated, as demonstrated by an increase in the descending aorta blood pressure, pulmonary vasoconstriction, and an increase in retrograde diastolic AoI blood flow, while both ventricular cardiac outputs remained stable. However, perfusion pressure in the cerebral circulation decreased. These changes were seen even during prolonged hypoxemia when significant metabolic acidosis developed. Weight-indexed LVCO or AoI Net Flow ratio did not correlate with a drop in carotid artery blood pressure.
Collapse
Affiliation(s)
- Juulia Lantto
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Tiina Erkinaro
- Department of Anesthesiology, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mervi Haapsamo
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Leena Alanne
- Department of Obstetrics and Gynecology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.,Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine Kuopio, Kuopio, Finland
| | - Merja Kokki
- Department of Anesthesiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Pasi Ohtonen
- Division of Operative Care, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Amarnath Bhide
- Department of Obstetrics and Gynecology, St. George's Hospital, London, United Kingdom.,Women's Health & Perinatal Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh Acharya
- Women's Health & Perinatal Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Juha Räsänen
- Department of Obstetrics and Gynecology, Fetal Medicine Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
12
|
Baburamani AA, Tran NT, Castillo-Melendez M, Yawno T, Walker DW. Brief hypoxia in late gestation sheep causes prolonged disruption of fetal electrographic, breathing behaviours and can result in early labour. J Physiol 2021; 599:3221-3236. [PMID: 33977538 DOI: 10.1113/jp281266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Brief episodes of severe fetal hypoxia can arise in late gestation as a result of interruption of normal umbilical blood flow Systemic parameters and blood chemistry indicate complete recovery within 1-2 hours, although the long-term effects on fetal brain functions are unknown Fetal sheep were subjected to umbilical cord occlusion (UCO) for 10 min at 131 days of gestation, and then monitored intensively until onset of labour or delivery (<145 days of gestation) Normal patterns of fetal behaviour, including breathing movements, episodes of high and low voltage electorcortical activity, eye movements and postural (neck) muscle activity, were disrupted for 3-10 days after the UCO Preterm labour and delivery occurred in a significant number of the pregnancies after UCO compared to the control (sham-UCO) cohort. ABSTRACT Complications arising from antepartum events such as impaired umbilical blood flow can cause significant fetal hypoxia. These complications can be unpredictable, as well as difficult to detect, and thus we lack a detailed understanding of the (patho)physiological changes that occur between the antenatal in utero event and birth. In the present study, we assessed the consequences of brief (∼10 min) umbilical cord occlusion (UCO) in fetal sheep at ∼0.88 gestation on fetal plasma cortisol concentrations and fetal behaviour [electrocortical (EcoG), electo-oculargram (EOG), nuchal muscle electromyography (EMG) and breathing activities] in the days following UCO. UCO caused a rapid onset of fetal hypoxaemia, hypercapnia, and acidosis; however, by 6 h, all blood parameters and cardiovascular status were normalized and not different from the control (Sham-UCO) cohort. Subsequently, the incidence of fetal breathing movements decreased compared to the control group, and abnormal behavioural patterns developed over the days following UCO and leading up to the onset of labour, which included increased high voltage and sub-low voltage ECoG and EOG activities, as well as decreased nuchal EMG activity. Fetuses subjected to UCO went into labour 7.9 ± 3.6 days post-UCO (139.5 ± 3.2 days of gestation) compared to the control group fetuses at 13.6 ± 3.3 days post-sham UCO (144 ± 2.2 days of gestation; P < 0.05), despite comparable increases in fetal plasma cortisol and a similar body weight at birth. Thus, a single transient episode of complete UCO late in gestation in fetal sheep can result in prolonged effects on fetal brain activity and premature labour, suggesting persisting effects on fetal cerebral metabolism.
Collapse
Affiliation(s)
- Ana A Baburamani
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Nhi T Tran
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Georgieva A, Lear CA, Westgate JA, Kasai M, Miyagi E, Ikeda T, Gunn AJ, Bennet L. Deceleration area and capacity during labour-like umbilical cord occlusions identify evolving hypotension: a controlled study in fetal sheep. BJOG 2021; 128:1433-1442. [PMID: 33369871 DOI: 10.1111/1471-0528.16638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cardiotocography is widely used to assess fetal well-being during labour. The positive predictive value of current clinical algorithms to identify hypoxia-ischaemia is poor. In experimental studies, fetal hypotension is the strongest predictor of hypoxic-ischaemic injury. Cohort studies suggest that deceleration area and deceleration capacity of the fetal heart rate trace correlate with fetal acidaemia, but it is not known whether they are indices of fetal arterial hypotension. DESIGN Prospective, controlled study. SETTING Laboratory. SAMPLE Near-term fetal sheep. METHODS One minute of complete umbilical cord occlusions (UCOs) every 5 minutes (1:5 min, n = 6) or every 2.5 minutes (1:2.5 min, n = 12) for 4 hours or until fetal mean arterial blood pressure fell <20 mmHg. MAIN OUTCOME MEASURES Deceleration area and capacity during the UCO series were related to evolving hypotension. RESULTS The 1:5 min group developed only mild metabolic acidaemia, without hypotension. By contrast, 10/12 fetuses in the 1:2.5-min group progressively developed severe metabolic acidaemia and hypotension, reaching 16.8 ± 0.9 mmHg after 71.2 ± 6.7 UCOs. Deceleration area and capacity remained unchanged throughout the UCO series in the 1:5-min group, but progressively increased in the 1:2.5-min group. The severity of hypotension was closely correlated with both deceleration area (P < 0.001, R2 = 0.66, n = 18) and capacity (P < 0.001, R2 = 0.67, n = 18). Deceleration area and capacity predicted development of hypotension at a median of 103 and 123 minutes before the final occlusion, respectively. CONCLUSIONS Both deceleration area and capacity were strongly associated with developing fetal hypotension, supporting their potential to improve identification of fetuses at risk of hypotension leading to hypoxic-ischaemic injury during labour. TWEETABLE ABSTRACT Deceleration area and capacity of fetal heart rate identify developing hypotension during labour-like hypoxia.
Collapse
Affiliation(s)
- A Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - C A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - J A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - M Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - E Miyagi
- The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - T Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - A J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - L Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Lear CA, Kasai M, Drury PP, Davidson JO, Miyagi E, Bennet L, Gunn AJ. Plasma vasopressin levels are closely associated with fetal hypotension and neuronal injury after hypoxia-ischemia in near-term fetal sheep. Pediatr Res 2020; 88:857-864. [PMID: 32179873 DOI: 10.1038/s41390-020-0845-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Sensitive biomarkers are needed to rapidly identify high-risk infants after hypoxia-ischemia for neuroprotective treatment. Hypotension is a key determinant of hypoxic-ischemic neural injury, and a potent stimulus of humoral pressors including angiotensin-II and arginine vasopressin. We therefore aimed to quantify the relationship between vasopressin and angiotensin-II levels in the latent phase after hypoxia-ischemia induced by umbilical cord occlusion (UCO) with both the severity of preceding hypotension and subsequent neuronal injury. METHODS Chronically instrumented near-term fetal sheep underwent sham-UCO or UCO for either 15 min or until mean arterial pressure was <8 mmHg. Neuronal injury was assessed after 72 h recovery. RESULTS Umbilical cord occlusion was associated with severe hypotension that recovered after UCO; two fetuses developed profound secondary hypotension within 6 h and died. Vasopressin levels but not angiotensin-II were significantly elevated 1-3 h after UCO and were closely associated with the severity of hypotension during UCO and the subsequent severity of neuronal loss in the parasagittal and lateral cortex, caudate nucleus and putamen. The Youden cut-point for vasopressin at 1 h was 180.0 pmol/L, with sensitivity 100% and specificity 92.3% for severe neuronal injury or death. CONCLUSION Vasopressin levels shortly after moderate-severe hypoxia-ischemia may be a useful early biomarker to guide the timely implementation of neuroprotective treatment. IMPACT It can be difficuIt to rapidly identify infants who might benefit from therapeutic hypothermia. We investigated whether increases in plasma pressor hormones early after hypoxia-ischemia were biomarkers for neonatal hypoxic-ischemic encephalopathy using near-term fetal sheep. Arginine vasopressin levels were elevated at 1-3 h after hypoxia-ischemia and were predictive of the severity of preceding hypotension and subsequent risk of severe neuronal injury or death after hypoxia-ischemia. Arginine vasopressin may help identify neonates at high risk of hypoxic-ischemic encephalopathy early within the therapeutic window for hypothermia.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Etsuko Miyagi
- The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Lear CA, Davidson JO, Dhillon SK, King VJ, Lear BA, Magawa S, Maeda Y, Ikeda T, Gunn AJ, Bennet L. Effects of antenatal dexamethasone and hyperglycemia on cardiovascular adaptation to asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 319:R653-R665. [PMID: 33074015 DOI: 10.1152/ajpregu.00216.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antenatal glucocorticoids improve outcomes among premature infants but are associated with hyperglycemia, which can exacerbate hypoxic-ischemic injury. It is still unclear how antenatal glucocorticoids or hyperglycemia modulate fetal cardiovascular adaptations to severe asphyxia. In this study, preterm fetal sheep received either saline or 12 mg im maternal dexamethasone, followed 4 h later by complete umbilical cord occlusion (UCO) for 25 min. An additional cohort of fetuses received titrated glucose infusions followed 4 h later by UCO to control for the possibility that hyperglycemia contributed to the cardiovascular effects of dexamethasone. Fetuses were studied for 7 days after UCO. Maternal dexamethasone was associated with fetal hyperglycemia (P < 0.001), increased arterial pressure (P < 0.001), and reduced femoral (P < 0.005) and carotid (P < 0.05) vascular conductance before UCO. UCO was associated with bradycardia, femoral vasoconstriction, and transient hypertension. For the first 5 min of UCO, fetal blood pressure in the dexamethasone-asphyxia group was greater than saline-asphyxia (P < 0.001). However, the relative increase in arterial pressure was not different from saline-asphyxia. Fetal heart rate and femoral vascular conductance fell to similar nadirs in both saline and dexamethasone-asphyxia groups. Dexamethasone did not affect the progressive decline in femoral vascular tone or arterial pressure during continuing UCO. By contrast, there were no effects of glucose infusions on the response to UCO. In summary, maternal dexamethasone but not fetal hyperglycemia increased fetal arterial pressure before and for the first 5 min of prolonged UCO but did not augment the cardiovascular adaptations to acute asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Victoria J King
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Yoshiki Maeda
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
17
|
Reyes RV, Herrera EA, Ebensperger G, Sanhueza EM, Giussani DA, Llanos AJ. Perinatal cardiopulmonary adaptation to the thin air of the Alto Andino by a native Altiplano dweller, the llama. J Appl Physiol (1985) 2020; 129:152-161. [PMID: 32584666 DOI: 10.1152/japplphysiol.00800.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most mammals have a poor tolerance to hypoxia, and prolonged O2 restriction can lead to organ injury, particularly during fetal and early postnatal life. Nevertheless, the llama (Lama Glama) has evolved efficient mechanisms to adapt to acute and chronic perinatal hypoxia. One striking adaptation is the marked peripheral vasoconstriction measured in the llama fetus in response to acute hypoxia, which allows efficient redistribution of cardiac output toward the fetal heart and adrenal glands. This strong peripheral vasoconstrictor tone is triggered by a carotid body reflex and critically depends on α-adrenergic signaling. A second adaptation is the ability of the llama fetus to protect its brain against hypoxic damage. During hypoxia, in the llama fetus there is no significant increase in brain blood flow. Instead, there is a fall in brain O2 consumption and temperature, together with a decrease of Na+-K+-ATPase activity and Na+ channels expression, protecting against seizures and neuronal death. Finally, the newborn llama does not develop pulmonary hypertension in response to chronic hypoxia. In addition to maintaining basal pulmonary arterial pressure at normal levels the pulmonary arterial pressor response to acute hypoxia is lower in highland than in lowland llamas. The protection against hypoxic pulmonary arterial hypertension and pulmonary contractile hyperreactivity is partly due to increased hemoxygenase-carbon monoxide signaling and decreased Ca2+ sensitization in the newborn llama pulmonary vasculature. These three striking physiological adaptations of the llama allow this species to live and thrive under the chronic influence of the hypobaric hypoxia of life at high altitude.
Collapse
Affiliation(s)
- R V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - G Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - A J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
The physiology of intrapartum fetal compromise at term. Am J Obstet Gynecol 2020; 222:17-26. [PMID: 31351061 DOI: 10.1016/j.ajog.2019.07.032] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Uterine contractions in labor result in a 60% reduction in uteroplacental perfusion, causing transient fetal and placental hypoxia. A healthy term fetus with a normally developed placenta is able to accommodate this transient hypoxia by activation of the peripheral chemoreflex, resulting in a reduction in oxygen consumption and a centralization of oxygenated blood to critical organs, namely the heart, brain, and adrenals. Providing there is adequate time for placental and fetal reperfusion between contractions, these fetuses will be able to withstand prolonged periods of intermittent hypoxia and avoid severe hypoxic injury. However, there exists a cohort of fetuses in whom abnormal placental development in the first half of pregnancy results in failure of endovascular invasion of the spiral arteries by the cytotrophoblastic cells and inadequate placental angiogenesis. This produces a high-resistance, low-flow circulation predisposing to hypoperfusion, hypoxia, reperfusion injury, and oxidative stress within the placenta. Furthermore, this renders the placenta susceptible to fluctuations and reduction in uteroplacental perfusion in response to external compression and stimuli (as occurs in labor), further reducing fetal capillary perfusion, placing the fetus at risk of inadequate gas/nutrient exchange. This placental dysfunction predisposes the fetus to intrapartum fetal compromise. In the absence of a rare catastrophic event, intrapartum fetal compromise occurs as a gradual process when there is an inability of the fetal heart to respond to the peripheral chemoreflex to maintain cardiac output. This may arise as a consequence of placental dysfunction reducing pre-labor myocardial glycogen stores necessary for anaerobic metabolism or due to an inadequate placental perfusion between contractions to restore fetal oxygen and nutrient exchange. If the hypoxic insult is severe enough and long enough, profound multiorgan injury and even death may occur. This review provides a detailed synopsis of the events that can result in placental dysfunction, how this may predispose to intrapartum fetal hypoxia, and what protective mechanisms are in place to avoid hypoxic injury.
Collapse
|
19
|
Abbasi H, Unsworth CP. Electroencephalogram studies of hypoxic ischemia in fetal and neonatal animal models. Neural Regen Res 2020; 15:828-837. [PMID: 31719243 PMCID: PMC6990791 DOI: 10.4103/1673-5374.268892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alongside clinical achievements, experiments conducted on animal models (including primate or non-primate) have been effective in the understanding of various pathophysiological aspects of perinatal hypoxic/ischemic encephalopathy (HIE). Due to the reasonably fair degree of flexibility with experiments, most of the research around HIE in the literature has been largely concerned with the neurodevelopmental outcome or how the frequency and duration of HI seizures could relate to the severity of perinatal brain injury, following HI insult. This survey concentrates on how EEG experimental studies using asphyxiated animal models (in rodents, piglets, sheep and non-human primate monkeys) provide a unique opportunity to examine from the exact time of HI event to help gain insights into HIE where human studies become difficult.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Volpe JJ. Placental assessment provides insight into mechanisms and timing of neonatal hypoxic-ischemic encephalopathy. J Neonatal Perinatal Med 2019; 12:113-116. [PMID: 31256081 PMCID: PMC6597972 DOI: 10.3233/npm-190270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Should therapeutic hypothermia be offered to babies with mild neonatal encephalopathy in the first 6 h after birth? Pediatr Res 2019; 85:442-448. [PMID: 30733613 DOI: 10.1038/s41390-019-0291-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
Infants with moderate to severe neonatal encephalopathy (NE) benefit significantly from therapeutic hypothermia, with reduced risk of death or disability. However, the need for therapeutic hypothermia for infants with milder NE remains unclear. It has been suggested that these infants should not be offered therapeutic hypothermia as they may not be at risk for adverse neurodevelopmental outcome and that the balance of risk against potential benefit is unknown. Several key questions need to be answered including first, whether one can define NE in the first 6 h after birth so as to accurately distinguish infants with brain injury who may be at risk for adverse neurodevelopmental consequences. Second, will treatment of infants with mild NE with therapeutic hypothermia improve or even worsen neurological outcomes? Although alternate treatment protocols for mild NE may be feasible, the use of the current approach combined with rigorous avoidance of hyperthermia and initiation of hypothermia as early as possible after birth may promote optimal outcomes. Animal experimental data support the potential for greater benefit for mild HIE compared with moderate to severe HIE. This review will summarize current knowledge of mild NE and the challenges to a trial in this population.
Collapse
|
22
|
Gunn AJ, Thoresen M. Neonatal encephalopathy and hypoxic-ischemic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:217-237. [PMID: 31324312 DOI: 10.1016/b978-0-444-64029-1.00010-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute hypoxic-ischemic encephalopathy around the time of birth remains a major cause of death and life-long disability. The key insight that led to the modern revival of studies of neuroprotection was that, after profound asphyxia, many brain cells show initial recovery from the insult during a short "latent" phase, typically lasting approximately 6h, only to die hours to days later after a "secondary" deterioration characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration and continued for a sufficient duration to allow the secondary deterioration to resolve is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild to moderate induced hypothermia significantly improves survival and neurodevelopmental outcomes in infancy and mid-childhood.
Collapse
Affiliation(s)
- Alistair J Gunn
- Departments of Physiology and Paediatrics, University of Auckland, Auckland, New Zealand.
| | - Marianne Thoresen
- Department of Physiology University of Oslo, Oslo, Norway; Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
Boylan GB, Kharoshankaya L, Mathieson SR. Diagnosis of seizures and encephalopathy using conventional EEG and amplitude integrated EEG. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:363-400. [PMID: 31324321 DOI: 10.1016/b978-0-444-64029-1.00018-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seizures are more common in the neonatal period than at any other time of life, partly due to the relative hyperexcitability of the neonatal brain. Brain monitoring of sick neonates in the NICU using either conventional electroencephalography or amplitude integrated EEG is essential to accurately detect seizures. Treatment of seizures is important, as evidence increasingly indicates that seizures damage the brain in addition to that caused by the underlying etiology. Prompt treatment has been shown to reduce seizure burden with the potential to ameliorate seizure-mediated damage. Neonatal encephalopathy most commonly caused by a hypoxia-ischemia results in an alteration of mental status and problems such as seizures, hypotonia, apnea, and feeding difficulties. Confirmation of encephalopathy with EEG monitoring can act as an important adjunct to other investigations and the clinical examination, particularly when considering treatment strategies such as therapeutic hypothermia. Brain monitoring also provides useful early prognostic indicators to clinicians. Recent use of machine learning in algorithms to continuously monitor the neonatal EEG, detect seizures, and grade encephalopathy offers the exciting prospect of real-time decision support in the NICU in the very near future.
Collapse
Affiliation(s)
- Geraldine B Boylan
- Department of Paediatrics and Child Health, Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.
| | - Liudmila Kharoshankaya
- Department of Paediatrics and Child Health, Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| | - Sean R Mathieson
- Department of Paediatrics and Child Health, Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Dempsey EM, Kooi EMW, Boylan G. It's All About the Brain-Neuromonitoring During Newborn Transition. Semin Pediatr Neurol 2018; 28:48-59. [PMID: 30522728 DOI: 10.1016/j.spen.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E M Dempsey
- Department of Paediatrics and Child Health, Neonatal Intensive Care Unit, University College Cork, Cork, Ireland; INFANT, Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | - E M W Kooi
- Department of Paediatrics and Child Health, Neonatal Intensive Care Unit, University College Cork, Cork, Ireland; Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Geraldine Boylan
- Department of Paediatrics and Child Health, Neonatal Intensive Care Unit, University College Cork, Cork, Ireland; INFANT, Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab 2018; 38:2092-2111. [PMID: 30149778 PMCID: PMC6282216 DOI: 10.1177/0271678x18797328] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxia-ischemia resulting in death or lifelong disabilities remains a major clinical disorder. Neonatal models of hypoxia-ischemia in rodents have enhanced our understanding of cellular mechanisms of neural injury in developing brain, but have limitations in simulating the range, accuracy, and physiology of clinical hypoxia-ischemia and the relevant systems neuropathology that contribute to the human brain injury pattern. Large animal models of perinatal hypoxia-ischemia, such as partial or complete asphyxia at the time of delivery of fetal monkeys, umbilical cord occlusion and cerebral hypoperfusion at different stages of gestation in fetal sheep, and severe hypoxia and hypoperfusion in newborn piglets, have largely overcome these limitations. In monkey, complete asphyxia produces preferential injury to cerebellum and primary sensory nuclei in brainstem and thalamus, whereas partial asphyxia produces preferential injury to somatosensory and motor cortex, basal ganglia, and thalamus. Mid-gestational fetal sheep provide a valuable model for studying vulnerability of progenitor oligodendrocytes. Hypoxia followed by asphyxia in newborn piglets replicates the systems injury seen in term newborns. Efficacy of post-insult hypothermia in animal models led to the success of clinical trials in term human neonates. Large animal models are now being used to explore adjunct therapy to augment hypothermic neuroprotection.
Collapse
Affiliation(s)
- Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zeng-Jin Yang
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA
| | - Lee J Martin
- 2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Lear CA, Westgate JA, Ugwumadu A, Nijhuis JG, Stone PR, Georgieva A, Ikeda T, Wassink G, Bennet L, Gunn AJ. Understanding Fetal Heart Rate Patterns That May Predict Antenatal and Intrapartum Neural Injury. Semin Pediatr Neurol 2018; 28:3-16. [PMID: 30522726 DOI: 10.1016/j.spen.2018.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electronic fetal heart rate (FHR) monitoring is widely used to assess fetal well-being throughout pregnancy and labor. Both antenatal and intrapartum FHR monitoring are associated with a high negative predictive value and a very poor positive predictive value. This in part reflects the physiological resilience of the healthy fetus and the remarkable effectiveness of fetal adaptations to even severe challenges. In this way, the majority of "abnormal" FHR patterns in fact reflect a fetus' appropriate adaptive responses to adverse in utero conditions. Understanding the physiology of these adaptations, how they are reflected in the FHR trace and in what conditions they can fail is therefore critical to appreciating both the potential uses and limitations of electronic FHR monitoring.
Collapse
Affiliation(s)
- Christopher A Lear
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's, University of London, London, United Kingdom
| | - Jan G Nijhuis
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Obstetrics and Gynaecology, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynaecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Guido Wassink
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand; Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand.
| |
Collapse
|
27
|
Lear CA, Wassink G, Westgate JA, Nijhuis JG, Ugwumadu A, Galinsky R, Bennet L, Gunn AJ. The peripheral chemoreflex: indefatigable guardian of fetal physiological adaptation to labour. J Physiol 2018; 596:5611-5623. [PMID: 29604081 DOI: 10.1113/jp274937] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
The fetus is consistently exposed to repeated periods of impaired oxygen (hypoxaemia) and nutrient supply in labour. This is balanced by the healthy fetus's remarkable anaerobic tolerance and impressive ability to mount protective adaptations to hypoxaemia. The most important mediator of fetal adaptations to brief repeated hypoxaemia is the peripheral chemoreflex, a rapid reflex response to acute falls in arterial oxygen tension. The overwhelming majority of fetuses are able to respond to repeated uterine contractions without developing hypotension or hypoxic-ischaemic injury. In contrast, fetuses who are either exposed to severe hypoxaemia, for example during uterine hyperstimulation, or enter labour with reduced anaerobic reserve (e.g. as shown by severe fetal growth restriction) are at increased risk of developing intermittent hypotension and cerebral hypoperfusion. It is remarkable to note that when fetuses develop hypotension during such repeated severe hypoxaemia, it is not mediated by impaired reflex adaptation, but by failure to maintain combined ventricular output, likely due to a combination of exhaustion of myocardial glycogen and evolving myocardial injury. The chemoreflex is suppressed by relatively long periods of severe hypoxaemia of 1.5-2 min, longer than the typical contraction. Even in this setting, the peripheral chemoreflex is consistently reactivated between contractions. These findings demonstrate that the peripheral chemoreflex is an indefatigable guardian of fetal adaptation to labour.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Jan G Nijhuis
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's, University of London, London, UK
| | - Robert Galinsky
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Rudolph AM. Cerebral glucose deficiency versus oxygen deficiency in neonatal encephalopathy. J Neonatal Perinatal Med 2018; 11:115-120. [PMID: 29710737 DOI: 10.3233/npm-17109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) in newborn infants is generally considered to result from decreased arterial oxygen content or cerebral blood flow. Cerebral injury similar to that of HIE has been noted with hypoglycemia. Studies in fetal lambs have shown that ventilation with 3% oxygen did not change cerebral blood flow, but ventilation with 100% oxygen resulted in marked reduction in cerebral blood flow, glucose delivery and glucose consumption. Blood glucose concentration falls markedly after birth; this, associated with the fall in cerebral blood flow, greatly reduces glucose supply to the brain. In preterm infants, blood glucose levels tend to be very low. Also persistent patency of the ductus arteriosus may reduce cerebral flow in diastole, thus exaggerating the decrease in glucose supply. I propose that glycopenic-ischemic encephalopathy is a more appropriate term for the cerebral insult. We should consider more aggressive management of the low blood glucose concentrations in the neonate, and particularly in preterm infants. Administration of high levels of oxygen in inspired air should be avoided to reduce the enhancement of cerebral vasoconstriction and decreased flow that normally occurs after birth.
Collapse
Affiliation(s)
- A M Rudolph
- Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
30
|
Finn D, Dempsey EM, Boylan GB. Lost in Transition: A Systematic Review of Neonatal Electroencephalography in the Delivery Room-Are We Forgetting an Important Biomarker for Newborn Brain Health? Front Pediatr 2017; 5:173. [PMID: 28848727 PMCID: PMC5554119 DOI: 10.3389/fped.2017.00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Electroencephalography (EEG) monitoring is routine in neonatal intensive care units (NICUs) for detection of seizures, neurological monitoring of infants following perinatal asphyxia, and increasingly, following preterm delivery. EEG monitoring is not routinely commenced in the delivery room (DR). OBJECTIVES To determine the feasibility of recording neonatal EEG in the DR, and to assess its usefulness as a marker of neurological well-being during immediate newborn transition. METHODS We performed a systematic stepwise search of PubMed using the following terms: infant, newborns, neonate, DR, afterbirth, transition, and EEG. Only human studies describing EEG monitoring in the first 15 min following delivery were included. Infants of all gestational ages were included. RESULTS Two original studies were identified that described EEG monitoring of newborn infants within the DR. Both prospective observational studies used amplitude-integrated EEG (aEEG) monitoring and found it feasible in infants >34 weeks' gestation; however, technical challenges made it difficult to obtain continuous reliable data. Different EEG patterns were identified in uncompromised newborns and those requiring resuscitation. CONCLUSION EEG monitoring is possible in the DR and may provide an objective baseline measure of neurological function. Further feasibility studies are required to overcome technical challenges in the DR, but these challenges are not insurmountable with modern technology.
Collapse
Affiliation(s)
- Daragh Finn
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | - Geraldine B Boylan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Huang L, Zhao F, Qu Y, Zhang L, Wang Y, Mu D. Animal models of hypoxic-ischemic encephalopathy: optimal choices for the best outcomes. Rev Neurosci 2017; 28:31-43. [PMID: 27559689 DOI: 10.1515/revneuro-2016-0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
AbstractHypoxic-ischemic encephalopathy (HIE), a serious disease leading to neonatal death, is becoming a key area of pediatric neurological research. Despite remarkable advances in the understanding of HIE, the explicit pathogenesis of HIE is unclear, and well-established treatments are absent. Animal models are usually considered as the first step in the exploration of the underlying disease and in evaluating promising therapeutic interventions. Various animal models of HIE have been developed with distinct characteristics, and it is important to choose an appropriate animal model according to the experimental objectives. Generally, small animal models may be more suitable for exploring the mechanisms of HIE, whereas large animal models are better for translational studies. This review focuses on the features of commonly used HIE animal models with respect to their modeling strategies, merits, and shortcomings, and associated neuropathological changes, providing a comprehensive reference for improving existing animal models and developing new animal models.
Collapse
Affiliation(s)
- Lan Huang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Fengyan Zhao
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
- 3Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016; 2016:4901014. [PMID: 27047695 PMCID: PMC4800097 DOI: 10.1155/2016/4901014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.
Collapse
|
33
|
|
34
|
van den Heuij LG, Wassink G, Gunn AJ, Bennet L. Using Pregnant Sheep to Model Developmental Brain Damage. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3014-2_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol 2015; 57 Suppl 3:17-28. [PMID: 25800488 DOI: 10.1111/dmcn.12723] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Perinatal insults are a leading cause of infant mortality and amongst survivors are frequently associated with neurocognitive impairment, cerebral palsy (CP), and seizure disorders. The events leading to perinatal brain injury are multifactorial. This review describes how one subinjurious factor affecting the brain sensitizes it to a second injurious factor, causing an exacerbated injurious cascade. We will review the clinical and experimental evidence, including observations of high rates of maternal and fetal infections in term-born infants with neonatal encephalopathy and cerebral palsy. In addition, we will discuss preclinical evidence for the sensitizing effects of inflammation on injuries, such as hypoxia-ischaemia, our current understanding of the mechanisms underpinning the sensitization process, and the possibility for neuroprotection.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Inserm, U1141, Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Department of Child Neurology, APHP, Robert Debré Hospital, Paris, France; PremUP, Paris, France; Division of Imaging Sciences, Department of Perinatal Imaging and Health, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Davidson JO, Drury PP, Green CR, Nicholson LF, Bennet L, Gunn AJ. Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep. PLoS One 2014; 9:e96558. [PMID: 24865217 PMCID: PMC4035262 DOI: 10.1371/journal.pone.0096558] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/09/2014] [Indexed: 12/20/2022] Open
Abstract
Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia.
Collapse
Affiliation(s)
- Joanne O. Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Paul P. Drury
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R. Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Louise F. Nicholson
- Department of Anatomy with Radiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
37
|
Does Maturity Affect Cephalic Perfusion and T/QRS Ratio during Prolonged Umbilical Cord Occlusion in Fetal Sheep? Obstet Gynecol Int 2014; 2014:314159. [PMID: 24693290 PMCID: PMC3945773 DOI: 10.1155/2014/314159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/18/2013] [Accepted: 12/31/2013] [Indexed: 11/17/2022] Open
Abstract
T/QRS ratio monitoring is used to help identify fetal asphyxia. However, immature animals have greater capacity to maintain blood pressure during severe asphyxia, raising the possibility that they may show an attenuated T/QRS increase during asphyxia. Chronically instrumented fetal sheep at 0.6 of gestation (0.6 GA; n = 12), 0.7 GA (n = 12), and 0.8 GA (n = 8) underwent complete umbilical cord occlusion for 30 min, 25 min, or 15 min, respectively. Cord occlusion was associated with progressive metabolic acidosis and initial hypertension followed by severe hypotension, with a more rapid fall in mean arterial blood pressure (MAP) and carotid blood flow (CaBF) with advancing gestation. T/QRS ratio rose after occlusion more rapidly at 0.8 GA than in immature fetuses, to a similar final peak at all ages, followed by a progressive fall that was slower at 0.8 GA than in the immature fetuses. The increase in T/QRS ratio correlated with initial hypertension at 0.8 GA (P < 0.05, R2 = 0.38), and conversely, its fall correlated closely with falling MAP in all gestational groups (P < 0.01, R2 = 0.67). In conclusion, elevation of the T/QRS ratio is an index of onset of severe asphyxia in the last third of gestation, but not of fetal compromise.
Collapse
|
38
|
Kaandorp JJ, Derks JB, Oudijk MA, Torrance HL, Harmsen MG, Nikkels PGJ, van Bel F, Visser GHA, Giussani DA. Antenatal allopurinol reduces hippocampal brain damage after acute birth asphyxia in late gestation fetal sheep. Reprod Sci 2013; 21:251-9. [PMID: 23793473 DOI: 10.1177/1933719113493516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Free radical-induced reperfusion injury is a recognized cause of brain damage in the newborn after birth asphyxia. The xanthine oxidase inhibitor allopurinol reduces free radical synthesis and crosses the placenta easily. Therefore, allopurinol is a promising therapeutic candidate. This study tested the hypothesis that maternal treatment with allopurinol during fetal asphyxia limits ischemia-reperfusion (I/R) damage to the fetal brain in ovine pregnancy. The I/R challenge was induced by 5 repeated measured compressions of the umbilical cord, each lasting 10 minutes, in chronically instrumented fetal sheep at 0.8 of gestation. Relative to control fetal brains, the I/R challenge induced significant neuronal damage in the fetal hippocampal cornu ammonis zones 3 and 4. Maternal treatment with allopurinol during the I/R challenge restored the fetal neuronal damage toward control scores. Maternal treatment with allopurinol offers potential neuroprotection to the fetal brain in the clinical management of perinatal asphyxia.
Collapse
Affiliation(s)
- Joepe J Kaandorp
- 1Perinatal Center, University Medical Center, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lobo N, Yang B, Rizvi M, Ma D. Hypothermia and xenon: Novel noble guardians in hypoxic-ischemic encephalopathy? J Neurosci Res 2013; 91:473-8. [DOI: 10.1002/jnr.23178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/25/2012] [Accepted: 10/19/2012] [Indexed: 01/13/2023]
|
40
|
Ancora G, Maranella E, Grandi S, Sbravati F, Coccolini E, Savini S, Faldella G. Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev 2013; 35:26-31. [PMID: 22082686 DOI: 10.1016/j.braindev.2011.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Brain Cooling (BC) represents the elective treatment in asphyxiated newborns. Amplitude Integrated Electroencephalography (aEEG) and Near Infrared Spectroscopy (NIRS) monitoring may help to evaluate changes in cerebral electrical activity and cerebral hemodynamics during hypothermia. OBJECTIVES To evaluate the prognostic value of aEEG time course and NIRS data in asphyxiated cooled infants. METHODS Twelve term neonates admitted to our NICU with moderate-severe Hypoxic-Ischemic Encephalopathy (HIE) underwent selective BC. aEEG and NIRS monitoring were started as soon as possible and maintained during the whole hypothermic treatment. Follow-up was scheduled at regular intervals; adverse outcome was defined as death, cerebral palsy (CP) or global quotient <88.7 at Griffiths' Scale. RESULTS 2/12 Infants died, 2 developed CP, 1 was normal at 6 months of age and then lost at follow-up and 7 showed a normal outcome at least at 1 year of age. The aEEG background pattern at 24 h of life was abnormal in 10 newborns; only 4 of them developed an adverse outcome, whereas the 2 infants with a normal aEEG developed normally. In infants with adverse outcome NIRS showed a higher Tissue Oxygenation Index (TOI) than those with normal outcome (80.0±10.5% vs 66.9±7.0%, p=0.057; 79.7±9.4% vs 67.1±7.9%, p=0.034; 80.2±8.8% vs 71.6±5.9%, p=0.069 at 6, 12 and 24 h of life, respectively). CONCLUSIONS The aEEG background pattern at 24h of life loses its positive predictive value after BC implementation; TOI could be useful to predict early on infants that may benefit from other innovative therapies.
Collapse
Affiliation(s)
- Gina Ancora
- Neonatology Unit, Department of Woman, Child and Adolescent Health, Sant'Orsola Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Volpe JJ. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol 2012; 72:156-66. [PMID: 22926849 DOI: 10.1002/ana.23647] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Point of View article addresses neonatal encephalopathy (NE) presumably caused by hypoxia-ischemia and the terminology currently in wide use for this disorder. The nonspecific term NE is commonly utilized for those infants with the clinical and imaging characteristics of neonatal hypoxic-ischemic encephalopathy (HIE). Multiple magnetic resonance imaging studies of term infants with the clinical setting of presumed hypoxia-ischemia near the time of delivery have delineated a topography of lesions highly correlated with that defined by human neuropathology and by animal models, including primate models, of hypoxia-ischemia. These imaging findings, coupled with clinical features consistent with perinatal hypoxic-ischemic insult(s), warrant the specific designation of neonatal HIE.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Children's Hospital Boston, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Morphological evaluation of the cerebral blood vessels in the late gestation fetal sheep following hypoxia in utero. Microvasc Res 2012; 85:1-9. [PMID: 23041509 DOI: 10.1016/j.mvr.2012.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/03/2012] [Accepted: 09/25/2012] [Indexed: 11/22/2022]
Abstract
Hypoxia can significantly contribute to the development of permanent brain injury in the term neonate; however the response of cerebral blood vessels is not well understood. This study aimed to quantitatively measure vascular density and morphology using laminin immunohistochemistry as a marker of blood vessels, and determine the effects of a single, severe bout of hypoxia (umbilical cord occlusion, UCO) late in gestation on the developing cerebrovasculature in fetal sheep. At 124-126 days gestation singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10 min UCO or sham UCO (n=5) occurred at 132 days gestation. Fetal brains were collected at 24 h (n=5) or 48 h (n=4) after UCO for vascular density and morphology analysis of laminin immunohistochemistry. 48 h following a single, brief bout of severe hypoxia late in gestation decreased vascular density was seen in the caudate nucleus and no changes in vascular morphology occurred. However closer analysis revealed a significant shift in the frequency of smaller (≤10 μm) to larger (≤100 μm) perimeter blood vessels in periventricular and subcortical white matter. Close examination of the frequency distribution of vascular perimeter highlights that alterations in vascular morphology persist in the near term fetal brain for up to 48 h following a brief (10 min) hypoxia in white but not gray matter. These findings suggest that the near term brain may still be vulnerable to white matter injury following in utero hypoxia.
Collapse
|
43
|
Cohen G, Katz-Salamon M, Malcolm G. A key circulatory defence against asphyxia in infancy--the heart of the matter! J Physiol 2012; 590:6157-65. [PMID: 23006482 DOI: 10.1113/jphysiol.2012.239145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A resumption of, and escalation in, breathing efforts (hyperpnoea) reflexively accelerates heart rate (HR) and may facilitate cardiac and circulatory recovery from apnoea. We analysed whether this mechanism can produce a sustained rise in HR (tachycardia) when a sleeping infant is confronted by mild, rapidly worsening asphyxia, simulating apnoea. Twenty-seven healthy term-born infants aged 1-8 days rebreathed the expired gas for 90 s during quiet sleep to stimulate breathing and heart rate. To discriminate cardio-excitatory effects of central respiratory drive, lung inflation, hypoxia, hypercapnia and asphyxia, we varied the inspired O(2) level and compared temporal changes in response profiles as respiratory sensitivity to hypoxia and asphyxia 'reset' after birth. We demonstrate that asphyxia-induced hyperpnoea and tachycardia strengthen dramatically over the first week with different time courses and via separate mechanisms. Cardiac excitation by hypercapnia improves first, followed by a slower improvement in respiratory hypoxic drive. A rise in CO(2) consequently elicits stronger, longer lasting tachycardia than moderate increases in respiratory drive or lung expansion. We suggest that without a strong facilitating action of CO(2) on the immature heart, respiratory manoeuvres may be unable to reflexively counteract strong vagal bradycardia. This may increase the vulnerability of some infants to apnoea-asphyxia.
Collapse
Affiliation(s)
- Gary Cohen
- Department of Neonatal Medicine, Royal Prince Alfred Hospital, Sydney, Australia.
| | | | | |
Collapse
|
44
|
EEG suppression associated with apneic episodes in a neonate. Case Rep Neurol Med 2012; 2012:250801. [PMID: 22953087 PMCID: PMC3420368 DOI: 10.1155/2012/250801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
We describe the EEG findings from an ex-preterm neonate at term equivalent age who presented with intermittent but prolonged apneic episodes which were presumed to be seizures. A total of 8 apneic episodes were captured (duration 23–376 seconds) during EEG monitoring. The baseline EEG activity was appropriate for corrected gestational age and no electrographic seizure activity was recorded. The average baseline heart rate was 168 beats per minute (bpm) and the baseline oxygen saturation level was in the mid-nineties. Periods of complete EEG suppression lasting 68 and 179 seconds, respectively, were recorded during 2 of these 8 apneic episodes. Both episodes were accompanied by bradycardia less than 70 bpm and oxygen saturation levels of less than 20%. Short but severe episodes of apnea can cause complete EEG suppression in the neonate.
Collapse
|
45
|
Rey-Santano C, Mielgo VE, Gastiasoro E, Murgia X, Lafuente H, Ruiz-Del-Yerro E, Valls-I-Soler A, Hilario E, Alvarez FJ. Early Cerebral Hemodynamic, Metabolic, and Histological Changes in Hypoxic-Ischemic Fetal Lambs during Postnatal Life. Front Neurosci 2011; 5:111. [PMID: 21960958 PMCID: PMC3176408 DOI: 10.3389/fnins.2011.00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/29/2011] [Indexed: 11/13/2022] Open
Abstract
The hemodynamic, metabolic, and biochemical changes produced during the transition from fetal to neonatal life may be aggravated if an episode of asphyxia occurs during fetal life. The aim of the study was to examine regional cerebral blood flow (RCBF), histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress in the first hours of postnatal life following severe fetal asphyxia. Eighteen chronically instrumented newborn lambs were randomly assigned to either a control group or the hypoxic-ischemic (HI) group, in which case fetal asphyxia was induced just before delivery. All the animals were maintained on intermittent positive pressure ventilation for 3 h after delivery. During the HI insult, the injured group developed acidosis, hypoxia, hypercapnia, lactic acidosis, and tachycardia (relative to the control group), without hypotension. The intermittent positive pressure ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilatory support, there continued to be an increased RCBF in inner regions among the HI group, but no significant differences were detected in cortical flow compared to the control group. Also, the magnitude of the increase in TUNEL positive cells (apoptosis) and antioxidant enzymes, and decrease of ATP reserves was significantly greater in the brain regions where the RCBF was not higher. In conclusion, our findings identify early metabolic, histological, and hemodynamic changes involved in brain damage in premature asphyxiated lambs. Such changes have been described in human neonates, so our model could be useful to test the safety and the effectiveness of different neuroprotective or ventilation strategies applied in the first hours after fetal HI injury.
Collapse
Affiliation(s)
- Carmen Rey-Santano
- Research Unit on Experimental Respiratory Physiology, Cruces Hospital Bizkaia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Frasch MG, Keen AE, Gagnon R, Ross MG, Richardson BS. Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. PLoS One 2011; 6:e22100. [PMID: 21789218 PMCID: PMC3137606 DOI: 10.1371/journal.pone.0022100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022] Open
Abstract
Background Severe fetal acidemia during labour with arterial pH below 7.00 is associated with increased risk of hypoxic-ischemic brain injury. Electronic fetal heart rate (FHR) monitoring, the mainstay of intrapartum surveillance, has poor specificity for detecting fetal acidemia. We studied brain electrical activity measured with electrocorticogram (ECOG) in the near term ovine fetus subjected to repetitive umbilical cord occlusions (UCO) inducing FHR decelerations, as might be seen in human labour, to delineate the time-course for ECOG changes with worsening acidemia and thereby assess the potential clinical utility of fetal ECOG. Methodology/Principal Findings Ten chronically catheterized fetal sheep were studied through a series of mild, moderate and severe UCO until the arterial pH was below 7.00. At a pH of 7.24±0.04, 52±13 min prior to the pH dropping <7.00, spectral edge frequency (SEF) increased to 23±2 Hz from 3±1 Hz during each FHR deceleration (p<0.001) and was correlated to decreases in FHR and in fetal arterial blood pressure during each FHR deceleration (p<0.001). Conclusions/Significance The UCO-related changes in ECOG occurred in advance of the pH decreasing below 7.00. These ECOG changes may be a protective mechanism suppressing non-essential energy needs when oxygen supply to the fetal brain is decreased acutely. By detecting such “adaptive brain shutdown,” the need for delivery in high risk pregnant patients may be more accurately predicted than with FHR monitoring alone. Therefore, monitoring fetal electroencephalogram (EEG, the human equivalent of ECOG) during human labour may be a useful adjunct to FHR monitoring.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
47
|
Miller SL, Supramaniam VG, Jenkin G, Walker DW, Wallace EM. Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am J Obstet Gynecol 2009; 201:613.e1-8. [PMID: 19766978 DOI: 10.1016/j.ajog.2009.07.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/13/2009] [Accepted: 07/14/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The objective was to characterize the effect of glucocorticoid treatment on fetal organ blood flow and regional cerebral blood flow in normally grown fetuses and fetuses with intrauterine fetal growth restriction (IUGR). STUDY DESIGN Studies were undertaken in both control and IUGR fetal sheep; growth restriction was induced by ligation of 1 umbilical artery. Fetuses received colored microspheres for organ blood flow calculations before and after 2 maternal betamethasone injections (BM1 and BM2). RESULTS Following BM1, cardiac output was significantly decreased in the control fetuses and blood flow to the heart and placenta was unchanged, whereas total cerebral blood flow was significantly decreased (P<.001), consistent with cerebral vasoconstriction. In the fetuses with IUGR, the cardiac output was significantly increased at +33 hours relative to BM1, and blood flow was increased in all organs; notably, there was a 2-fold increase in cerebral blood flow (P=.03). CONCLUSION The cardiovascular response of the fetus with IUGR to glucocorticoids is profoundly different from the control fetuses, which may induce both short- and long-term injury.
Collapse
Affiliation(s)
- Suzanne L Miller
- Department of Obstetrics and Gynecology, Monash Institute of Medical Research, Monash University, Clayton, VIC, Australia.
| | | | | | | | | |
Collapse
|
48
|
Al-Macki N, Miller SP, Hall N, Shevell M. The spectrum of abnormal neurologic outcomes subsequent to term intrapartum asphyxia. Pediatr Neurol 2009; 41:399-405. [PMID: 19931160 DOI: 10.1016/j.pediatrneurol.2009.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/09/2009] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to describe the spectrum of possible abnormal neurologic outcomes in term infants with intrapartum asphyxia and to identify those clinical factors associated with the later occurrence of cerebral palsy. All children with term intrapartum asphyxia encountered in a single pediatric neurologic practice with at least 2 years of follow-up and an abnormal neurologic outcome were identified. Abnormal outcomes were grouped into those with or without cerebral palsy. A total of 40 children (28 male, 12 female) met study criteria. Of these, 23 developed cerebral palsy; the remaining 17 children developed an abnormal neurologic outcome that did not include cerebral palsy. A more severe grade of neonatal encephalopathy, a higher number of neonatal seizures, the neonatal use of phenytoin, diffuse abnormalities on imaging, and abnormal findings on neurologic examination at neonatal discharge were all significantly (P<0.05) associated with an abnormal outcome that included cerebral palsy. Abnormal neurologic outcomes other than cerebral palsy subsequent to term intrapartum asphyxia may occur. It appears that a more severe grade of apparent initial clinical injury is more likely to result in an outcome featuring cerebral palsy.
Collapse
Affiliation(s)
- Nabil Al-Macki
- Department of Neurology and Neurosurgery, Montreal Children's Hospital-McGill University Health Center, Montreal, Quebec H3H 1P3, Canada
| | | | | | | |
Collapse
|
49
|
Murray DM, Boylan GB, Ryan CA, Connolly S. Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years. Pediatrics 2009; 124:e459-67. [PMID: 19706569 DOI: 10.1542/peds.2008-2190] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We examined the evolution of electroencephalographic (EEG) changes after hypoxic injury. METHODS Continuous, multichannel, video-EEG was recorded for term infants with hypoxic-ischemic encephalopathy, from <6 hours to 72 hours after delivery. One-hour segments at 6, 12, 24, and 48 hours of age of the EEG were analyzed visually, and neurologic outcome was assessed at 24 months. RESULTS Forty-four infants completed neurodevelopmental follow-up. Of those, 20 (45%) had abnormal outcomes. The EEG grade assigned correlated significantly with outcome. EEG abnormalities improved with time, with the worst EEG grade seen on the earliest recording in all cases. The best predictive ability was seen at 6 hours of age (area under the receiver operator characteristic curve: 0.958 [95% confidence interval: 0.88-1.04]; P = .000). Normal/mildly abnormal EEG results at 6, 12, or 24 hours had 100% positive predictive values for normal outcomes and negative predictive values of 67% to 76%. By 48 hours, many of the EEG findings had improved significantly. This led to the positive predictive value of abnormal EEG results being greater at 48 hours (93%), with a concurrent negative predictive value of 71%. EEG features that were associated with abnormal outcomes were background amplitude of <30 microV, interburst interval of >30 seconds, electrographic seizures, and absence of sleep-wake cycling at 48 hours. CONCLUSIONS Early EEG is a reliable predictor of outcome in HIE. A normal or mildly abnormal EEG results within 6 hours after birth were associated with normal neurodevelopmental outcomes at 24 months.
Collapse
Affiliation(s)
- Deirdre M Murray
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
50
|
Gunn AJ, Bennet L. Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol 2009; 36:579-93. [PMID: 19732615 PMCID: PMC2767254 DOI: 10.1016/j.clp.2009.06.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The outcome of perinatal hypoxiaischemia is highly variable, with only a very broad relationship to the 'severity' of oxygen debt as shown by peripheral base deficit and the risk of damage. The present article examines the pathophysiology of asphyxial injury. We dissect the multiple factors that modify the risk of injury, including the depth ('severity'), duration, and repetition of the insult, the maturity, and condition of the fetus, pre-existing hypoxia, and exposure to pyrexia and infection/inflammation.
Collapse
Affiliation(s)
- Alistair Jan Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| | - Laura Bennet
- Professor, Dept of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|