1
|
Westerberg NS, Atneosen-Åsegg M, Melheim M, Chollet ME, Harrison SP, Siller R, Sullivan GJ, Almaas R. Effect of hypoxia on aquaporins and hepatobiliary transport systems in human hepatic cells. Pediatr Res 2024:10.1038/s41390-024-03368-0. [PMID: 38951656 DOI: 10.1038/s41390-024-03368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Hepatic ischemia and hypoxia are accompanied by reduced bile flow, biliary sludge and cholestasis. Hepatobiliary transport systems, nuclear receptors and aquaporins were studied after hypoxia and reoxygenation in human hepatic cells. METHODS Expression of Aquaporin 8 (AQP8), Aquaporin 9 (AQP9), Pregnane X receptor (PXR), Farnesoid X receptor (FXR), Organic anion transporting polypeptide 1 (OATP1), and the Multidrug resistance-associated protein 4 (MRP4) were investigated in induced pluripotent stem cells (iPSCs) derived hepatic cells and the immortalized hepatic line HepG2. HepG2 was subjected to combined oxygen and glucose deprivation for 4 h followed by reoxygenation. RESULTS Expression of AQP8 and AQP9 increased during differentiation in iPSC-derived hepatic cells. Hypoxia did not alter mRNA levels of AQP8, but reoxygenation caused a marked increase in AQP8 mRNA expression. While expression of OATP1 had a transient increase during reoxygenation, MRP4 showed a delayed downregulation. Knock-down of FXR did not alter the expression of AQP8, AQP9, MRP4, or OATP1. Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation compared to normoxic controls. CONCLUSIONS Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells. Expression patterns differed between hepatobiliary transport systems during hypoxia and reoxygenation. IMPACT Expression of AQP8 and AQP9 increased during differentiation in induced pluripotent stem cells. Expression of hepatobiliary transporters varies during hypoxia and reoxygenation. Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation. Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells. Hypoxia and reoxygenation may affect aquaporins in hepatic cells and potentially affect bile composition.
Collapse
Affiliation(s)
- Niklas Starck Westerberg
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Maria Melheim
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Maria Eugenia Chollet
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Richard Siller
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- European Reference Network-Rare Liver, Hamburg, Germany.
| |
Collapse
|
2
|
Hill E, Nagel D, Parri R, Coleman M. Stem cell-derived astrocytes: are they physiologically credible? J Physiol 2016; 594:6595-6606. [PMID: 26634807 PMCID: PMC5108894 DOI: 10.1113/jp270658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/28/2015] [Indexed: 01/29/2023] Open
Abstract
Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte-neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human-based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell-derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem cell-based approaches in fulfilling the need for human-based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell-derived astrocytes have demonstrated functional activities that are equivalent to those observed in vivo.
Collapse
Affiliation(s)
- Eric Hill
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - David Nagel
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Rheinallt Parri
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Michael Coleman
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| |
Collapse
|
3
|
Abstract
Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality.
Collapse
Affiliation(s)
- Maria Lalkovičová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Viera Danielisová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| |
Collapse
|
4
|
Almaas R, Hankø E, Mollnes TE, Rootwelt T. Dexamethasone reduces bilirubin-induced toxicity and IL-8 and MCP-1 release in human NT2-N neurons. Brain Res 2012; 1458:12-7. [PMID: 22546346 DOI: 10.1016/j.brainres.2012.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
The mechanisms of neurotoxicity induced by unconjugated bilirubin (UCB) in newborns are incompletely understood. UCB may cause both necrotic and apoptotic neuronal death. We explored UCB toxicity and release of cytokines in human NT2-N neurons and the effect of dexamethasone on these processes. Cultured NT2-N neurons were exposed to UCB, and neuronal damage was evaluated by LDH release and MTT cleavage. After 96 hours, 2 μM UCB significantly increased release of IL-8 and MCP-1, but not IL-13, IP-10, PDGF, or VEGF. Dexamethasone significantly lowered the UCB-induced increase in MCP-1 release, and attenuated UCB-induced neuronal damage assessed with MTT cleavage and LDH release. For comparison, the effects of hydrogen peroxide on cytokine formation and neuronal damage were tested. Hydrogen peroxide increased MCP-1, IP-10, and VEGF, but not IL-8, IL-13, or PDGF. Dexamethasone inhibited the hydrogen peroxide-induced increase in MCP-1 and IP-10. We conclude that UCB causes release of IL-8 and MCP-1 in cultured human NT2-N neurons. Dexamethasone reduces UCB-induced cytokine release and protects against UCB-induced toxicity.
Collapse
Affiliation(s)
- Runar Almaas
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet, N-0027 Oslo, Norway.
| | | | | | | |
Collapse
|
5
|
Abd-El-Fattah AA, El-Sawalhi MM, Rashed ER, El-Ghazaly MA. Possible role of vitamin E, coenzyme Q10 and rutin in protection against cerebral ischemia/reperfusion injury in irradiated rats. Int J Radiat Biol 2010; 86:1070-8. [PMID: 20712430 DOI: 10.3109/09553002.2010.501844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the possible role of vitamin E, coenzyme Q10 and rutin in ameliorating the biochemical changes in brain and serum induced by cerebral ischemia/reperfusion (I/R) in whole body γ-irradiated rats. MATERIALS AND METHODS Cerebral ischemia was induced in male Wistar rats (either irradiated or non-irradiated) followed by reperfusion. RESULTS I/R increased brain content of malondialdehyde (MDA) and depleted its glutathione (GSH) content with a compensatory elevation in cytosolic activities of glutathione peroxidase (GPx) and glutathione reductase (GR) enzymes. It also raised brain cytosolic lactate dehydrogenase (LDH) activity and calcium (Ca(2+)) level. Furthermore, I/R provoked an inflammatory response reflected by an increment in serum levels of the proinflammatory cytokines tumour necrosis factor-α (TNF-α) and interlukin-1β (IL-1β). Moreover, induction of I/R in irradiated rats resulted in a further increase in brain oxidative stress and cytosolic LDH activity, disturbed brain Ca(2+) homeostasis and exaggerated the inflammatory reaction. During irradiation, administration of each of vitamin E, coenzyme Q10 (CoQ10) and rutin to irradiated rats before induction of I/R, alleviated the brain oxidative stress. Moreover, these antioxidants caused attenuation of the rise of the cytosolic activities of GPx and GR. A lowering effect of the cytosolic LDH activity and Ca(2+) level were caused by treatment with antioxidants. Each of vitamin E and rutin revealed an anti-inflammatory action of these antioxidants, while CoQ10 had no effect on serum levels of TNF-α and IL-1β. CONCLUSION These findings indicate that supplementation with either vitamin E, CoQ10 or rutin ameliorated most of the biochemical changes induced by I/R in irradiated rat brain and serum.
Collapse
Affiliation(s)
- Amal A Abd-El-Fattah
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | | | | |
Collapse
|
6
|
Erratum: Neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor 2009; 2:137-144. [PMID: 20046848 PMCID: PMC2798986 DOI: 10.1007/s12177-009-9033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Given the advantages of being stable in the ambient environment, being permeable to the blood-brain and/or blood-eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague-Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer's disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, preclinical data to justify bringing such therapeutic compounds to clinical trials in humans is feasible.[This corrects the article on p. in vol. .].
Collapse
|
7
|
Tan Z. Neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor 2009; 2:57-64. [PMID: 19672463 PMCID: PMC2723671 DOI: 10.1007/s12177-009-9024-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/02/2009] [Indexed: 01/06/2023] Open
Abstract
Given the advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague–Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer’s disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, it would not take much preclinical data to justify bringing such therapeutic compounds to clinical trials in humans.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department of Neurology, University of California Irvine School of Medicine, ZOT 4275, 100 Irvine Hall, Irvine, CA 92697 USA
| |
Collapse
|
8
|
Dalen ML, Frøyland E, Saugstad OD, Mollnes TE, Rootwelt T. Post-hypoxic hypothermia is protective in human NT2-N neurons regardless of oxygen concentration during reoxygenation. Brain Res 2009; 1259:80-9. [DOI: 10.1016/j.brainres.2008.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 01/08/2023]
|
9
|
Fallarero A, Peltoketo A, Loikkanen J, Tammela P, Vidal A, Vuorela P. Effects of the aqueous extract of Bryothamnion triquetrum on chemical hypoxia and aglycemia-induced damage in GT1-7 mouse hypothalamic immortalized cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13:240-5. [PMID: 16492526 DOI: 10.1016/j.phymed.2003.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 10/09/2003] [Indexed: 05/06/2023]
Abstract
The neuroprotective ability of the aqueous crude extract of Bryothamnion triquetrum (S. G. Gmelin) Howe and its cinnamic acids was studied in GT1-7 cells exposed to the combination of chemical hypoxia (KCN 3 mM) and aglycemia conditions. These ischemia-like conditions provoked acute and delayed cytotoxicity in GT1-7 cells if extended for more than 90 min. The extract was able to protect from the cell death produced by severe (180 min) chemical hypoxia/aglycemia insult, which cannot be related to its glucose content, and also reduced the cytotoxicity and early production of free radicals produced by mild (105 min) insult. Results showed that some of these protective effects of the extract are partially related to the presence of ferulic acid. The data additionally suggest that neuroprotection exerted by the extract is related to its ability to reduce free-radical generation by mechanisms different from the direct scavenging of the radical entities.
Collapse
Affiliation(s)
- A Fallarero
- Department of Biochemistry, Faculty of Biology, University of Havana, Cuba
| | | | | | | | | | | |
Collapse
|
10
|
Frøyland E, Wibrand F, Almaas R, Dalen I, Lindstad JK, Rootwelt T. Acidosis during reoxygenation has an early detrimental effect on neuronal metabolic activity. Pediatr Res 2005; 57:488-93. [PMID: 15695602 DOI: 10.1203/01.pdr.0000155946.82230.2e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We recently showed that acidosis is protective during hypoxia and detrimental during reoxygenation. We hypothesized that the detrimental effect of acidosis during reoxygenation was due to a negative effect on mitochondrial function. Human postmitotic NT2-N neurons were exposed to 3 h of hypoxia and glucose deprivation and then reoxygenated for 0, 1, 4, 9, or 21 h. The detrimental effect of acidotic reoxygenation on metabolic activity was evident already after 1 h of reoxygenation, when MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] reduction (percentage of normoxic controls) was significantly higher in cells reoxygenated with neutral compared with acidotic medium both after acidotic hypoxia (83+/-26% versus 67+/-27%, p=0.006) and after neutral hypoxia (51+/-12% versus 41+/-7%, p=0.005). Hypoxanthine, a marker of cellular energy failure, increased more with acidotic compared with neutral reoxygenation both after acidotic hypoxia (after 21 h: 7.7+/-2.7 versus 3.1+/-1.9 microM, p<0.001) and after neutral hypoxia (10.4+/-2.6 versus 7.9+/-2.8 microM, p=0.001). During hypoxia and reoxygenation, there was an earlier reduction in the activity of complex IV compared with complexes II+III, and the ratio between these complexes fell during the first hour of reoxygenation. The reduction in complex IV activity was alleviated with acidotic hypoxia. Acidosis during reoxygenation, however, had no effect on the activity of either complex IV or complexes II+III. We conclude that acidosis during hypoxia increases neuronal survival and preserves complex IV activity. Acidosis during reoxygenation has an early detrimental effect on metabolic activity, but this is not mediated through an effect on the mitochondrial complexes IV or II+III.
Collapse
Affiliation(s)
- Elisabeth Frøyland
- Department of Pediatric Research, Rikshospitalet University Clinic, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
11
|
Paquet-Durand F, Bicker G. Hypoxic/ischaemic cell damage in cultured human NT-2 neurons. Brain Res 2004; 1011:33-47. [PMID: 15140642 DOI: 10.1016/j.brainres.2004.02.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Postmitotic neurons were generated from the human NT-2 teratocarcinoma cell line in a novel rapid differentiation procedure. These neurons were used to establish an in vitro assay system that allows the investigation of hypoxic/ischaemic cell damage and the development of neuroprotective strategies. In experiments of simulated ischaemia, the neurons were subjected to anoxia and hypoglycaemia. The viability of NT-2 neuronal cells was significantly reduced by anoxia especially in the presence of glutamate, reflecting the cellular vulnerability to excitotoxic conditions. The addition of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 reduced glutamate-induced neuronal damage. Calcium imaging showed that NT-2 neurons increased cytosolic calcium levels in response to stimulation with glutamate or NMDA, an effect that was abolished in calcium free medium and at low pH values. The NMDA receptor antagonists MK-801, AP 5 and ketamine reduced the NMDA-induced response, suggesting the presence of functional NMDA receptors in the human neuronal cells. The mitochondrial potential of neurons was estimated using the fluorescent dye rhodamine 123 (R123). The fluorescence imaging experiments indicated an energetic collapse of mitochondrial functions during anoxia, suggesting that the human NT-2 neurons can be used to investigate subcellular processes during the excitotoxic cascade.
Collapse
Affiliation(s)
- François Paquet-Durand
- School of Veterinary Medicine Hannover, Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | | |
Collapse
|
12
|
Sperling O, Bromberg Y, Oelsner H, Zoref-Shani E. Reactive oxygen species play an important role in iodoacetate-induced neurotoxicity in primary rat neuronal cultures and in differentiated PC12 cells. Neurosci Lett 2003; 351:137-40. [PMID: 14623125 DOI: 10.1016/s0304-3940(03)00858-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of reactive oxygen species in the pathogenesis of the neurotoxicity associated with ischemia-reperfusion, was investigated in a model of primary rat neuronal cultures and of differentiated PC12 cells, subjected to chemical ischemia by iodoacetic acid (IAA, 2.5 h) followed by a short period of reperfusion (1 h). The injury to the cells was assessed by lactate dehydrogenase (LDH) release into the culture media. The PC12 cells exhibited relative resistance to IAA cytotoxicity. Therefore these cells were studied at a 4-fold higher IAA concentration (400 microM instead of 100 microM for the neurons). The injury to both cell types was significantly greater in the short post-insult reperfusion (PIR) period than during the insult period. The presence, during the combined insult and PIR periods, of alpha-tocopherol (100 microM), melatonin (1 mM) and LY231617 (5 microM), conferred to both cell types considerable protection against the injury occurring during the insult and during the PIR periods (assessed separately). Superoxide dismutase (SOD; 500 IU/ml) conferred protection to the neurons, but not to the PC12 cells. When exposure to the antioxidants was limited to the short (15 min) pre insult period, only LY231617 conferred protection. In the neurons the protection occurred only during the insult period, whereas in the PC12 cells during both the insult and PIR periods. When the exposure to the antioxidants was limited to the PIR period, only SOD conferred protection and only in the neuronal cultures. These findings suggest that neuronal damage caused during ischemia-reperfusion can be diminished markedly by co-presence of antioxidants during the insult period. Certain antioxidants may protect the neurons even when present only before or after the insult.
Collapse
Affiliation(s)
- Oded Sperling
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
13
|
Almaas R, Pytte M, Lindstad JK, Wright M, Saugstad OD, Pleasure D, Rootwelt T. Acidosis has opposite effects on neuronal survival during hypoxia and reoxygenation. J Neurochem 2003; 84:1018-27. [PMID: 12603826 DOI: 10.1046/j.1471-4159.2003.01593.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study the effect of extracellular acidosis on apoptosis and necrosis during ischemia and reoxygenation, we exposed human post-mitotic NT2-N neurones to oxygen and glucose deprivation (OGD) followed by reoxygenation. In some experiments, pH of the cell medium was lowered to 5.9 during either OGD or reoxygenation or both. Staurosporine, used as a positive control for apoptosis, caused Poly(ADP-ribose)-polymerase (PARP) cleavage and nuclear fragmentation, but no PARP cleavage and little fragmentation were seen after OGD. Low molecular weight DNA fragments were found after staurosporine treatment, but not after OGD. No protective effect of caspase inhibitors was seen after 3 h of OGD and 21 h of reoxygenation, but after 45 h of reoxygenation caspase inhibition induced a modest improvement in 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) cleavage. While acidosis during OGD accompanied by neutral medium during reoxygenation protected the neurones (MTT: 228 +/- 117% of neutral medium, p < 0.001), acidosis during reoxygenation only was detrimental (MTT: 38 +/- 25%, p < 0.01). We conclude that apoptotic mechanisms play a minor role after OGD in NT2-N neurones. The effect of acidosis on neuronal survival depends on the timing of acidosis, as acidosis was protective during OGD and detrimental during reoxygenation.
Collapse
Affiliation(s)
- Runar Almaas
- Department of Pediatric Research, Rikshospitalet, N-0027 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|