Ho D, Chen L, Zhao X, Durham N, Pannirselvam M, Vatner DE, Morgans DJ, Malik FI, Vatner SF, Shen YT. Smooth muscle myosin inhibition: a novel therapeutic approach for pulmonary hypertension.
PLoS One 2012;
7:e36302. [PMID:
22563487 PMCID:
PMC3341368 DOI:
10.1371/journal.pone.0036302]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/02/2012] [Indexed: 12/01/2022] Open
Abstract
Objective
Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165) ameliorates pulmonary hypertension.
Materials and Methods
Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.). In rats, chronic pulmonary hypertension was induced by monocrotaline.
Results
CK-165 (4 mg/kg, i.v.) reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01), while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05) while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8%) reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%).
Conclusion
Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.
Collapse