1
|
DiBattista A, McIntosh N, Lamoureux M, Al-Dirbashi OY, Chakraborty P, Britz-McKibbin P. Metabolic Signatures of Cystic Fibrosis Identified in Dried Blood Spots For Newborn Screening Without Carrier Identification. J Proteome Res 2019; 18:841-854. [PMID: 30507207 DOI: 10.1021/acs.jproteome.8b00351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) is a complex multiorgan disorder that is among the most common fatal genetic diseases benefiting from therapeutic interventions early in life. Newborn screening (NBS) for presymptomatic detection of CF currently relies on a two-stage immunoreactive trypsinogen (IRT) and cystic fibrosis transmembrane conductance regulator (CFTR) mutation panel algorithm that is sensitive but not specific for identifying affected neonates with a low positive predictive value. For the first time, we report the discovery of a panel of CF-specific metabolites from a single 3.2 mm diameter dried blood spot (DBS) punch when using multisegment injection-capillary electrophoresis-mass spectrometry (MS) as a high-throughput platform for nontargeted metabolite profiling from volume-restricted/biobanked specimens with quality control. This retrospective case-control study design identified 32 metabolites, including a series of N-glycated amino acids, oxidized glutathione disulfide, and nicotinamide that were differentially expressed in normal birth weight CF neonates without meconium ileus ( n = 36) as compared to gestational age/sex-matched screen-negative controls ( n = 44) after a false discovery rate adjustment ( q < 0.05). Also, 16 metabolites from DBS extracts allowed for discrimination of true CF cases from presumptive screen-positive carriers with one identified CFTR mutation and transient neonatal hypertrypsinogenemic neonates ( n = 72), who were later confirmed as unaffected due to a low sweat chloride (<29 mM) test result. Importantly, six CF-specific biomarker candidates satisfying a Bonferroni adjustment ( p < 7.25 × 10-5) from three independent batches of DBS specimens included several amino acids depleted in circulation (Tyr, Ser, Thr, Pro, Gly) likely reflecting protein maldigestion/malabsorption. Additionally, CF neonates had lower ophthalmic acid as an indicator of oxidative stress due to impaired glutathione efflux from exocrine/epithelial tissue and elevation of an unknown trivalent peptide that was directly correlated with IRT (ρ = 0.332, p = 4.55 × 10-4). Structural elucidation of unknown metabolites was performed by high-resolution MS/MS, whereas biomarker validation was realized when comparing a subset of metabolites from matching neonatal DBS specimens independently analyzed by direct infusion-MS/MS at an accredited NBS facility. This work sheds new light into the metabolic phenotype of CF early in life, which is required for better functional understanding of CFTR mutations of unknown clinical consequence and the development of more accurate yet cost-effective strategies for CF screening.
Collapse
Affiliation(s)
- Alicia DiBattista
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton L8S 4M1 , Canada
| | | | | | - Osama Y Al-Dirbashi
- College of Medicine and Health Sciences , United Arab Emirates University , Al Ain 15551 , United Arab Emirates
| | | | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton L8S 4M1 , Canada
| |
Collapse
|
2
|
Macedo A, Mathiaparanam S, Brick L, Keenan K, Gonska T, Pedder L, Hill S, Britz-McKibbin P. The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: Revealing Mechanisms beyond Impaired Chloride Transport. ACS CENTRAL SCIENCE 2017; 3:904-913. [PMID: 28852705 PMCID: PMC5571457 DOI: 10.1021/acscentsci.7b00299] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 05/27/2023]
Abstract
The sweat chloride test remains the gold standard for confirmatory diagnosis of cystic fibrosis (CF) in support of universal newborn screening programs. However, it provides ambiguous results for intermediate sweat chloride cases while not reflecting disease progression when classifying the complex CF disease spectrum given the pleiotropic effects of gene modifiers and environment. Herein we report the first characterization of the sweat metabolome from screen-positive CF infants and identify metabolites associated with disease status that complement sweat chloride testing. Pilocarpine-stimulated sweat specimens were collected independently from two CF clinics, including 50 unaffected infants (e.g., carriers) and 18 confirmed CF cases. Nontargeted metabolite profiling was performed using multisegment injection-capillary electrophoresis-mass spectrometry as a high throughput platform for analysis of polar/ionic metabolites in volume-restricted sweat samples. Amino acids, organic acids, amino acid derivatives, dipeptides, purine derivatives, and unknown exogenous compounds were identified in sweat when using high resolution tandem mass spectrometry, including metabolites associated with affected yet asymptomatic CF infants, such as asparagine and glutamine. Unexpectedly, a metabolite of pilocarpine, used to stimulate sweat secretion, pilocarpic acid, and a plasticizer metabolite from environmental exposure, mono(2-ethylhexyl)phthalic acid, were secreted in the sweat of CF infants at significantly lower concentrations relative to unaffected CF screen-positive controls. These results indicated a deficiency in human paraoxonase, an enzyme unrelated to mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) and impaired chloride transport, which is a nonspecific arylesterase/lactonase known to mediate inflammation, bacterial biofilm formation, and recurrent lung infections in affected CF children later in life. This work sheds new light into the underlying mechanisms of CF pathophysiology as required for new advances in precision medicine of orphan diseases that benefit from early detection and intervention, including new molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Adriana
N. Macedo
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Stellena Mathiaparanam
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Lauren Brick
- Department
of Pediatrics, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Katherine Keenan
- Program
in Translational Medicine, The Hospital
for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Tanja Gonska
- Program
in Translational Medicine, The Hospital
for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department
of Pediatrics, University of Toronto, Toronto, Ontario M5G 1E2, Canada
| | - Linda Pedder
- Department
of Pediatrics, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Stephen Hill
- Department
of Pathology and Molecular Medicine, McMaster
University, Hamilton, Ontario L8S 3Z5, Canada
| | - Philip Britz-McKibbin
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
3
|
Aqeel M, Ahmad S, Patel JJ, Rice TW. Immunonutrition in Acute Respiratory Distress Syndrome. CURRENT PULMONOLOGY REPORTS 2017. [DOI: 10.1007/s13665-017-0171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Forrester DL, Knox AJ, Smyth AR, Barr HL, Simms R, Pacey SJ, Pavord ID, Honeybourne D, Dewar J, Clayton A, Fogarty AW. Glutamine supplementation in cystic fibrosis: A randomized placebo-controlled trial. Pediatr Pulmonol 2016; 51:253-7. [PMID: 26709241 DOI: 10.1002/ppul.23370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023]
Abstract
RATIONALE Pulmonary infection and malnutrition in cystic fibrosis are associated with decreased survival. Glutamine has a possible anti-microbial effect, with a specific impact against Pseudomonas aeruginosa. We aimed to test the hypothesis that oral glutamine supplementation (21 g/day) for 8 weeks in adults with cystic fibrosis would decrease pulmonary inflammation and improve clinical status. METHODS The study design was a randomized double-blind placebo-controlled study design with an iso-nitrogenous placebo. The primary analysis was intention to treat, and the primary outcome was change in induced sputum neutrophils. RESULTS Thirty-nine individuals were recruited and thirty-six completed the study. Glutamine supplementation had no impact on any of the outcome measures in the intention-to-treat analysis. In the per protocol analysis, glutamine supplementation was associated with an increase in induced sputum neutrophils (P = 0.046), total cells (P = 0.03), and in Pseudomonas isolation agar colony forming units (P = 0.04) compared to placebo. CONCLUSIONS There was no effect of glutamine supplementation on markers of pulmonary inflammation in the intention-to-treat analysis.
Collapse
Affiliation(s)
- Doug L Forrester
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alan J Knox
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alan R Smyth
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Helen L Barr
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Simms
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sarah J Pacey
- Department of Pharmacy, NUH NHS Trust, Nottingham, United Kingdom
| | - Ian D Pavord
- Division of Respiratory Medicine, Oxford University, United Kingdom
| | - David Honeybourne
- Department of Respiratory Medicine, Heartlands Hospital, Birmingham, United Kingdom
| | - Jane Dewar
- Department of Respiratory Medicine, Nottingham City Hospital, Nottingham, United Kingdom
| | - Andy Clayton
- Department of Respiratory Medicine, Nottingham City Hospital, Nottingham, United Kingdom
| | - Andrew W Fogarty
- Division of Public Health and Epidemiology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Exogenous Glutamine in Respiratory Diseases: Myth or Reality? Nutrients 2016; 8:76. [PMID: 26861387 PMCID: PMC4772040 DOI: 10.3390/nu8020076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF), asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting.
Collapse
|
6
|
Laguna TA, Reilly CS, Williams CB, Welchlin C, Wendt CH. Metabolomics analysis identifies novel plasma biomarkers of cystic fibrosis pulmonary exacerbation. Pediatr Pulmonol 2015; 50:869-77. [PMID: 26115542 PMCID: PMC5553866 DOI: 10.1002/ppul.23225] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease is characterized by infection, inflammation, lung function decline, and intermittent pulmonary exacerbations. However, the link between pulmonary exacerbation and lung disease progression remains unclear. Global metabolomic profiling can provide novel mechanistic insight into a disease process in addition to putative biomarkers for future study. Our objective was to investigate how the plasma metabolomic profile changes between CF pulmonary exacerbation and a clinically well state. METHODS Plasma samples and lung function data were collected from 25 CF patients during hospitalization for a pulmonary exacerbation and during quarterly outpatient clinic visits. In collaboration with Metabolon, Inc., the metabolomic profiles of matched pair plasma samples, one during exacerbation and one at a clinic visit, were analyzed using gas and liquid chromatography coupled with mass spectrometry. Compounds were identified by comparison to a library of standards. Mixed effects models that controlled for nutritional status and lung function were used to test for differences and principal components analysis was performed. RESULTS Our population had a median age of 27 years (14-39) and had a median FEV1 % predicted of 65% (23-105%). 398 total metabolites were identified and after adjustment for confounders, five metabolites signifying perturbations in nucleotide (hypoxanthine), nucleoside (N4-acetylcytidine), amino acid (N-acetylmethionine), carbohydrate (mannose), and steroid (cortisol) metabolism were identified. Principal components analysis provided good separation between the two clinical phenotypes. CONCLUSIONS Our findings provide putative metabolite biomarkers for future study and allow for hypothesis generation about the pathophysiology of CF pulmonary exacerbation.
Collapse
Affiliation(s)
- Theresa A Laguna
- Department of Pediatrics, University of Minnesota Medical School and The University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Cavan S Reilly
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Cynthia B Williams
- Department of Pediatrics, University of Minnesota Medical School and The University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Cole Welchlin
- Department of Pediatrics, University of Minnesota Medical School and The University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Chris H Wendt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Minnesota School of Medicine and Veterans Administration Medical Center, Minneapolis, Minnesota
| |
Collapse
|
7
|
Mok E, Hankard R. Glutamine supplementation in sick children: is it beneficial? J Nutr Metab 2011; 2011:617597. [PMID: 22175008 PMCID: PMC3228321 DOI: 10.1155/2011/617597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/28/2011] [Indexed: 12/14/2022] Open
Abstract
The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln) supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evidence is available on the benefits of Gln supplementation in pediatric patients. This includes premature infants, infants with gastrointestinal disease, children with Crohn's disease, short bowel syndrome, malnutrition/diarrhea, cancer, severe burns/trauma, Duchenne muscular dystrophy, sickle cell anemia, cystic fibrosis, and type 1 diabetes. Moreover, methodological issues have been noted in some studies. Further mechanistic data is needed along with large randomized controlled trials in select populations of sick children, who may eventually benefit from supplemental Gln.
Collapse
Affiliation(s)
- Elise Mok
- INSERM Centre D'Investigation Clinique 802, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers Cedex, France
| | | |
Collapse
|
8
|
Spence J. Pathway prediction by bioinformatic analysis of the untranslated regions of the CFTR mRNA. Genomics 2009; 94:39-47. [PMID: 19306924 DOI: 10.1016/j.ygeno.2009.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/07/2009] [Accepted: 03/11/2009] [Indexed: 11/17/2022]
Abstract
Mining the information contained within the genetic code in untranslated regions has proven difficult because of the ambiguity of microRNA and protein binding sites. This manuscript describes a bioinformatic screen that identifies long sequences with partial identity to the untranslated regions of the cystic fibrosis transmembrane regulator. This screen uncovered a long, evolutionarily conserved motif common to the 3' UTRs of the CFTR and SEC24A transcripts, and shorter, statistically significant motifs unique to either 5' or 3' UTRs. In addition, of the 140 transcripts identified in the screen that encode proteins with known protein interactions, 130 are linked to CFTR through protein interactions. The screen identified genes that are known to be involved in lung fibrosis, the inflammatory response of cystic fibrosis and sensitivity to Pseudomonas aeruginosa infections. The bioinformatic analysis of untranslated regions should prove to be a powerful adjunct to other tools for predicting pathways and relevant interactions.
Collapse
Affiliation(s)
- Jean Spence
- Omnitron Biosciences, P.O. Box 601002, San Diego, CA 92160, USA.
| |
Collapse
|