1
|
Yu X, Xu J, Liu W, Zhang Z, He C, Xu W. Protective effects of pulmonary surfactant on decompression sickness in rats. J Appl Physiol (1985) 2020; 130:400-407. [PMID: 33270509 DOI: 10.1152/japplphysiol.00807.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Decompression sickness (DCS) is a systemic pathophysiological process featured by bubble load. Lung dysfunction plays a harmful effect on off-gassing, which contributes to bubble load and subsequent DCS occurrence. This study aimed to investigate the effects of pulmonary surfactant on DCS as it possesses multiple advantages on the lung. Rats were divided into three groups: the normal (n = 10), the surfactant (n = 36), and the saline (n = 36) group. Animals in surfactant or saline group were administered aerosol surfactant or saline 12 h before a stimulated diving, respectively. Signs of DCS were recorded and bubble load was detected. The contents of phospholipid and surfactant protein A (SPA), protein, IL-1 and IL-6 in bronchoalveolar lavage fluid (BALF), and lung wet/dry (W/D) ratio were determined. Serum levels of IL-6, ICAM-1, E-selectin, GSH, and GSSG were detected. In surfactant-treated rats, the morbidity and mortality of DCS markedly decreased (P < 0.01 and P < 0.05, respectively). Survival time prolonged and the latency to DCS dramatically delayed (P < 0.01). More importantly, bubble load markedly decreased (P < 0.01). The increases of protein, IL-1 and IL-6 in BALF, and lung W/D ratio were alleviated. Restoration of total phospholipid and SPA in BALF and ICAM-1 and E-selectin in serum was observed. The inflammation and oxidation were attenuated (P < 0.01). In conclusion, prediving administrating exogenous surfactant by aerosolization is an efficient, simple, and safe method for DCS prevention in rats.NEW & NOTEWORTHY This is the first study exploring the effects of aerosol surfactant on DCS prevention and it was proven to be an efficient and simple method. The role of surfactant in facilitating off-gassing was thought to be the critical mechanism in bubble degrading and subsequent DCS prevention.
Collapse
Affiliation(s)
- Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Ze Zhang
- The 17th detachment of the frigate, Jiangmen, China
| | - Chunyang He
- Department of Hyperbaric Oxygen, General Hospital in Western Theater of Operations, Chengdu, China
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
A novel delivery system for supraglottic atomization allows increased lung deposition rates of pulmonary surfactant in newborn piglets. Pediatr Res 2020; 87:1019-1024. [PMID: 31785590 PMCID: PMC7224119 DOI: 10.1038/s41390-019-0696-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Earlier attempts to deliver effective lung doses of surfactant by aerosolization were unsuccessful, mostly because of technical shortcomings. We aimed at quantifying the lung deposition of poractant alfa with a new supraglottic delivery system for surfactant atomization in an experimental neonatal model. METHODS The method involved six sedated 1-day-old piglets lying in the lateral decubitus, spontaneously breathing on nasal-mask continuous positive airway pressure (nCPAP). A pharyngeal cannula housing a multi-channel air-blasting atomization catheter was placed through the mouth with its tip above the glottis entrance. In all, 200 mg kg-1 of a 99mTc-surfactant mixture was atomized through the catheter synchronously with inspiration. Six intubated control piglets received an equal amount of intratracheally instilled 99mTc-surfactant mixture. The percentage of the 99mTc-surfactant mixture deposited in the lungs was estimated by scintigraphy. RESULTS Median (range) deposition in the lungs was 40% (24-68%) after atomization and 87% (55-95%) after instillation (p < 0.001). Overall, almost 80% of the deposited surfactant was in the dependent lung. Effective atomization time (atomizer on) was 28 (17-52) min, yielding an output rate of 0.1-0.2 mL min-1. CONCLUSIONS Without endotracheal intubation, in spontaneously breathing newborn piglets, this new supraglottic atomizer delivery system attained a median lung deposition of 40% of the nominal dose of surfactant.
Collapse
|
3
|
Bianco F, Ricci F, Catozzi C, Murgia X, Schlun M, Bucholski A, Hetzer U, Bonelli S, Lombardini M, Pasini E, Nutini M, Pertile M, Minocchieri S, Simonato M, Rosa B, Pieraccini G, Moneti G, Lorenzini L, Catinella S, Villetti G, Civelli M, Pioselli B, Cogo P, Carnielli V, Dani C, Salomone F. From bench to bedside: in vitro and in vivo evaluation of a neonate-focused nebulized surfactant delivery strategy. Respir Res 2019; 20:134. [PMID: 31266508 PMCID: PMC6604359 DOI: 10.1186/s12931-019-1096-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/12/2019] [Indexed: 01/17/2023] Open
Abstract
Background Non-invasive delivery of nebulized surfactant has been a neonatology long-pursued goal. Nevertheless, the clinical efficacy of nebulized surfactant remains inconclusive, in part, due to the great technical challenges of depositing nebulized drugs in the lungs of preterm infants. The aim of this study was to investigate the feasibility of delivering nebulized surfactant (poractant alfa) in vitro and in vivo with an adapted, neonate-tailored aerosol delivery strategy. Methods Particle size distribution of undiluted poractant alfa aerosols generated by a customized eFlow-Neos nebulizer system was determined by laser diffraction. The theoretical nebulized surfactant lung dose was estimated in vitro in a clinical setting replica including a neonatal continuous positive airway pressure (CPAP) circuit, a cast of the upper airways of a preterm neonate, and a breath simulator programmed with the tidal breathing pattern of an infant with mild respiratory distress syndrome (RDS). A dose-response study with nebulized surfactant covering the 100–600 mg/kg nominal dose-range was conducted in RDS-modelling, lung-lavaged spontaneously-breathing rabbits managed with nasal CPAP. The effects of nebulized poractant alfa on arterial gas exchange and lung mechanics were assessed. Exogenous alveolar disaturated-phosphatidylcholine (DSPC) in the lungs was measured as a proxy of surfactant deposition efficacy. Results Laser diffraction studies demonstrated suitable aerosol characteristics for inhalation (mass median diameter, MMD = 3 μm). The mean surfactant lung dose determined in vitro was 13.7% ± 4.0 of the 200 mg/kg nominal dose. Nebulized surfactant delivered to spontaneously-breathing rabbits during nasal CPAP significantly improved arterial oxygenation compared to animals receiving CPAP only. Particularly, the groups of animals treated with 200 mg/kg and 400 mg/kg of nebulized poractant alfa achieved an equivalent pulmonary response in terms of oxygenation and lung mechanics as the group of animals treated with instilled surfactant (200 mg/kg). Conclusions The customized eFlow-Neos vibrating-membrane nebulizer system efficiently generated respirable aerosols of undiluted poractant alfa. Nebulized surfactant delivered at doses of 200 mg/kg and 400 mg/kg elicited a pulmonary response equivalent to that observed after treatment with an intratracheal surfactant bolus of 200 mg/kg. This bench-characterized nebulized surfactant delivery strategy is now under evaluation in Phase II clinical trial (EUDRACT No.:2016–004547-36). Electronic supplementary material The online version of this article (10.1186/s12931-019-1096-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Bianco
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - F Ricci
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - C Catozzi
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - X Murgia
- Scientific Consultancy, Saarbrücken, Germany
| | - M Schlun
- PARI Pharma GmbH, Starnberg, Germany
| | | | - U Hetzer
- PARI Pharma GmbH, Starnberg, Germany
| | - S Bonelli
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - M Lombardini
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - E Pasini
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - M Nutini
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - M Pertile
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - S Minocchieri
- Division of Neonatology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - M Simonato
- Pediatric Research Institute "Città della Speranza", Padova, Italy
| | - B Rosa
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - G Pieraccini
- Mass Spectrometry Center (CISM), Polo Biomedico, Careggi University Hospital of Florence, Florence, Italy
| | - G Moneti
- Mass Spectrometry Center (CISM), Polo Biomedico, Careggi University Hospital of Florence, Florence, Italy
| | - L Lorenzini
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - S Catinella
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - G Villetti
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - M Civelli
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - B Pioselli
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - P Cogo
- Division of Pediatrics, Department of Medicine, University of Udine, Udine, Italy
| | - V Carnielli
- Polytechnic University of Marche and Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - C Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence School of Medicine, Careggi University Hospital of Florence, Viale Morgagni, 85, Florence, Italy.
| | - F Salomone
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| |
Collapse
|
4
|
Sood BG, Cortez J, Kolli M, Sharma A, Delaney-Black V, Chen X. Aerosolized surfactant in neonatal respiratory distress syndrome: Phase I study. Early Hum Dev 2019; 134:19-25. [PMID: 31121339 DOI: 10.1016/j.earlhumdev.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Treating respiratory distress syndrome (RDS) with intratracheal surfactant requires endotracheal intubation and mechanical ventilation, (MV) with their attendant risks. Use of non-invasive respiratory support in the delivery room averts the need for MV but delays surfactant administration. OBJECTIVE We hypothesized that aerosolized surfactant is feasible and safe in infants 240/7-366/7 weeks gestational age (GA) with RDS, receiving non-invasive respiratory support. DESIGN/METHODS In an unblinded Phase I study, sequentially enrolled infants with RDS stratified by GA received increasing doses (100 or 200 mg/kg of phospholipid) and dilutions (12.5 or 8.3 mg/ml) of surfactant using a jet nebulizer. Infants were monitored clinically and with cerebral oximetry. RESULTS Seventeen infants were enrolled. Age at start of first dose and dose duration were 4.9 (3.4-10.1) and 2.1 (1.0-2.8) hours respectively. Two infants in the lowest GA stratum (240/7-286/7) required intubation within 2 h after the first dose. Fifteen infants completed the study; 13 received two doses. Infants tolerated the aerosol treatment well. No other significant adverse events were identified. Parental permission for cerebral oximetry was obtained in 16 infants. In the two infants who later exited the study, values prior to start of aerosolized surfactant were lower compared to 14 infants who completed the study (p = 0.0835), increased after start of study intervention (p = 0.0105) and decreased after intubation (p = 0.0003). CONCLUSIONS We have demonstrated the feasibility and safety of aerosolized surfactant in preterm infants receiving non-invasive respiratory support. The treatment was well tolerated by infants and clinical caregivers.
Collapse
Affiliation(s)
- Beena G Sood
- Children's Hospital of Michigan, 3901 Beaubien Blvd., Suite 3N027, Detroit, MI 48201, USA; Hutzel Women's Hospital, 3990 John R St, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Josef Cortez
- Department of Pediatrics, University of Florida College of Medicine, 665 W 8th Street, Jacksonville, FL 32209, USA.
| | - Madhuri Kolli
- Department of Pediatrics, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA
| | - Amit Sharma
- Children's Hospital of Michigan, 3901 Beaubien Blvd., Suite 3N027, Detroit, MI 48201, USA; Hutzel Women's Hospital, 3990 John R St, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Virginia Delaney-Black
- Department of Pediatrics, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Xinguang Chen
- University of Florida College of Medicine, College of Public Health, 2004 Mowray Road, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Kim HC, Suresh MV, Singh VV, Arick DQ, Machado-Aranda DA, Raghavendran K, Won YY. Polymer Lung Surfactants. ACS APPLIED BIO MATERIALS 2018; 1:581-592. [PMID: 30627707 PMCID: PMC6322699 DOI: 10.1021/acsabm.8b00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Animal-derived lung surfactants annually save 40 000 infants with neonatal respiratory distress syndrome (NRDS) in the United States. Lung surfactants have further potential for treating about 190 000 adult patients with acute respiratory distress syndrome (ARDS) each year. To this end, the properties of current therapeutics need to be modified. Although the limitations of current therapeutics have been recognized since the 1990s, there has been little improvement. To address this gap, our laboratory has been exploring a radically different approach in which, instead of lipids, proteins, or peptides, synthetic polymers are used as the active ingredient. This endeavor has led to an identification of a promising polymer-based lung surfactant candidate, poly(styrene-b-ethylene glycol) (PS-PEG) polymer nanomicelles. PS-PEG micelles produce extremely low surface tension under high compression because PS-PEG micelles have a strong affinity to the air-water interface. NMR measurements support that PS-PEG micelles are less hydrated than ordinary polymer micelles. Studies using mouse models of acid aspiration confirm that PS-PEG lung surfactant is safe and efficacious.
Collapse
Affiliation(s)
- Hyun Chang Kim
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Vikas V. Singh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Davis Q. Arick
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Krishnan Raghavendran
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
7
|
Ricci F, Salomone F, Kuypers E, Ophelders D, Nikiforou M, Willems M, Krieger T, Murgia X, Hütten M, Kramer BW, Bianco F. In Vivo Evaluation of the Acute Pulmonary Response to Poractant Alfa and Bovactant Treatments in Lung-Lavaged Adult Rabbits and in Preterm Lambs with Respiratory Distress Syndrome. Front Pediatr 2017; 5:186. [PMID: 28913327 PMCID: PMC5583171 DOI: 10.3389/fped.2017.00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Poractant alfa (Curosurf®) and Bovactant (Alveofact®) are two animal-derived pulmonary surfactants preparations approved for the treatment of neonatal respiratory distress syndrome (nRDS). They differ in their source, composition, pharmaceutical form, and clinical dose. How much these differences affect the acute pulmonary response to treatment is unknown. OBJECTIVES Comparing these two surfactant preparations in two different animal models of respiratory distress focusing on the short-term response to treatment. METHODS Poractant alfa and Bovactant were administered in a 50-200 mg/kg dose range to surfactant-depleted adult rabbits with acute respiratory distress syndrome induced by lavage and to preterm lambs (127-129 days gestational age) with nRDS induced by developmental immaturity. The acute impact of surfactant therapy on gas exchange and pulmonary mechanics was assessed for 1 h in surfactant-depleted rabbits and for 3 h in preterm lambs. RESULTS Overall, treatment with Bovactant 50 mg/kg or Poractant alfa 50 mg/kg did not achieve full recovery of the rabbits' respiratory conditions, as indicated by significantly lower arterial oxygenation and carbon dioxide values. By contrast, the two approved doses for clinical use of Poractant alfa (100 and 200 mg/kg) achieved a rapid and sustained recovery in both animal models. The comparison of the ventilation indices of the licensed doses of Bovactant (50 mg/kg) and Poractant alfa (100 mg/kg) showed a superior performance of the latter preparation in both animal models. At equal phospholipid doses, Poractant alfa was superior to Bovactant in terms of arterial oxygenation in both animal models. In preterm lambs, surfactant replacement therapy with Poractant alfa at either 100 or 200 mg/kg was associated with significantly higher lung gas volumes compared to Bovactant treatment with 100 mg/kg. CONCLUSION At the licensed doses, the acute pulmonary response to Poractant alfa was significantly better than the one observed after Bovactant treatment, either at 50 or at 100 mg/kg dose, in two animal models of pulmonary failure.
Collapse
Affiliation(s)
- Francesca Ricci
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Fabrizio Salomone
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Elke Kuypers
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Daan Ophelders
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Maria Nikiforou
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Monique Willems
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tobias Krieger
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Xabier Murgia
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Matthias Hütten
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Boris W Kramer
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Federico Bianco
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| |
Collapse
|
8
|
Fang TP, Lin HL, Chiu SH, Wang SH, DiBlasi RM, Tsai YH, Fink JB. Aerosol Delivery Using Jet Nebulizer and Vibrating Mesh Nebulizer During High Frequency Oscillatory Ventilation: An In Vitro Comparison. J Aerosol Med Pulm Drug Deliv 2016; 29:447-453. [DOI: 10.1089/jamp.2015.1265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Tien-Pei Fang
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Taiwan
| | - Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hua Chiu
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Szu-Hui Wang
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Robert M. DiBlasi
- Department of Respiratory Therapy, Seattle Children's Hospital, Seattle, Washington
| | - Ying-Huang Tsai
- Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - James B. Fink
- Division of Respiratory Therapy, Georgia State University, Atlanta, Georgia
| |
Collapse
|
9
|
Rimensberger PC. Surfactant. PEDIATRIC AND NEONATAL MECHANICAL VENTILATION 2015. [PMCID: PMC7175631 DOI: 10.1007/978-3-642-01219-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exogenous pulmonary surfactant, widely used in neonatal care, is one of the best-studied treatments in neonatology, and its introduction in the 1990s led to a significant improvement in neonatal outcomes in preterm infants, including a decrease in mortality. This chapter provides an overview of surfactant composition and function in health and disease and summarizes the evidence for its clinical use.
Collapse
Affiliation(s)
- Peter C. Rimensberger
- Service of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University Hospital of Geneva, Geneve, Switzerland
| |
Collapse
|
10
|
Raghavendran K, Willson D, Notter RH. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit Care Clin 2011; 27:525-59. [PMID: 21742216 DOI: 10.1016/j.ccc.2011.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This article examines exogenous lung surfactant replacement therapy and its usefulness in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Surfactant therapy is beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 years with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. This article reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, focusing on its potential advantages in patients with direct pulmonary forms of these syndromes.
Collapse
Affiliation(s)
- Krishnan Raghavendran
- Division of Acute Care Surgery, Department of Surgery, University of Michigan Health System, 1500 East Medical Center Drive, 1C340A-UH, SPC 5033, Ann Arbor, MI 48109-5033, USA.
| | | | | |
Collapse
|
11
|
Pharmacokinetics and clinical predictors of surfactant redosing in respiratory distress syndrome. Intensive Care Med 2010; 37:510-7. [DOI: 10.1007/s00134-010-2091-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 11/07/2010] [Indexed: 11/24/2022]
|
12
|
SOOD BG, SHEN Y, LATIF Z, GALLI B, DAWE EJ, HAACKE EM. Effective aerosol delivery during high-frequency ventilation in neonatal pigs. Respirology 2010; 15:551-5. [DOI: 10.1111/j.1440-1843.2010.01714.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abstract
This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.
Collapse
Affiliation(s)
- Douglas F Willson
- Pediatric ICU and Division of Pediatric Critical Care, University of Virginia Children's Medical Center, UVA Health Sciences System, Box 800386, Charlottesville, VA 22908-0386, USA.
| | | | | |
Collapse
|
14
|
Jet nebulization of prostaglandin E1 during neonatal mechanical ventilation: stability, emitted dose and aerosol particle size. Pharmacol Res 2007; 56:531-41. [PMID: 17997106 DOI: 10.1016/j.phrs.2007.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND We have previously reported the safety of aerosolized PGE1 in neonatal hypoxemic respiratory failure. The aim of this study is to characterize the physicochemical properties of PGE1 solution, stability, emitted dose and the aerodynamic particle size distribution (APSD) of PGE1 aerosol in a neonatal ventilator circuit. METHODS PGE1 was diluted in normal saline and physicochemical properties of the solution characterized. Chemical stability and emitted dose were evaluated during jet nebulization in a neonatal conventional (CMV) or high frequency (HFV) ventilator circuit by a high performance liquid chromatography-mass spectrometry method. The APSD of the PGE1 aerosol was evaluated with a 6-stage cascade impactor during CMV. RESULTS PGE1 solution in normal saline had a low viscosity (0.9818 cP) and surface tension (60.8 mN/m) making it suitable for aerosolization. Little or no degradation of PGE1 was observed in samples from aerosol condensates, the PGE1 solution infused over 24h, or the residual solution in the nebulizer. The emitted dose of PGE1 following jet nebulization was 32-40% during CMV and 0.1% during HFV. The PGE1 aerosol had a mass median aerodynamic diameter of 1.4 microm and geometric S.D. of 2.9 with 90% of particles being <4.0 microm in size. CONCLUSION Nebulization of PGE1 during neonatal CMV or HFV is efficient and results in rapid nebulization without altering the chemical structure. On the basis of the physicochemical properties of PGE1 solution and the APSD of the PGE1 aerosol, one can predict predominantly alveolar deposition of aerosolized PGE1.
Collapse
|
15
|
Abstract
OBJECTIVE Inhaled nitric oxide has gained an established place in the management of pulmonary hypertension. However, cost, potential toxicity, and the lack of positive outcome data with inhaled nitric oxide therapy has generated interest in alternative inhaled, selective pulmonary vasodilators. This article describes those alternatives that have been studied to date. DESIGN Literature review of inhaled, selective pulmonary vasodilators other than nitric oxide. METHODS A review of the molecular mechanisms, potential side effects, and the studies to date in both animal models and clinical studies describing the physiologic effects of alternative agents to inhaled nitric oxide. CONCLUSION There are a number of available agents that have comparable physiologic effects as inhaled nitric oxide. The best studied of these are the inhaled prostanoids (prostacyclin and iloprost), and there is growing interest in novel therapies such as phosphodiesterase inhibitors and neuropeptides.
Collapse
Affiliation(s)
- Stuart M Lowson
- Department of Anesthesiology, University of Virginia Health Services Foundation, Charlottesville, VA, USA
| |
Collapse
|
16
|
Abstract
There is increasing evidence from studies on animals and humans that surfactant administration may have a great impact on cerebral perfusion. These effects may result from direct pulmonary or hemodynamic changes (or a combination of both), but may also be due to rapid alterations of blood gases. Type of surfactant and mode of administration seem to play an important role. Results from the pertinent literature are summarised with a special emphasis on how to avoid potentially harmful side effects of surfactant therapy in preterm infants.
Collapse
|
17
|
Abstract
Exogenous surfactant therapy has been a significant advance in the management of preterm infants with RDS. It has become established as a standard part of the management of such infants. Both natural and synthetic surfactants lead to clinical improvement and decreased mortality, with natural surfactants having additional advantages over currently available synthetic surfactants. The use of prophylactic surfactant administered after initial stabilization at birth to infants at risk for RDS has benefits compared with rescue surfactant given to treat infants with established RDS. In infants who do not receive prophylaxis, earlier treatment (before 2 hours) has benefits over later treatment. The use of multiple doses of surfactant is a superior strategy to the use of a single dose, whereas the use of a higher threshold for retreatment seems to be as effective as a low threshold. Adverse effects of surfactant therapy are infrequent and usually not serious. Long-term follow-up of infants treated with surfactant in the neonatal period is reassuring. In the future we are likely to see the development of new types of surfactants. Further research is required to determine the optimal use of surfactant in conjunction with other respiratory interventions.
Collapse
Affiliation(s)
- G K Suresh
- Neonatal Division, Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont, USA.
| | | |
Collapse
|