1
|
Dilek M, Soytürk H, Bozat G, Hancı F, Taş S, Kabakuş N. Can hyperoxic stress cause susceptibility to acute seizure in the neonatal period?: a rat study. Int J Neurosci 2024; 134:658-664. [PMID: 36282040 DOI: 10.1080/00207454.2022.2140427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Objective: Preterm neonates encounter hyperoxia relatively early, and are more exposed to hyperoxic stress due to their insufficient antioxidant defense mechanisms. This study was planned around the hypothesis that this hyperoxic effect may cause a disposition to future acute seizures. Methods: This study was composed of two main groups Hyperoxy and Control (Room air with normal O2 levels) Groups. Group 1 - hyperoxia (Study): The experimental group consisted of premature newborn rats exposed to hyperoxia with their dams from birth to postnatal day 5. Group 2 - room air (Control): The group was not exposed to hyperoxia and housed the same room air and temperature as their dams. Female, Acute Epilepsy Female, Male, Acute Epilepsy Male, and a total of eight subgroups were formed in both the control and hyperoxia groups. When the rats were two months old, intracranial electrodes were attached to obtain electrocorticography (ECoG) recordings. Pre-model recordings were taken, after which an acute pentylenetetrazole (PTZ) model of absence seizure was induced by the intraperitoneal administration of PTZ at 50 mg/kg. ECoG records were examined using the PowerLab system for 180 min. Spike wave number and duration, Spike wave frequency and amplitude data were evaluated.Results: Seven female and three male rats were exposed to hyperoxia, and a control group of five female and three male rats were included in the study. The median interquartile range for spike wave latency in the hyperoxia and control groups were 1112 (644-1545) and 654 (408-1152), frequency 4476 (3120-7421) and 3934 (2264-4704), and amplitude data 0.68 (0.59-0.79) and 0.52 (0.37-0.67), respectively. Although a difference was observed in median values capable of constituting susceptibility to epilepsy, the difference was not statistically significant (p > 0.05). In terms of gender, spike-wave counts were significantly higher in female rats (p < 0.05). Females exposed to hyperoxia were more susceptible to epilepsy than both males and females in the control group (p < 0.05).Conclusion: Exposure to hyperoxia in the first days of life of premature neonates due to their susceptibility to oxidative stress and insufficient antioxidant mechanisms, can cause a disposition to acute seizures. As a result, females exposed to hyperoxia during the neonatal period may be prone to epilepsy in maturity.
Collapse
Affiliation(s)
- Mustafa Dilek
- Department of Pediatrics, Division of Neonatology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Hayriye Soytürk
- Department of Poultry Science and Technology, Faculty of Agriculture and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Gökçe Bozat
- Diciplinary Neuroscience, Health Sciences Institute, Abant Izzet Baysal University, Bolu, Turkey
| | - Fatma Hancı
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Sinan Taş
- Department of Pediatrics, Division of Neonatology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Nimet Kabakuş
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
2
|
Eaton L, Wang T, Roy M, Pamenter ME. Naked Mole-Rat Cortex Maintains Reactive Oxygen Species Homeostasis During In Vitro Hypoxia or Ischemia and Reperfusion. Curr Neuropharmacol 2023; 21:1450-1461. [PMID: 35339183 PMCID: PMC10324332 DOI: 10.2174/1570159x20666220327220929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal injury during acute hypoxia, ischemia, and following reperfusion are partially attributable to oxidative damage caused by deleterious fluctuations of reactive oxygen species (ROS). In particular, mitochondrial superoxide (O2•-) production is believed to upsurge during lowoxygen conditions and also following reperfusion, before being dismutated to H2O2 and released into the cell. However, disruptions of redox homeostasis may be beneficially attenuated in the brain of hypoxia-tolerant species, such as the naked mole-rat (NMR, Heterocephalus glaber). As such, we hypothesized that ROS homeostasis is better maintained in the brain of NMRs during severe hypoxic/ ischemic insults and following reperfusion. We predicted that NMR brain would not exhibit substantial fluctuations in ROS during hypoxia or reoxygenation, unlike previous reports from hypoxiaintolerant mouse brain. To test this hypothesis, we measured cortical ROS flux using corrected total cell fluorescence measurements from live brain slices loaded with the MitoSOX red superoxide (O2•-) indicator or chloromethyl 2',7'-dichlorodihydrofluorescein diacetate (CM-H2-DCFDA; which fluoresces with whole-cell hydrogen peroxide (H2O2) production) during various low-oxygen treatments, exogenous oxidative stress, and reperfusion. We found that NMR cortex maintained ROS homeostasis during low-oxygen conditions, while mouse cortex exhibited a ~40% increase and a ~30% decrease in mitochondrial O2•- and cellular H2O2 production, respectively. Mitochondrial ROS homeostasis in NMRs was only disrupted following sodium cyanide application, which was similarly observed in mice. Our results suggest that NMRs have evolved strategies to maintain ROS homeostasis during acute bouts of hypoxia and reoxygenation, potentially as an adaptation to life in an intermittently hypoxic environment.
Collapse
Affiliation(s)
- Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tina Wang
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Maria Roy
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Raikwar SP, Thangavel R, Ahmed ME, Selvakumar GP, Kempuraj D, Wu K, Khan O, Bazley K, Bussinger B, Kukulka K, Zaheer S, Iyer SS, Govindarajan R, Burton C, James D, Zaheer A. Real-Time Noninvasive Bioluminescence, Ultrasound and Photoacoustic Imaging in NFκB-RE-Luc Transgenic Mice Reveal Glia Maturation Factor-Mediated Immediate and Sustained Spatio-Temporal Activation of NFκB Signaling Post-Traumatic Brain Injury in a Gender-Specific Manner. Cell Mol Neurobiol 2021; 41:1687-1706. [PMID: 32785863 PMCID: PMC8188847 DOI: 10.1007/s10571-020-00937-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Neurotrauma especially traumatic brain injury (TBI) is the leading cause of death and disability worldwide. To improve upon the early diagnosis and develop precision-targeted therapies for TBI, it is critical to understand the underlying molecular mechanisms and signaling pathways. The transcription factor, nuclear factor kappa B (NFκB), which is ubiquitously expressed, plays a crucial role in the normal cell survival, proliferation, differentiation, function, as well as in disease states like neuroinflammation and neurodegeneration. Here, we hypothesized that real-time noninvasive bioluminescence molecular imaging allows rapid and precise monitoring of TBI-induced immediate and rapid spatio-temporal activation of NFκB signaling pathway in response to Glia maturation factor (GMF) upregulation which in turn leads to neuroinflammation and neurodegeneration post-TBI. To test and validate our hypothesis and to gain novel mechanistic insights, we subjected NFκB-RE-Luc transgenic male and female mice to TBI and performed real-time noninvasive bioluminescence imaging (BLI) as well as photoacoustic and ultrasound imaging (PAI). Our BLI data revealed that TBI leads to an immediate and sustained activation of NFκB signaling. Further, our BLI data suggest that especially in male NFκB-RE-Luc transgenic mice subjected to TBI, in addition to brain, there is widespread activation of NFκB signaling in multiple organs. However, in the case of the female NFκB-RE-Luc transgenic mice, TBI induces a very specific and localized activation of NFκB signaling in the brain. Further, our microRNA data suggest that TBI induces significant upregulation of mir-9-5p, mir-21a-5p, mir-34a-5p, mir-16-3p, as well as mir-155-5p within 24 h and these microRNAs can be successfully used as TBI-specific biomarkers. To the best of our knowledge, this is one of the first and unique study of its kind to report immediate and sustained activation of NFκB signaling post-TBI in a gender-specific manner by utilizing real-time non-invasive BLI and PAI in NFκB-RE-Luc transgenic mice. Our study will prove immensely beneficial to gain novel mechanistic insights underlying TBI, unravel novel therapeutic targets, as well as enable us to monitor in real-time the response to innovative TBI-specific precision-targeted gene and stem cell-based precision medicine.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Kristopher Wu
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Osaid Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kieran Bazley
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Bret Bussinger
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Klaudia Kukulka
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
4
|
Pandya PH, Fisher AJ, Mickler EA, Temm CJ, Lipking KP, Gracon A, Rothhaar K, Sandusky GE, Murray M, Pollok K, Renbarger J, Blum JS, Lahm T, Wilkes DS. Hypoxia-Inducible Factor-1α Regulates CD55 in Airway Epithelium. Am J Respir Cell Mol Biol 2017; 55:889-898. [PMID: 27494303 DOI: 10.1165/rcmb.2015-0237oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium.
Collapse
Affiliation(s)
- Pankita H Pandya
- 1 Department of Microbiology/Immunology.,2 Center for Immunobiology
| | | | | | | | | | | | - Katia Rothhaar
- 1 Department of Microbiology/Immunology.,4 Department of Medicine, and
| | | | - Mary Murray
- 5 Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Karen Pollok
- 5 Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jamie Renbarger
- 5 Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Janice S Blum
- 1 Department of Microbiology/Immunology.,2 Center for Immunobiology
| | - Tim Lahm
- 2 Center for Immunobiology.,4 Department of Medicine, and
| | - David S Wilkes
- 1 Department of Microbiology/Immunology.,2 Center for Immunobiology.,4 Department of Medicine, and
| |
Collapse
|
5
|
Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol 2016; 111:42. [PMID: 27164906 DOI: 10.1007/s00395-016-0553-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Acute myocardial infarction (AMI) causes sterile inflammation, which exacerbates tissue injury. Elevated levels of circulating mitochondrial DNA (mtDNA) have been associated with AMI. We hypothesized that mtDNA triggers an innate immune response via TLR9 and NF-κB activation, causing cardiomyocyte injury. Murine cardiomyocytes express TLR9 mRNA and protein and were able to internalize fluorescently labeled mouse mtDNA. Incubation of human embryonic kidney cells with serum from AMI patients containing naturally elevated levels of mtDNA induced TLR9-dependent NF-κB activity. This effect was mimicked by isolated mtDNA. mtDNA activated NF-κB in reporter mice both in vivo and in isolated cardiomyocytes. Moreover, incubation of isolated cardiomyocytes with mtDNA induced cell death after 4 and 24 h. Laser confocal microscopy showed that incubation of cardiomyocytes with mtDNA accelerated mitochondrial depolarization induced by reactive oxygen species. In contrast to mtDNA, isolated total DNA did not activate NF-κB nor induce cell death. In conclusion, mtDNA can induce TLR9-dependent NF-κB activation in reporter cells and activate NF-κB in cardiomyocytes. In cardiomyocytes, mtDNA causes mitochondrial dysfunction and death. Endogenous mtDNA in the extracellular space is a danger signal with direct detrimental effects on cardiomyocytes.
Collapse
|
6
|
Mordel J, Sheikh A, Tsohataridis S, Kanold PO, Zehendner CM, Luhmann HJ. Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex. Neurobiol Dis 2016; 88:29-43. [PMID: 26763603 DOI: 10.1016/j.nbd.2015.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/11/2015] [Accepted: 12/29/2015] [Indexed: 11/20/2022] Open
Abstract
During the perinatal period, the brain is highly vulnerable to hypoxia and inflammation, which often cause white matter injury and long-term neuronal dysfunction such as motor and cognitive deficits or epileptic seizures. We studied the effects of moderate hypoxia (HYPO), mild systemic inflammation (INFL), or the combination of both (HYPO+INFL) in mouse somatosensory cortex induced during the first postnatal week on network activity and compared it to activity in SHAM control animals. By performing in vitro electrophysiological recordings with multi-electrode arrays from slices prepared directly after injury (P8-10), one week after injury (P13-16), or in young adults (P28-30), we investigated how the neocortical network developed following these insults. No significant difference was observed between the four groups in an extracellular solution close to physiological conditions. In extracellular 8mM potassium solution, slices from the HYPO, INFL, and HYPO+INFL group were more excitable than SHAM at P8-10 and P13-16. In these two age groups, the number and frequency of spontaneous epileptiform events were significantly increased compared to SHAM. The frequency of epileptiform events was significantly reduced by the NMDA antagonist D-APV in HYPO, INFL, and HYPO+INFL, but not in SHAM, indicating a contribution of NMDA receptors to this pathophysiological activity. In addition, the AMPA/kainate receptor antagonist CNQX suppressed the remaining epileptiform activity. Electrical stimulation evoked prominent epileptiform activity in slices from HYPO, INFL and HYPO+INFL animals. Stimulation threshold to elicit epileptiform events was lower in these groups than in SHAM. Evoked events spread over larger areas and lasted longer in treated animals than in SHAM. In addition, the evoked epileptiform activity was reduced in the older (P28-30) group indicating that cortical dysfunction induced by hypoxia and inflammation was transient and compensated during early development.
Collapse
Affiliation(s)
- Jérôme Mordel
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Simeon Tsohataridis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Christoph M Zehendner
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; ZIM III, Department of Cardiology, Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Orabi AI, Sah S, Javed TA, Lemon KL, Good ML, Guo P, Xiao X, Prasadan K, Gittes GK, Jin S, Husain SZ. Dynamic imaging of pancreatic nuclear factor κB (NF-κB) activation in live mice using adeno-associated virus (AAV) infusion and bioluminescence. J Biol Chem 2015; 290:11309-20. [PMID: 25802340 PMCID: PMC4416837 DOI: 10.1074/jbc.m115.647933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor κB (NF-κB) is an important signaling molecule that plays a critical role in the development of acute pancreatitis. Current methods for examining NF-κB activation involve infection of an adenoviral NF-κB-luciferase reporter into cell lines or electrophoretic mobility shift assay of lysate. The use of adeno-associated viruses (AAVs) has proven to be an effective method of transfecting whole organs in live animals. We examined whether intrapancreatic duct infusion of AAV containing an NF-κB-luciferase reporter (AAV-NF-κB-luciferase) can reliably measure pancreatic NF-κB activation. We confirmed the infectivity of the AAV-NF-κB-luciferase reporter in HEK293 cells using a traditional luciferase readout. Mice were infused with AAV-NF-κB-luciferase 5 weeks before induction of pancreatitis (caerulein, 50 μg/kg). Unlike transgenic mice that globally express NF-κB-luciferase, AAV-infused mice showed a 15-fold increase in pancreas-specific NF-κB bioluminescence following 12 h of caerulein compared with baseline luminescence (p < 0.05). The specificity of the NF-κB-luciferase signal to the pancreas was confirmed by isolating the pancreas and adjacent organs and observing a predominant bioluminescent signal in the pancreas compared with liver, spleen, and stomach. A complementary mouse model of post-ERCP-pancreatitis also induced pancreatic NF-κB signals. Taken together these data provide the first demonstration that NF-κB activation can be examined in a live, dynamic fashion during pancreatic inflammation. We believe this technique offers a valuable tool to study real-time activation of NF-κB in vivo.
Collapse
Affiliation(s)
| | - Swati Sah
- From the Department of Pediatrics and
| | | | | | | | - Ping Guo
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Xiangwei Xiao
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - George K Gittes
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | | | |
Collapse
|
8
|
Establishment and evaluation of an experimental animal model of high altitude cerebral edema. Neurosci Lett 2013; 547:82-6. [PMID: 23680461 DOI: 10.1016/j.neulet.2013.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/21/2022]
Abstract
The aim of our study was to develop a model of high altitude cerebral edema (HACE) using an acute, hypobaric hypoxia environment combined with exhaustive exercise. Forty healthy male Sprague-Dawley rats were randomly divided into a plains control group (PC group) and a plateau altitude hypoxia group (AH group). After 2 days of treadmill adaptation under normoxic conditions, the AH group was housed in hypobaric conditions (simulating 4000 m above sea level) for 2 days while performing exhaustive exercise. The simulated altitude was then increased to 8000 m for 3 days of simple hypobaric hypoxia exposure. Compared with the PC group, the AH group showed significantly greater (P<0.01) water content and Evans blue staining in their brain tissue. Furthermore, the hippocampal formation was seriously damaged, and the number of pyramidal cells decreased. In addition, the brain structure was altered into a loose state with notable edema, which was demonstrated by the leakage of lanthanum nitrate particles from brain microvessels into the surrounding tissue through widened tight junctions. Some neurons and glial cell organelles were swollen and some nerve fibers were demyelinated as well. We have shown that acute hypobaric hypoxia exposure with exhaustive exercise increases the permeability of the blood-brain barrier and leads to cerebral edema, making this a valid animal model of HACE.
Collapse
|
9
|
Døhlen G, Antal EA, Castellheim A, Thaulow E, Kielland A, Saugstad OD. Hyperoxic resuscitation after hypoxia-ischemia induces cerebral inflammation that is attenuated by tempol in a reporter mouse model with very young mice. J Perinat Med 2013; 41:251-7. [PMID: 23241583 DOI: 10.1515/jpm-2012-0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/16/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxygen supplementation is still part of international resuscitation protocols for premature children. Mechanisms for tissue damage by hypoxia/ischemia in the extreme premature involve inflammation. AIM AND METHOD To study cerebral inflammation after hypoxia/ischemia and oxygen treatment in the premature, we measured NF-κB activity in 5-day-old transgenic reporter mice in response to experimental hypoxia/ischemia. results were correlated to cerebral histological evaluation and plasma cytokine levels. A treatment strategy with the antioxidant tempol was tested. RESULTS One day after hypoxia/ischemia NF-κB activation was increased compared to controls [mean difference: 10.6±4.6% (P=0.03)]. Exposure to 100% oxygen after hypoxia/ischemia further increased NF-κB activation compared to hypoxia/ischemia alone [mean difference: 15.0±5.5% (P=0.01)]. Histological changes in the brain were positively correlated with NF-κB activity (P<0.001), but we found no significant difference in tissue damage between resuscitation with air and resuscitation with pure oxygen. Administration of tempol reduced NF-κB activation [mean difference: 14.6±5.0% (P=0.01)] and the plasma level of cytokines; however, the histological damage score was not affected. CONCLUSION Cerebral inflammatory response after hypoxia/ischemia in a mouse model with immature brain development corresponding to human prematurity prior to 32 weeks' gestation was influenced by administration of oxygen. Tempol treatment attenuated inflammation but did not reduce the extent of histological cerebral damage.
Collapse
Affiliation(s)
- Gaute Døhlen
- Department of Paediatric Research, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Bioluminescence imaging (BLI) takes advantage of the light-emitting properties of luciferase enzymes, which produce light upon oxidizing a substrate (i.e., D-luciferin) in the presence of molecular oxygen and energy. Photons emitted from living tissues can be detected and quantified by a highly sensitive charge-coupled device camera, enabling the investigator to noninvasively analyze the dynamics of biomolecular reactions in a variety of living model organisms such as transgenic mice. BLI has been used extensively in cancer research, cell transplantation, and for monitoring of infectious diseases, but only recently experimental models have been designed to study processes and pathways in neurological disorders such as Alzheimer disease, Parkinson disease, or amyotrophic lateral sclerosis. In this review, we highlight recent applications of BLI in neuroscience, including transgene expression in the brain, longitudinal studies of neuroinflammatory responses to neurodegeneration and injury, and in vivo imaging studies of neurogenesis and mitochondrial toxicity. Finally, we highlight some new developments of BLI compounds and luciferase substrates with promising potential for in vivo studies of neurological dysfunctions.
Collapse
Affiliation(s)
- Katja Hochgräfe
- DZNE (German Center for Neurodegenerative Diseases), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | | |
Collapse
|
11
|
Alsharnoubi JM, Odland HH, Saugstad OD. Nicotine does not influence NF-κB activity in neonatal mice reoxygenated with room-air or 100% oxygen. J Matern Fetal Neonatal Med 2012; 25:2102-5. [DOI: 10.3109/14767058.2012.678434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Plasma cortisol response to ACTH challenge in hypoxic newborn piglets resuscitated with 21% and 100% oxygen. Shock 2010; 33:519-25. [PMID: 19924031 DOI: 10.1097/shk.0b013e3181c99727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the use of supplemental oxygen to resuscitate asphyxiated neonates remains controversial, the effects of hypoxia and reoxygenation (room air versus pure oxygen) on the hypothalamo-pituitary-adrenal axis are unknown. We aimed to evaluate the effect of hypoxia and reoxygenation with either 21% or 100% oxygen on plasma cortisol before and after an adrenocorticotrophin (ACTH) challenge in newborn piglets. Thirty-five piglets (aged 1-3 days, weighing 1.5-2.4 kg) were instrumented to measure heart rate, MAP, and cardiac output. After 2 h of normocapnic hypoxia (PaO2, 20-30 mmHg; pH, <6.95), piglets were resuscitated with 21% or 100% oxygen for 1 h and then 21% oxygen for 3 h. Sham-operated piglets had no hypoxia-reoxygenation (H-R). Serial plasma cortisol levels were determined after a blinded randomized administration of ACTH (4 microg/kg, i.v.) or saline at 2 h reoxygenation. The expression of steroidogenic factor 1 in the adrenals was studied. Cardiac output decreased with hypoxia and recovered with resuscitation. Piglets developed hypotension similarly in 21% and 100% H-R groups during reoxygenation (versus sham-operated group, P < 0.05). Both H-R groups had increased plasma cortisol levels (versus sham-operated group, P < 0.05) at 2 h of reoxygenation after hypoxia, with a further increase in levels in 21% H-R piglets at 4 h reoxygenation (versus 100% H-R piglets, P < 0.05). The response to ACTH was delayed in H-R groups, with the maximum increase at 120 min post-ACTH administration (versus 30-60 min post-ACTH for sham-operated piglets). Plasma cortisol levels increased significantly post-ACTH administration in 21% H-R and sham-operated piglets (115% +/-50% and 126% +/- 25% at 120 min, respectively, P < 0.05 vs. pre-ACTH baselines) but not in 100% H-R piglets (51% +/-14%), which had a lower expression of steroidogenic factor 1 than the other groups. Although the clinical significance of high cortisol levels and cortisol response to ACTH in H-R newborn piglets is uncertain, a preserved cortisol response may support using room air in neonatal resuscitation.
Collapse
|
13
|
Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: studies on cultured rat embryos. ACTA ACUST UNITED AC 2010; 89:106-15. [PMID: 20127827 DOI: 10.1002/bdrb.20230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hyperglycemia and hypoxia are well-known teratogens that may affect many animal species, including man. One of the main mechanisms of teratogenic action of both seems to be increased oxidative stress. The purpose of this study was to evaluate the hypothesis that in the developing embryo hyperglycemia also leads to hypoxia, both resulting in oxidative damage. METHODS The study was performed on 10.5-day-old rat embryos of the regular Sabra strain cultured for 28 hours in hyperglycemic or hypoxic conditions. Embryonic growth and rate of anomalies was assessed at the end of the culture period. The embryonic oxidative damage was investigated by studying the levels of Malondialdehyde (MDA) to determine the lipid peroxidation. The redox status was studied by measuring the activity of Catalase-like (CAT) and Super Oxide Dismutase (SOD) enzymes and the amount of Low Molecular Weight Antioxidants (LMWA). In addition, we studied by immunohistochemistry in the embryos and yolk sacs the amount of nitrotyrosine as an additional marker for the extent of oxidative stress. The amounts of the redox and hypoxia sensitive transcription factors HIF1alpha, NFkB, and IkB were also studied by immunohistochemistry. RESULTS Both hyperglycemia and hypoxia increased the rate of congenital anomalies mainly of the heart, neural tube, and brain. Embryonic growth and scoring were decreased only by hypoxia. Both hyperglycemia and hypoxia increased embryonic oxidative stress as evidenced by increased lipid peroxidation, increased nitrotyrosine and LMWA, but only minimal changes in CAT and SOD activity. Severe hyperglycemia also caused hypoxia, as evidenced by increased HIF1alpha. Thus, there seems to be an interrelation between hyperglycemia and hypoxia, both resulting in embryonic damage apparently by enhanced oxidative stress. CONCLUSIONS Both hyperglycemia and hypoxia seem to exert their embryotoxicity through a similar mechanism of increased oxidative stress in the embryo in a stage when its antioxidant capacity is still weak. Moreover, hyperglycemia also seems to induce hypoxia, intensifying diabetes-induced embryopathy.
Collapse
|
14
|
Kielland A, Carlsen H. Molecular imaging of transcriptional regulation during inflammation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:20. [PMID: 20420665 PMCID: PMC2883981 DOI: 10.1186/1476-9255-7-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/26/2010] [Indexed: 01/21/2023]
Abstract
Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.
Collapse
Affiliation(s)
- Anders Kielland
- Dept, of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1046 Blindern, 0316 Oslo, Norway.
| | | |
Collapse
|
15
|
Diet-induced obesity increases NF-kappaB signaling in reporter mice. GENES AND NUTRITION 2009; 4:215-22. [PMID: 19707810 DOI: 10.1007/s12263-009-0133-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 03/10/2009] [Indexed: 01/04/2023]
Abstract
The nuclear factor (NF)-kappaB is a primary regulator of inflammatory responses and may be linked to pathology associated with obesity. We investigated the progression of NF-kappaB activity during a 12-week feeding period on a high-fat diet (HFD) or a low-fat diet (LFD) using NF-kappaB luciferase reporter mice. In vivo imaging of luciferase activity showed that NF-kappaB activity was higher in the HFD mice compared with LFD-fed mice. Thorax region of HFD females displayed fourfold higher activity compared with LFD females, while no such increase was evident in males. In male HFD mice, abdominal NF-kappaB activity was increased twofold compared with the LFD males, while females had unchanged NF-kappaB activity in the abdomen by HFD. HFD males, but not females, exhibited evident glucose intolerance during the study. In conclusion, HFD increased NF-kappaB activity in both female and male mice. However, HFD differentially increased activity in males and females. The moderate increase in abdomen of male mice may be linked to glucose intolerance.
Collapse
|
16
|
Abstract
For nearly 100 y, pediatricians have regularly used oxygen to treat neonatal and childhood diseases. During this time, it has become clear that oxygen is toxic and that overzealous use can lead to significant morbidity. As we have learned more about the appropriate clinical indications for oxygen therapy, studies at the bench have begun to elucidate the molecular mechanisms by which cells respond to hyperoxia. In this review, we discuss transcription factors whose activity is regulated by oxygen, including nuclear factor, erythroid 2-related factor 2 (Nrf2), activator protein 1 (AP-1), p53, nuclear factor kappaB (NF-kappaB), signal transducers and activators of transcription protein (STAT), and ccat/enhancer binding protein (CEBP). Special attention is paid to the mechanisms by which hyperoxia affects these transcription factors in the lung. Finally, we identify downstream targets of these transcription factors, with a focus on heme oxygenase-1. A better understanding of how oxygen affects various signaling pathways could lead to interventions aimed at preventing hyperoxic injury.
Collapse
Affiliation(s)
- Clyde J Wright
- Division of Neonatology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
17
|
Perez-de-Sa V, Cunha-Goncalves D, Nordh A, Hansson S, Larsson A, Ley D, Fellman V, Werner O. High brain tissue oxygen tension during ventilation with 100% oxygen after fetal asphyxia in newborn sheep. Pediatr Res 2009; 65:57-61. [PMID: 18703995 DOI: 10.1203/pdr.0b013e31818a01a4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The optimal inhaled oxygen fraction for newborn resuscitation is still not settled. We hypothesized that short-lasting oxygen ventilation after intrauterine asphyxia would not cause arterial or cerebral hyperoxia, and therefore be innocuous. The umbilical cord of fetal sheep was clamped and 10 min later, after delivery, ventilation with air (n = 7) or with 100% oxygen for 3 (n = 6) or 30 min (n = 5), followed by air, was started. Among the 11 lambs given 100% oxygen, oxygen tension (PO2) was 10.7 (1.8-56) kPa [median (range)] in arterial samples taken after 2.5 min of ventilation. In those ventilated with 100% oxygen for 30 min, brain tissue PO2 (PbtO2) increased from less than 0.1 kPa in each lamb to individual maxima of 56 (30-61) kPa, whereas in those given oxygen for just 3 min, PbtO2 peaked at 4.2 (2.9-46) kPa. The maximal PbtO2 in air-ventilated lambs was 2.9 (0.8-5.4) kPa. Heart rate and blood pressure increased equally fast in the three groups. Thus, prolonged ventilation with 100% oxygen caused an increase in PbtO2 of a magnitude previously only reported under hyperbaric conditions. Reducing the time of 100% oxygen ventilation to 3 min did not consistently avert systemic hyperoxia.
Collapse
Affiliation(s)
- Valeria Perez-de-Sa
- Department of Pediatric Anesthesia and Intensive Care, University Hospital of Lund, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ezaki S, Suzuki K, Kurishima C, Miura M, Weilin W, Hoshi R, Tanitsu S, Tomita Y, Takayama C, Wada M, Kondo T, Tamura M. Resuscitation of preterm infants with reduced oxygen results in less oxidative stress than resuscitation with 100% oxygen. J Clin Biochem Nutr 2008; 44:111-8. [PMID: 19177196 PMCID: PMC2613494 DOI: 10.3164/jcbn.08-221] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/05/2008] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to determine the effects of the level of inhaled oxygen during resuscitation on the levels of free radicals and anti-oxidative capacity in the heparinized venous blood of preterm infants. Forty four preterm infants <35 weeks of gestation with mild to moderate neonatal asphyxia were randomized into two groups. The first group of infants were resuscitated with 100% oxygen (100% O(2) group), while in the other group (reduced O(2) group), the oxygen concentration was titrated according to pulse oximeter readings. We measured total hydroperoxide (TH) and redox potential (RP) in the plasma within 60 min of birth. The integrated excessive oxygen ( summation operator(FiO(2)-0.21) x Time(min)) was higher in the 100% O(2) group than in the reduced O(2) group (p<0.0001). TH was higher in the 100% O(2) group than in the reduced O(2) group (p<0.0001). RP was not different between the 100% O(2) and reduced O(2) groups (p = 0.399). RP/TH ratio was lower in the 100% O(2) group than in the reduced O(2) group (p<0.01). We conclude that in the resuscitation of preterm infants with mild to moderate asphyxia, oxidative stress can be reduced by lowering the inspired oxygen concentration using a pulse oximeter.
Collapse
Affiliation(s)
- Shoichi Ezaki
- Division of Neonatal Medicine, Center for Maternal, Fetal and Neonatal Medicine, Saitama Medical Center, Saitama Medical University, 1981 Kamoda-Tujido, Kawagoe, Saitama 350-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Austenaa LM, Carlsen H, Hollung K, Blomhoff HK, Blomhoff R. Retinoic acid dampens LPS-induced NF-kappaB activity: results from human monoblasts and in vivo imaging of NF-kappaB reporter mice. J Nutr Biochem 2008; 20:726-34. [PMID: 18926686 DOI: 10.1016/j.jnutbio.2008.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/25/2008] [Accepted: 07/07/2008] [Indexed: 01/19/2023]
Abstract
Bacterial lipopolysaccharide (LPS) is a major inducer of systemic inflammatory reactions and oxidative stress in response to microbial infections and may cause sepsis. In the present study, we demonstrate that retinoic acid inhibits LPS-induced activation in transgenic reporter mice and human monoblasts through inhibition of nuclear factor kappaB (NF-kappaB). By using noninvasive molecular imaging of NF-kappaB luciferase reporter mice, we showed that administration of retinoic acid repressed LPS-induced whole-body luminescence, demonstrating in vivo the dynamics of retinoic acid's ability to repress physiologic response to LPS. Retinoic acid also inhibited LPS-induced NF-kappaB activity in the human myeloblastic cell line U937. Retinoic-acid-receptor-selective agonists mimicked - while specific antagonists inhibited - the effects of retinoic acid, suggesting the involvement of nuclear retinoic acid receptors. Retinoic acid also repressed LPS-induced transcription of NF-kappaB target genes such as IL-6, MCP-1 and COX-2. The effect of retinoic acid was dependent on new protein synthesis, was obstructed by a deacetylase inhibitor and was partly eliminated by a signal transducer and activator of transcription-1 (STAT1)/methyltransferase inhibitor, indicating that retinoic acid induces a new protein, possibly STAT1, that is involved in inhibiting NF-kappaB. This provides more evidence for retinoic acid's anti-inflammatory potential, which may have clinical implications in terms of fighting microbial infections.
Collapse
Affiliation(s)
- Liv M Austenaa
- Department of Nutrition Research, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
20
|
Koch JD, Miles DK, Gilley JA, Yang CP, Kernie SG. Brief exposure to hyperoxia depletes the glial progenitor pool and impairs functional recovery after hypoxic-ischemic brain injury. J Cereb Blood Flow Metab 2008; 28:1294-306. [PMID: 18334993 PMCID: PMC2652354 DOI: 10.1038/jcbfm.2008.15] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Patterns of hypoxic-ischemic brain injury in infants and children suggest vulnerability in regions of white matter development, and injured patients develop defects in myelination resulting in cerebral palsy and motor deficits. Reperfusion exacerbates the oxidative stress that occurs after such injuries and may impair recovery. Resuscitation after hypoxic-ischemic injury is routinely performed using 100% oxygen, and this practice may increase the oxidative stress that occurs during reperfusion and further damage an already compromised brain. We show that brief exposure (30 mins) to 100% oxygen during reperfusion worsens the histologic injury in young mice after unilateral brain hypoxia-ischemia, causes an accumulation of the oxidative metabolite nitrotyrosine, and depletes preoligodendrocyte glial progenitors present in the cortex. This damage can be reversed with administration of the antioxidant ebselen, a glutathione peroxidase mimetic. Moreover, mice recovered in 100% oxygen have a more disrupted pattern of myelination and develop a static motor deficit that mimics cerebral palsy and manifests itself by significantly worse performance on wire hang and rotorod motor testing. We conclude that exposure to 100% oxygen during reperfusion after hypoxic-ischemic brain injury increases secondary neural injury, depletes developing glial progenitors, interferes with myelination, and ultimately impairs functional recovery.
Collapse
Affiliation(s)
- Joshua D Koch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
21
|
Castillo A, Sola A, Baquero H, Neira F, Alvis R, Deulofeut R, Critz A. Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics 2008; 121:882-9. [PMID: 18450890 DOI: 10.1542/peds.2007-0117] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Our aim was to define the relationship of PaO(2) and pulse oxygen saturation values during routine clinical practice and to evaluate whether pulse oxygen saturation values between 85% and 93% were associated with PaO(2) levels of <40 mmHg. METHODS Prospective comparison of PaO(2) and pulse oxygen saturation values in 7 NICUs at sea level in 2 countries was performed. The PaO(2) measurements were obtained from indwelling arterial catheters; simultaneous pulse oxygen saturation values were recorded if the pulse oxygen saturation values changed <1% before, during, and after the arterial gas sample was obtained. RESULTS We evaluated 976 paired PaO(2)/pulse oxygen saturation values in 122 neonates. Of the 976 samples, 176 (18%) from infants breathing room air had a mean pulse oxygen saturation of 93.9 +/- 4.3% and a median of 95.5%. The analysis of 800 samples from infants breathing supplemental oxygen revealed that, when pulse oxygen saturation values were 85% to 93%, the mean PaO(2) was 56 +/- 14.7 mmHg and the median 54 mmHg. At this pulse oxygen saturation level, 86.8% of the samples had PaO(2) values of 40 to 80 mmHg, 8.6% had values of <40 mmHg, and 4.6% had values of >80 mmHg. When the pulse oxygen saturation values were >93%, the mean PaO(2) was 107.3 +/- 59.3 mmHg and the median 91 mmHg. At this pulse oxygen saturation level, 39.5% of the samples had PaO(2) values of 40 to 80 mmHg and 59.5% had values of >80 mmHg. CONCLUSIONS High PaO(2) occurs very rarely in neonates breathing supplemental oxygen when their pulse oxygen saturation values are 85% to 93%. This pulse oxygen saturation range also is infrequently associated with low PaO(2) values. Pulse oxygen saturation values of >93% are frequently associated with PaO(2) values of >80 mmHg, which may be of risk for some newborns receiving supplemental oxygen.
Collapse
Affiliation(s)
- Armando Castillo
- Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain. J Neuropathol Exp Neurol 2008; 67:223-30. [PMID: 18344913 DOI: 10.1097/nen.0b013e3181654957] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute brain injury is associated with induction of hepatic chemokine expression, which is an essential element in the subsequent recruitment of leukocytes to the damaged brain. To further understand the significance of the hepatic inflammatory response, we focused on nuclear factor (NF)-kappa B, a pivotal regulator of inflammation. Nondestructive real-time whole-body imaging was undertaken in the 3XNF-kappa B-luciferase mouse to monitor NF-kappa B activation. Acute brain injury induced by intracerebral injection of interleukin-1 provoked rapid activation of hepatic and CNS NF-kappa B, with only minimal changes in other organs. Elevated NF-kappa B in the brain was limited to the site of the lesion, whereas hepatic NF-kappa B was widespread. The function of NF-kappa B in this model was determined by monitoring leukocyte recruitment to the liver and brain of nf kappa b1 mice, which lack the anti-inflammatory p50:p50 NF-kappa B homodimer. Brain injury in the nf kappa b1 mice was associated with increased neutrophil recruitment to the liver and brain compared with wild-type mice, thereby confirming a regulatory role for the NF-kappa B system. To determine the role of hepatic NF-kappa B, it was selectively inhibited by intravenous adenoviral-mediated delivery of an I kappa B alpha super-repressor. This treatment significantly reduced the numbers of neutrophils recruited to the brain. In conclusion, acute brain injury is associated with rapid and robust activation of hepatic NF-kappa B, which is required for efficient mobilization of circulating leukocytes to the brain.
Collapse
|
23
|
Dohlen G, Odland HH, Carlsen H, Blomhoff R, Thaulow E, Saugstad OD. Antioxidant activity in the newborn brain: a luciferase mouse model. Neonatology 2008; 93:125-31. [PMID: 17785990 DOI: 10.1159/000107777] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 06/20/2007] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Oxidative stress in the newborn period may cause cell injury and inflammation if the antioxidant capacity is insufficient. To monitor antioxidant and inflammatory activity we examined by in vivo imaging various strains of luciferase reporter mice whose light-emitting properties were regulated by response elements or complete promoters related to oxidative stress and/or inflammation. The aim of this study is to present a model that can monitor genetic activity in vivo during pregnancy and the first 10 days of life. METHODS One mouse strain reports the activity of nuclear factor-kappaB (NF-kappaB) activity, a transcription factor essential for modulating inflammation, apoptosis, differentiation and cell growth. A second mouse strain reports on superoxide dismutase 1-promoter activity. A third strain reports the promoter activity of gamma-glutamylcysteine synthetase, the rate limiting enzyme in glutathione production, and the last strain reports on antioxidant responsive element (ARE)/electrophil responsive element. Wild-type female mice mated with NF-kappaB mice were imaged through pregnancy to monitor intrauterine NF-kappaB activation. RESULTS Intrauterine NF-kappaB activity increased dramatically from day 17 towards labor. During the first 4 days of life luminescence measured was intense in all mice with distinct strain differences. All strains had high luminescence levels at day 1 and a considerably lower level at day 10. CONCLUSION This model allows investigation of the transcriptional regulation of key proteins related to oxidative stress and inflammation in pregnancy and the first days of life. With very little stress to the newborn animals genetic activity can be monitored day by day.
Collapse
Affiliation(s)
- Gaute Dohlen
- Department of Pediatric Research, Rikshospitalet Medical Center, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
24
|
Markus T, Hansson S, Amer-Wåhlin I, Hellström-Westas L, Saugstad OD, Ley D. Cerebral inflammatory response after fetal asphyxia and hyperoxic resuscitation in newborn sheep. Pediatr Res 2007; 62:71-7. [PMID: 17519806 DOI: 10.1203/pdr.0b013e31811ead6e] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Resuscitation with pure oxygen at birth after fetal asphyxia may aggravate brain damage by inducing pro-inflammation. The toll-like receptors (TLRs) may serve a pro-inflammatory role in hyperoxemia during ischemia-reperfusion. Sixteen near-term fetal sheep (132-136 d) were subjected to 10 min of cord occlusion, delivery and mechanical ventilation with 100% O2 (n = 8), or 21% O2 (n = 8) for 30 min followed by normoxemia for 90 min. Eight sheep fetuses were delivered immediately with inspired O2 targeted at normoxemia for 120 min (controls). Levels and distributions of mRNAs for IL-1beta, TNF-alpha, IL-12p40, IL-18, IL-6, IL-10, IFN-gamma, TLR-2, -3 and -4 in cerebral tissue at 2 h after birth were evaluated with real-time polymerase chain reaction (PCR) and in situ hybridization. Expressions of IL-1beta, IL-12p40, TLR-2, and TLR-4 were increased in cortex/subcortex after resuscitation with 100% O2 compared with 21% O2 (all p < 0.05) and to controls (all p < 0.05). Increased cellular expression of IL-1beta was localized to sub-meningeal cortical layers and to sub-cortical white matter. Hyperoxic resuscitation at birth following fetal asphyxia induces a cerebral pro-inflammatory response with an up-regulation of TLR-2 and -4. These may be early events leading to increased tissue damage after exposure to hyperoxemia at birth.
Collapse
Affiliation(s)
- Tina Markus
- Department of Pediatrics, Lund University, 221 85 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
UNLABELLED Education in oxygenation and in how oxygen is given to newborns needs to increase. Treatment with oxygen should no longer be considered proverbial and customary, regardless of our 'past experience' or consensus recommendations in clinical guidelines, since oxygen may lead to acute or chronic health effects. CONCLUSION Inappropriate oxygen use is a neonatal health hazard associated with aging, DNA damage and cancer, retinopathy of prematurity, injury to the developing brain, infection and others. Neonatal exposure to pure O2, even if brief, or to pulse oximetry >95% when breathing supplemental O2 must be avoided as much as possible.
Collapse
Affiliation(s)
- Augusto Sola
- Mid Atlantic Neonatology Associates and Morristown Memorial Hospital, Morristown, NJ, USA.
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Rikshospitalet Medical Center, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol 2007; 24:31-41. [PMID: 17548185 DOI: 10.1016/j.reprotox.2007.04.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 04/21/2007] [Accepted: 04/24/2007] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) are involved in the etiology of numerous diseases including cardio-vascular diseases and diabetes mellitus. There is evidence that several teratogens affect the developing embryo by increasing its oxidative stress and, because of its relatively weak antioxidant defense, especially at the early stages of organogenesis, result in severe embryonic damage. This mechanism seems to operate in diabetes-induced embryonic damage as well as in the mechanism of teratogenicity caused by ionizing radiation, hypoxia, alcohol and cocaine use and cigarette smoking. We studied the role of oxidative stress in diabetic induced embryopathy, both in vivo and in vitro. Under diabetic condition there was a significant decrease in the activity of endogenous antioxidant enzymes and of vitamins C and E in the embryos and their yolk sacs. The lowest activity was observed in the malformed experimental embryos when compared to experimental embryos without anomalies. Similar results were obtained in the Cohen diabetic rats, where the diabetic prone (CDs) rats were unable to increase their antioxidant enzyme activity in spite of the diabetes. Studies performed by other investigators show similar results. Human and animal studies show that the main mechanism of fetal damage induced by high levels of ionizing irradiation, cocaine and alcohol abuse, hypoxia and cigarette smoking is also by increased embryonic oxidative stress. Similarly, several drugs exert their teratogenic activity via embryonic oxidative stress. Abnormal placentation may also cause enhanced placental oxidative stress, resulting in embryonic death, preeclampsia or congenital anomalies. Inability of the developing embryo to cope with that stress may result in embryonic death and/or congenital anomalies. Animal studies also show that a variety of antioxidants are effective in decreasing the damaging effects of heightened oxidative stress induced by teratogens. Effective antioxidants, which might also be of clinical use, include vitamins C and E, carotenoids, folic acid, as well as synthetic products. Appropriate clinical studies with antioxidants in pregnancies of high risk to develop oxidative stress are needed, since non-toxic antioxidants might prove an efficient and inexpensive way to reduce the rate of some serious and sometimes fatal congenital anomalies.
Collapse
Affiliation(s)
- Asher Ornoy
- Laboratory of Teratology, Department of Anatomy and Cell Biology, Hebrew University--Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
28
|
Respuesta de los autores. An Pediatr (Barc) 2007. [DOI: 10.1016/s1695-4033(07)70400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Deulofeut R, Critz A, Adams-Chapman I, Sola A. Avoiding hyperoxia in infants < or = 1250 g is associated with improved short- and long-term outcomes. J Perinatol 2006; 26:700-5. [PMID: 17036032 DOI: 10.1038/sj.jp.7211608] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the rate and severity of short- and long-term morbidity in very low birth weight infants treated before and after the implementation of a change in clinical practice designed to avoid hyperoxia. METHODS Analysis of a prospectively collected database of all infants < or = 1250 g admitted to two Emory University NICU's from January 2000 to December 2004. A change in practice was instituted in January 2003 with the objective of avoiding hyperoxia in preterm infants with target O2 saturation (SpO2) at 93 to 85% (Period II). Before the change in practice, SpO2 high alarms were set at 100% and low alarms at 92% (Period I). Statistical analysis included bivariate analyses and multivariate logistic regression comparing outcomes between the two periods. RESULTS From January 2000 to December 2004, 502 infants met enrollment criteria and 202 (40%) were born in period II, after change in SpO2 targets. Birth weight, gestational age and survival were similar between both periods. The rates for any retinopathy of prematurity, supplemental oxygen at 36 weeks post-conceptional age and the use of steroids for chronic lung disease were significantly lower in the infants born in Period II. There was no difference in the rates of necrotizing enterocolitis, intraventricular hemorrhage and periventricular leukomalacia. At 18 months corrected age (CA), the infants treated during Period II had a higher Mental Developmental Index (MDI) scores (80.2 +/- 18.3 vs 89.2 +/- 18.5; P 0.02) and similar Psychomotor Developmental Index (PDI) scores (83.9 +/- 18.6 vs 89.4 +/- 17.2; P 0.08) than those treated during Period I. The proportion of infants with an MDI or a PDI less than 70 was similar between the periods. CONCLUSIONS The change in practice to avoid hyperoxia is associated with a significant decrease in neonatal morbidity and does not have a detrimental effect on developmental outcomes at 18 months CA.
Collapse
Affiliation(s)
- R Deulofeut
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
30
|
Mémet S. NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006; 72:1180-95. [PMID: 16997282 DOI: 10.1016/j.bcp.2006.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/01/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is an ubiquitously expressed dimeric molecule with post-translationally regulated activity. Its role in the immune system and host defense has been well characterized over the last two decades. In contrast, our understanding of the function of this transcription factor in the nervous system (NS) is only emerging. Given their cytoplasmic retention and nuclear translocation upon stimulus, NF-kappaB members are likely to exert an important role in transduction of signals from synaptic terminals to nucleus, to initiate transcriptional responses. This report describes recent findings deciphering the diverse functions of NF-kappaB in NS development and activity, which range from the control of cell growth, survival and inflammatory response to synaptic plasticity, behavior and cognition. Particular attention is given to the specific roles of NF-kappaB in the various cells of the NS, e.g. neurons and glia. Current knowledge of the contribution of NF-kappaB to several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases is also summarized.
Collapse
Affiliation(s)
- Sylvie Mémet
- Unité de Mycologie Moléculaire, FRE CNRS 2849, Department of Infection and Epidemiology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
31
|
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Rikshospitalet University Hospital, 0027 Oslo, Norway.
| | | | | |
Collapse
|