1
|
Bhattacharya S, Yin J, Huo W, Chaum E. Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Stem Cell Res Ther 2022; 13:260. [PMID: 35715869 PMCID: PMC9205099 DOI: 10.1186/s13287-022-02937-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in the retinal pigment epithelium (RPE) have been implicated in the pathogenesis of age-related macular degeneration (AMD). However, a deeper understanding is required to determine the contribution of mitochondrial dysfunction and impaired mitochondrial autophagy (mitophagy) to RPE damage and AMD pathobiology. In this study, we model the impact of a prototypical systemic mitochondrial defect, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), in RPE health and homeostasis as an in vitro model for impaired mitochondrial bioenergetics. Methods We used induced pluripotent stem cells (iPSCs) derived from skin biopsies of MELAS patients (m.3243A > G tRNA leu mutation) with different levels of mtDNA heteroplasmy and differentiated them into RPE cells. Mitochondrial depletion of ARPE-19 cells (p0 cells) was also performed using 50 ng/mL ethidium bromide (EtBr) and 50 mg/ml uridine. Cell fusion of the human platelets with the p0 cells performed using polyethylene glycol (PEG)/suspension essential medium (SMEM) mixture to generate platelet/RPE “cybrids.” Confocal microscopy, FLowSight Imaging cytometry, and Seahorse XF Mito Stress test were used to analyze mitochondrial function. Western Blotting was used to analyze expression of autophagy and mitophagy proteins. Results We found that MELAS iPSC-derived RPE cells exhibited key characteristics of native RPE. We observed heteroplasmy-dependent impairment of mitochondrial bioenergetics and reliance on glycolysis for generating energy in the MELAS iPSC-derived RPE. The degree of heteroplasmy was directly associated with increased activation of signal transducer and activator of transcription 3 (STAT3), reduced adenosine monophosphate-activated protein kinase α (AMPKα) activation, and decreased autophagic activity. In addition, impaired autophagy was associated with aberrant lysosomal function, and failure of mitochondrial recycling. The mitochondria-depleted p0 cells replicated the effects on autophagy impairment and aberrant STAT3/AMPKα signaling and showed reduced mitochondrial respiration, demonstrating phenotypic similarities between p0 and MELAS iPSC-derived RPE cells. Conclusions Our studies demonstrate that the MELAS iPSC-derived disease models are powerful tools for dissecting the molecular mechanisms by which mitochondrial DNA alterations influence RPE function in aging and macular degeneration, and for testing novel therapeutics in patients harboring the MELAS genotype. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02937-6.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Nolan ND, Jenny LA, Wang NK, Tsang SH. Retinal pigment epithelium lipid metabolic demands and therapeutic restoration. Taiwan J Ophthalmol 2021; 11:216-220. [PMID: 34703736 PMCID: PMC8493995 DOI: 10.4103/tjo.tjo_31_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023] Open
Abstract
One of the defining features of the retina is the tight metabolic coupling between cells such as photoreceptors and the retinal pigment epithelium (RPE). This necessitates the compartmentalization and proper substrate availability required for specialized processes such as photo-transduction. Glucose metabolism is preferential in many human cell types for adenosine triphosphate generation, yet fatty acid β-oxidation generates essential fuel for RPE. Here, we provide a brief overview of metabolic demands in both the healthy and dystrophic RPE with an emphasis on fatty acid oxidation. We outline therapies aimed at renormalizing this metabolism and explore future avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Nicholas D Nolan
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Laura A Jenny
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Nan-Kai Wang
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Institute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
HK2 Mediated Glycolytic Metabolism in Mouse Photoreceptors Is Not Required to Cause Late Stage Age-Related Macular Degeneration-Like Pathologies. Biomolecules 2021; 11:biom11060871. [PMID: 34208233 PMCID: PMC8230848 DOI: 10.3390/biom11060871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease of unclear etiology. We previously proposed that metabolic adaptations in photoreceptors (PRs) play a role in disease progression. We mimicked these metabolic adaptations in mouse PRs through deletion of the tuberous sclerosis complex (TSC) protein TSC1. Here, we confirm our previous findings by deletion of the other complex protein, namely TSC2, in rod photoreceptors. Similar to deletion of Tsc1, mice with deletion of Tsc2 in rods develop AMD-like pathologies, including accumulation of apolipoproteins, migration of microglia, geographic atrophy, and neovascular pathologies. Subtle differences between the two mouse models, such as a significant increase in microglia activation with loss of Tsc2, were seen as well. To investigate the role of altered glucose metabolism in disease pathogenesis, we generated mice with simulation deletions of Tsc2 and hexokinase-2 (Hk2) in rods. Although retinal lactate levels returned to normal in mice with Tsc2-Hk2 deletion, AMD-like pathologies still developed. The data suggest that the metabolic adaptations in PRs that cause AMD-like pathologies are independent of HK2-mediated aerobic glycolysis.
Collapse
|
4
|
Dulz S, Atiskova Y, Engel P, Wildner J, Tsiakas K, Santer R. Retained visual function in a subset of patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Ophthalmic Genet 2020; 42:23-27. [PMID: 33107778 DOI: 10.1080/13816810.2020.1836658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: LCHADD causes retinopathy associated with low vision, visual field defects, nyctalopia and myopia. We report a retrospective long-term single-center study of 6 LCHADD patients trying to clarify if early diagnosis has an impact on the course and outcome of chorioretinal degeneration. Methods: Long-term follow-up of visual acuity and staging of chorioretinal degeneration by fundus photography, optical coherence tomography (OCT) and autofluorescence (AF) in all six patients. Three patients (2 m/1 f; age 8-14.8 years) were diagnosed by newborn screening, a single patient early within the first year of life and treated promptly while the other two (1 m/1 f; age 23-24 years) were diagnosed later after developing symptoms. All carried HADHA variants; five were homozygous for the common p.E510Q variant, in one from the symptomatically diagnosed group p.[E510Q]; [R291*] was detected. Results: All patients showed retinal alterations, but early diagnosis was associated with a milder phenotype and a longer preservation of visual function. Among symptomatic patients, only one showed mild retinal involvement at the time of diagnosis. Conclusion: Despite the small number our study suggests that early diagnosis does not prevent retinopathy but might contribute to a milder phenotype with retained good visual acuity over time. OCT and AF are reliable non-invasive diagnostic tools to estimate the progression of early-stage retinal changes in LCHADD patients.
Collapse
Affiliation(s)
- Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Peter Engel
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Jan Wildner
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Konstantinos Tsiakas
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Rene Santer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
5
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
6
|
Louer EMM, Yi G, Carmone C, Robben J, Stunnenberg HG, den Hollander AI, Deen PMT. Genes Involved in Energy Metabolism Are Differentially Expressed During the Day-Night Cycle in Murine Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2020; 61:49. [PMID: 32460311 PMCID: PMC7405837 DOI: 10.1167/iovs.61.5.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose The functional interaction between photoreceptors and retinal pigment epithelium (RPE) cells is essential for vision. Phagocytosis of photoreceptor outer segments (POSs) by the RPE follows a circadian pattern; however, it remains unknown whether other RPE processes follow a daily rhythm. Therefore, our aim was to identify RPE processes following a daily rhythm. Methods Murine RPE was isolated at Zeitgeber time (ZT) 0, 2, 4, 9, 14, and 19 (n = 5 per time point), after which RNA was isolated and sequenced. Genes with a significant difference in expression between time points (P < 0.05) were subjected to EnrichR pathway analysis to identify daily rhythmic processes. Results Pathway enrichment revealed 13 significantly enriched KEGG pathways (P < 0.01), including the metabolic pathway (P = 0.002821). Analysis of the metabolic pathway differentially expressed genes revealed that genes involved in adenosine triphosphate production, glycolysis, glycogenolysis, and glycerophospholipid were low at ZT0 (light onset) and high at ZT19 (night). Genes involved in fatty acid degradation and cholesterol synthesis were high at light onset and low at night. Conclusions Our transcriptome data suggest that the highest energy demand of RPE cells is at night, whereas POS phagocytosis and degradation take place in the morning. Furthermore, we identified genes involved in fatty acid and glycerophospholipid synthesis that are upregulated at night, possibly playing a role in generating building blocks for membrane synthesis.
Collapse
|
7
|
Go YM, Zhang J, Fernandes J, Litwin C, Chen R, Wensel TG, Jones DP, Cai J, Chen Y. MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium. FASEB J 2020; 34:12502-12520. [PMID: 32721041 DOI: 10.1096/fj.202000612r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
The retinal pigment epithelium (RPE) is a particularly vulnerable tissue to age-dependent degeneration. Over the life span, the RPE develops an expanded endo-lysosomal compartment to maintain the high efficiency of phagocytosis and degradation of photoreceptor outer segments (POS) necessary for photoreceptor survival. As the assembly and activation of the mechanistic target of rapamycin complex 1 (mTORC1) occur on the lysosome surface, increased lysosome mass with aging leads to higher mTORC1 activity. The functional consequences of hyperactive mTORC1 in the RPE are unclear. In the current study, we used integrated high-resolution metabolomic and genomic approaches to examine mice with RPE-specific deletion of the tuberous sclerosis 1 (Tsc1) gene which encodes an upstream suppressor of mTORC1. Our data show that RPE cells with constitutively high mTORC1 activity were reprogramed to be hyperactive in glucose and lipid metabolism. Lipolysis was suppressed, mitochondrial carnitine shuttle was inhibited, while genes involved in fatty acid (FA) biosynthesis were upregulated. The metabolic changes occurred prior to structural changes of RPE and retinal degeneration. These findings have revealed cellular events and intrinsic mechanisms that contribute to lipid accumulation in the RPE cells during aging and age-related degeneration.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jing Zhang
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA, USA.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christopher Litwin
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rui Chen
- Department of Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Theodore G Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
8
|
Abstract
The mitochondrial trifunctional protein (TFP) catalyzes three reactions in the fatty acid β-oxidation process. Mutations in the two TFP subunits cause mitochondrial trifunctional protein deficiency and acute fatty liver of pregnancy that can lead to death. Here we report a 4.2-Å cryo-electron microscopy α2β2 tetrameric structure of the human TFP. The tetramer has a V-shaped architecture that displays a distinct assembly compared with the bacterial TFPs. A concave surface of the TFP tetramer interacts with the detergent molecules in the structure, suggesting that this region is involved in associating with the membrane. Deletion of a helical hairpin in TFPβ decreases its binding to the liposomes in vitro and reduces its membrane targeting in cells. Our results provide the structural basis for TFP function and have important implications for fatty acid oxidation related diseases.
Collapse
|
9
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|
10
|
Reyes-Reveles J, Dhingra A, Alexander D, Bragin A, Philp NJ, Boesze-Battaglia K. Phagocytosis-dependent ketogenesis in retinal pigment epithelium. J Biol Chem 2017; 292:8038-8047. [PMID: 28302729 DOI: 10.1074/jbc.m116.770784] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
Daily, the retinal pigment epithelium (RPE) ingests a bolus of lipid and protein in the form of phagocytized photoreceptor outer segments (OS). The RPE, like the liver, expresses enzymes required for fatty acid oxidation and ketogenesis. This suggests that these pathways play a role in the disposal of lipids from ingested OS, as well as providing a mechanism for recycling metabolic intermediates back to the outer retina. In this study, we examined whether OS phagocytosis was linked to ketogenesis. We found increased levels of β-hydroxybutyrate (β-HB) in the apical medium following ingestion of OS by human fetal RPE and ARPE19 cells cultured on Transwell inserts. No increase in ketogenesis was observed following ingestion of oxidized OS or latex beads. Our studies further defined the connection between OS phagocytosis and ketogenesis in wild-type mice and mice with defects in phagosome maturation using a mouse RPE explant model. In explant studies, the levels of β-HB released were temporally correlated with OS phagocytic burst after light onset. In the Mreg-/- mouse where phagosome maturation is delayed, there was a temporal shift in the release of β-HB. An even more pronounced shift in maximal β-HB production was observed in the Abca4-/- RPE, in which loss of the ATP-binding cassette A4 transporter results in defective phagosome processing and accumulation of lipid debris. These studies suggest that FAO and ketogenesis are key to supporting the metabolism of the RPE and preventing the accumulation of lipids that lead to oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Juan Reyes-Reveles
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Anuradha Dhingra
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Desiree Alexander
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Alvina Bragin
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Nancy J Philp
- the Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19146
| | - Kathleen Boesze-Battaglia
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
11
|
Vancura P, Wolloscheck T, Baba K, Tosini G, Iuvone PM, Spessert R. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells. PLoS One 2016; 11:e0164665. [PMID: 27727308 PMCID: PMC5058478 DOI: 10.1371/journal.pone.0164665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy-one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice-a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase/genetics
- Acyl-CoA Dehydrogenase/metabolism
- Animals
- Carnitine O-Palmitoyltransferase/genetics
- Carnitine O-Palmitoyltransferase/metabolism
- Circadian Rhythm/physiology
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Disease Models, Animal
- Dopamine/metabolism
- Energy Metabolism
- Fatty Acids/chemistry
- Fatty Acids/metabolism
- Female
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Obese
- Microscopy, Fluorescence
- Oxidation-Reduction
- Photoreceptor Cells/metabolism
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptors, Dopamine D4/deficiency
- Receptors, Dopamine D4/genetics
- Retina/metabolism
Collapse
Affiliation(s)
- Patrick Vancura
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tanja Wolloscheck
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
MULTIMODAL IMAGING AND ELECTRORETINOGRAPHY IN LONG-CHAIN 3-HYDROXYACYL COENZYME A DEHYDROGENASE DEFICIENCY. Retin Cases Brief Rep 2016; 11 Suppl 1:S107-S112. [PMID: 27652820 DOI: 10.1097/icb.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To report a case of pigmentary retinopathy in long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency using multimodal imaging techniques. METHODS Case report. RESULTS An 8-year-old boy with a history of failure to thrive and a diagnosis of long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency was referred for examination. Examination revealed a pigmentary retinopathy with macular atrophy; electroretinography results were consistent with a rod-cone dystrophy. Fundus autofluorescence and optical coherence tomography revealed retinal pigment epithelium atrophy. Follow-up examination findings showed increased severity of retinopathy on electroretinography, with optical coherence tomography angiography revealing enhanced visualization of choroidal vessels. CONCLUSION This report reveals that long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency can be characterized as a progressive rod-cone dystrophy, with multi-modal imaging techniques used to describe this condition. In particular, optical coherence tomography angiography can be used to further characterize this condition.
Collapse
|
13
|
Adijanto J, Du J, Moffat C, Seifert EL, Hurle JB, Philp NJ. The retinal pigment epithelium utilizes fatty acids for ketogenesis. J Biol Chem 2015; 289:20570-82. [PMID: 24898254 DOI: 10.1074/jbc.m114.565457] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Every day, shortly after light onset, photoreceptor cells shed approximately a tenth of their outer segment. The adjacent retinal pigment epithelial (RPE) cells phagocytize and digest shed photoreceptor outer segment, which provides a rich source of fatty acids that could be utilized as an energy substrate. From a microarray analysis, we found that RPE cells express particularly high levels of the mitochondrial HMG-CoA synthase 2 (Hmgcs2) compared with all other tissues (except the liver and colon), leading to the hypothesis that RPE cells, like hepatocytes, can produce β-hydroxybutyrate (β-HB) from fatty acids. Using primary human fetal RPE (hfRPE) cells cultured on Transwell filters with separate apical and basal chambers, we demonstrate that hfRPE cells can metabolize palmitate, a saturated fatty acid that constitutes .15% of all lipids in the photoreceptor outer segment, to produce β-HB. Importantly, we found that hfRPE cells preferentially release β-HB into the apical chamber and that this process is mediated primarily by monocarboxylate transporter isoform 1 (MCT1). Using a GC-MS analysis of (13)C-labeled metabolites, we showed that retinal cells can take up and metabolize (13)C-labeled β-HB into various TCA cycle intermediates and amino acids. Collectively, our data support a novel mechanism of RPE-retina metabolic coupling in which RPE cells metabolize fatty acids to produce β-HB, which is transported to the retina for use as a metabolic substrate.
Collapse
|
14
|
Olpin SE. Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability. J Inherit Metab Dis 2013; 36:645-58. [PMID: 23674167 PMCID: PMC7101856 DOI: 10.1007/s10545-013-9611-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/27/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Fatty acids are a major fuel for the body and fatty acid oxidation is particularly important during fasting, sustained aerobic exercise and stress. The myocardium and resting skeletal muscle utilise long-chain fatty acids as a major source of energy. Inherited disorders affecting fatty acid oxidation seriously compromise the function of muscle and other highly energy-dependent tissues such as brain, nerve, heart, kidney and liver. Such defects encompass a wide spectrum of clinical disease, presenting in the neonatal period or infancy with recurrent hypoketotic hypoglycaemic encephalopathy, liver dysfunction, hyperammonaemia and often cardiac dysfunction. In older children, adolescence or adults there is often exercise intolerance with episodic myalgia or rhabdomyolysis in association with prolonged aerobic exercise or other exacerbating factors. Some disorders are particularly associated with toxic metabolites that may contribute to encephalopathy, polyneuropathy, axonopathy and pigmentary retinopathy. The phenotypic diversity encountered in defects of fat oxidation is partly explained by genotype/phenotype correlation and certain identifiable environmental factors but there remain many unresolved questions regarding the complex interaction of genetic, epigenetic and environmental influences that dictate phenotypic expression. It is becoming increasingly clear that the view that most inherited disorders are purely monogenic diseases is a naive concept. In the future our approach to understanding the phenotypic diversity and management of patients will be more realistically achieved from a polygenic perspective.
Collapse
Affiliation(s)
- Simon E Olpin
- Department of Clinical Chemistry, Sheffield Children's Hospital, Sheffield S10 2TH, UK.
| |
Collapse
|
15
|
Fletcher AL, Pennesi ME, Harding CO, Weleber RG, Gillingham MB. Observations regarding retinopathy in mitochondrial trifunctional protein deficiencies. Mol Genet Metab 2012; 106:18-24. [PMID: 22459206 PMCID: PMC3506186 DOI: 10.1016/j.ymgme.2012.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 12/31/2022]
Abstract
Although the retina is thought to primarily rely on glucose for fuel, inherited deficiency of one or more activities of mitochondrial trifunctional protein results in a pigmentary retinopathy leading to vision loss. Many other enzymatic deficiencies in fatty acid oxidation pathways have been described, none of which results in retinal complications. The etiology of retinopathy among patients with defects in trifunctional protein is unknown. Trifunctional protein is a heteroctomer; two genes encode the alpha and beta subunits of TFP respectively, HADHA and HADHB. A common mutation in HADHA, c.1528G>C, leads to a single amino acid substitution, p. Glu474Gln, and impairs primarily long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) activity leading to LCHAD deficiency (LCHADD). Other mutations in HADHA or HADHB often lead to significant reduction in all three enzymatic activities and result in trifunctional protein deficiency (TFPD). Despite many similarities in clinical presentation and phenotype, there is growing evidence that they can result in different chronic complications. This review will outline the clinical similarities and differences between LCHADD and TFPD, describe the course of the associated retinopathy, propose a genotype/phenotype correlation with the severity of retinopathy, and discuss the current theories about the etiology of the retinopathy.
Collapse
Affiliation(s)
- Autumn L Fletcher
- Department of Molecular & Medical Genetics, School of Medicine, Oregon Health & Science University, Mail Code L-103, 3181 SW Sam Jackson Park Rd Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
16
|
Cao X, Liu M, Tuo J, Shen D, Chan CC. The effects of quercetin in cultured human RPE cells under oxidative stress and in Ccl2/Cx3cr1 double deficient mice. Exp Eye Res 2010; 91:15-25. [PMID: 20361964 DOI: 10.1016/j.exer.2010.03.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 12/17/2022]
Abstract
Quercetin, a member of the flavonoid family, is one of the most prominent dietary antioxidants. This study investigates the mechanisms for the effects of quercetin on cultured human RPE cells and in Ccl2/Cx3cr1 double knock-out (DKO) mice, which spontaneously develop progressive retinal lesions mimicking age-related macular degeneration (AMD). In the in vitro experiment, cultured ARPE-19 cells were exposed to 1 mM H(2)O(2) with or without 50 muM quercetin for 2 h. Cellular viability, mitochondrial function, and apoptosis were assessed using crystal violet staining, MTT assay, and comet assay, respectively. Apoptotic molecular transcripts of BCL-2, BAX, FADD, CASPASE-3 and CASPASE-9 were measured by RQ-PCR. COX activity and nitric oxide (NO) level were determined in the supernatant of the culture medium. Quercetin treatment protected ARPE-19 cells from H(2)O(2)-induced oxidative injury, enhanced BCL-2 transcript levels, increased the BCL-2/BAX ratio, suppressed the transcription of pro-apoptotic factors such as BAX, FADD, CASPASE-3 and CASPASE-9, inhibited the transcription of inflammatory factors such as TNF-alpha, COX-2 and INOS, and decreased the levels of COX and NO in the culture medium. In the in vivo experiment, DKO and C57/B6 mice were treated with 25 mg/kg/day quercetin by intraperitoneal injection daily for two months. Funduscopy was performed monthly. After two months, serum was collected to measure NADP(+)/NADPH, COX, PGE-2, and NO levels. The eyes were harvested for histology and A2E measurement. Ocular transcripts of Bcl-2, Bax, Cox-2, Inos, Tnf-alpha, Fas, FasL and Caspase-3 were detected by RQ-PCR. Quercetin treatment did not reverse the progression of retinal lesions in DKO mice funduscopically or histologically. Although quercetin treatment could recover systemic anti-oxidative capacity, suppress the systemic expression of NO, COX and PGE-2, and decrease ocular A2E levels, it could not effectively suppress the transcripts of the ocular inflammatory factors Tnf-alpha, Cox-2 and Inos, or the pro-apoptotic factors Fas, FasL and Caspase-3 in DKO mice. Our data demonstrate that quercetin can protect human RPE cells from oxidative stress in vitro via inhibition of pro-inflammatory molecules and direct inhibition of the intrinsic apoptosis pathway. However, quercetin (25 mg/kg/day) does not improve the retinal AMD-like lesions in the Ccl2(-/-)/Cx3cr1(-/-) mice, likely due to its insufficient suppression of the inflammatory and apoptosis pathways in the eye.
Collapse
Affiliation(s)
- Xiaoguang Cao
- Immunopathology Section, Laboratory of Immunology; National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | | | | | | | | |
Collapse
|
17
|
Gillingham MB, Weleber RG, Neuringer M, Connor WE, Mills M, van Calcar S, Ver Hoeve J, Wolff J, Harding CO. Effect of optimal dietary therapy upon visual function in children with long-chain 3-hydroxyacyl CoA dehydrogenase and trifunctional protein deficiency. Mol Genet Metab 2005; 86:124-33. [PMID: 16040264 PMCID: PMC2694051 DOI: 10.1016/j.ymgme.2005.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 01/24/2023]
Abstract
The objective of this prospective cohort study was to determine if dietary therapy including docosahexaenoic acid (DHA; C22:6omega-3) supplementation prevents the progression of the severe chorioretinopathy that develops in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Physical, biochemical, and ophthalmological evaluations, including electroretinogram (ERG) and visual acuity by evoked potential (VEP), were performed at baseline and annually following the initiation of 65-130 mg/day DHA supplementation and continued treatment with a low-fat diet. Fourteen children with LCHAD or TFP deficiency, 1-12 years of age at enrollment, were followed for 2-5 years. Three subjects with TFP beta-subunit mutations had normal appearance of the posterior pole of the ocular fundi at enrollment and no changes over the course of the study. Eleven subjects who were homozygote and heterozygote for the common mutation, c.1528G>C, had no change to severe progression of atrophy of the choroid and retina with time. Of these, four subjects had marked to severe chorioretinopathy associated with high levels of plasma hydroxyacylcarnitines and decreased color, night and/or central vision during the study. The plasma level of long-chain 3-hydroxyacylcarnitines, metabolites that accumulate as a result of LCHAD and TFP deficiency, was found to be negatively correlated with maximum ERG amplitude (Rmax) (p=0.0038, R2=0.62). In addition, subjects with sustained low plasma long-chain 3-hydroxyacylcarnitines maintained higher ERG amplitudes with time compared to subjects with chronically high 3-hydroxyacylcarnitines. Visual acuity, as determined with the VEP, appeared to increase with time on DHA supplementation (p=0.051) and there was a trend for a positive correlation with plasma DHA concentrations (p=0.075, R2=0.31). Thus, optimal dietary therapy as indicated by low plasma 3-hydroxyacylcarnitine and high plasma DHA concentrations was associated with retention of retinal function and visual acuity in children with LCHAD or TFP deficiency.
Collapse
Affiliation(s)
- Melanie B Gillingham
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|