1
|
Curtis KL, Homer KM, Wendt RA, Stapley BM, Clark ET, Harward K, Chang A, Clarke DM, Arroyo JA, Reynolds PR. Inflammatory Cytokine Elaboration Following Secondhand Smoke (SHS) Exposure Is Mediated in Part by RAGE Signaling. Int J Mol Sci 2023; 24:15645. [PMID: 37958629 PMCID: PMC10649034 DOI: 10.3390/ijms242115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a key contributor to immune and inflammatory responses in myriad diseases. RAGE is a transmembrane pattern recognition receptor with a special interest in pulmonary anomalies due to its naturally abundant pulmonary expression. Our previous studies demonstrated an inflammatory role for RAGE following acute 30-day exposure to secondhand smoke (SHS), wherein immune cell diapedesis and cytokine/chemokine secretion were accentuated in part via RAGE signaling. However, the chronic inflammatory mechanisms associated with RAGE have yet to be fully elucidated. In this study, we address the impact of long-term SHS exposure on RAGE signaling. RAGE knockout (RKO) and wild-type (WT) mice were exposed to SHS using a nose-only delivery system (Scireq Scientific, Montreal, Canada) for six months. SHS-exposed animals were compared to mice exposed to room air (RA) only. Immunoblotting was used to assess the phospho-AKT and phospho-ERK activation data, and colorimetric high-throughput assays were used to measure NF-kB. Ras activation was measured via ELISAs. Bronchoalveolar lavage fluid (BALF) cellularity was quantified, and a mouse cytokine antibody array was used to screen the secreted cytokines. The phospho-AKT level was decreased, while those of phospho-ERK, NF-kB, and Ras were elevated in both groups of SHS-exposed mice, with the RKO + SHS-exposed mice demonstrating significantly decreased levels of each intermediate compared to those of the WT + SHS-exposed mice. The BALF contained increased levels of diverse pro-inflammatory cytokines in the SHS-exposed WT mice, and diminished secretion was detected in the SHS-exposed RKO mice. These results validate the role for RAGE in the mediation of chronic pulmonary inflammatory responses and suggest ERK signaling as a likely pathway that perpetuates RAGE-dependent inflammation. Additional characterization of RAGE-mediated pulmonary responses to prolonged exposure will provide a valuable insight into the cellular mechanisms of lung diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (R.A.W.); (E.T.C.); (A.C.)
| |
Collapse
|
2
|
Angiopoietin-1 protects against endotoxin-induced neonatal lung injury and alveolar simplification in mice. Pediatr Res 2022; 91:1405-1415. [PMID: 33980990 PMCID: PMC8586034 DOI: 10.1038/s41390-021-01544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sepsis in premature newborns is a risk factor for bronchopulmonary dysplasia (BPD), but underlying mechanisms of lung injury remain unclear. Aberrant expression of endothelial cell (EC) angiopoietin 2 (ANGPT2) disrupts angiopoietin 1 (ANGPT1)/TIE2-mediated endothelial quiescence, and is implicated in sepsis-induced acute respiratory distress syndrome in adults. We hypothesized that recombinant ANGPT1 will mitigate sepsis-induced ANGPT2 expression, inflammation, acute lung injury (ALI), and alveolar remodeling in the saccular lung. METHODS Effects of recombinant ANGPT1 on lipopolysaccharide (LPS)-induced endothelial inflammation were evaluated in human pulmonary microvascular endothelial cells (HPMEC). ALI and long-term alveolar remodeling were assessed in newborn mice exposed to intraperitoneal LPS and recombinant ANGPT1 pretreatment. RESULTS LPS dephosphorylated EC TIE2 in association with increased ANGPT2 in vivo and in vitro. ANGPT1 suppressed LPS and ANGPT2-induced EC inflammation in HPMEC. Neonatal mice treated with LPS had increased lung cytokine expression, neutrophilic influx, and cellular apoptosis. ANGPT1 pre-treatment suppressed LPS-induced lung Toll-like receptor signaling, inflammation, and ALI. LPS-induced acute increases in metalloproteinase 9 expression and elastic fiber breaks, as well as a long-term decrease in radial alveolar counts, were mitigated by ANGPT1. CONCLUSIONS In an experimental model of sepsis-induced BPD, ANGPT1 preserved endothelial quiescence, inhibited ALI, and suppressed alveolar simplification. IMPACT Key message: Angiopoietin 1 inhibits LPS-induced neonatal lung injury and alveolar remodeling. Additions to existing literature: Demonstrates dysregulation of angiopoietin-TIE2 axis is important for sepsis- induced acute lung injury and alveolar simplification in experimental BPD. Establishes recombinant Angiopoietin 1 as an anti-inflammatory therapy in BPD. IMPACT Angiopoietin 1-based interventions may represent novel therapies for mitigating sepsis-induced lung injury and BPD in premature infants.
Collapse
|
3
|
Menden H, Xia S, Mabry SM, Noel-MacDonnell J, Rajasingh J, Ye SQ, Sampath V. Histone deacetylase 6 regulates endothelial MyD88-dependent canonical TLR signaling, lung inflammation, and alveolar remodeling in the developing lung. Am J Physiol Lung Cell Mol Physiol 2019; 317:L332-L346. [PMID: 31268348 DOI: 10.1152/ajplung.00247.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lung endothelial cell (EC) immune activation during bacterial sepsis contributes to acute lung injury and bronchopulmonary dysplasia in premature infants. The epigenetic regulators of sepsis-induced endothelial immune activation, lung inflammation, and alveolar remodeling remain unclear. Herein, we examined the role of the cytoplasmic histone deacetylase, HDAC6, in regulating EC Toll-like receptor 4 (TLR4) signaling and modulating sepsis-induced lung injury in a neonatal model of sterile sepsis. In human primary microvascular endothelial cells (HPMEC), lipopolysaccharide (LPS)-induced MAPK, IKK-β, and p65 phosphorylation as well as inflammatory cytokine expression were exaggerated with the HDAC6 inhibitor tubastatin A, and by dominant-negative HDAC6 with a mutated catalytic domain 2. Expression of HDAC6 wild-type protein suppressed LPS-induced myeloid differentiation primary response 88 (MyD88) acetylation, p65 (Lys310) acetylation, MyD88/TNF receptor-associated factor 6 (TRAF6) coimmunoprecipitation, and proinflammatory TLR4 signaling in HPMEC. In a neonatal mouse model of sepsis, the HDAC6 inhibitor tubastatin A amplified lung EC TLR4 signaling and vascular permeability. HDAC6 inhibition augmented LPS-induced MyD88 acetylation, MyD88/TRAF6 binding, p65 acetylation, canonical TLR4 signaling, and inflammation in the developing lung. Sepsis-induced decreases in the fibroblast growth factors FGF2 and FGF7 and increase in matrix metalloproteinase-9 were worsened with HDAC6 inhibition, while elastin expression was equally suppressed. Exaggerated sepsis-induced acute lung inflammation observed with HDAC6 inhibition worsened alveolar simplification evidenced by increases in mean linear intercepts and decreased radial alveolar counts. Our studies reveal that HDAC6 is a constitutive negative regulator of cytoplasmic TLR4 signaling in EC and the developing lung. The therapeutic efficacy of augmenting HDAC6 activity in neonatal sepsis to prevent lung injury needs to be evaluated.
Collapse
Affiliation(s)
- Heather Menden
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Sheng Xia
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Sherry M Mabry
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Janelle Noel-MacDonnell
- Division of Health Services and Outcomes Research, Children's Mercy Hospital, Kansas City, Missouri
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, Kansas University Medical Center, Kansas City, Missouri
| | - Shui Qing Ye
- Department of Biomedical and Health Informatics, University of Missouri at Kansas City, Kansas City, Missouri
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
4
|
Menden HL, Xia S, Mabry SM, Navarro A, Nyp MF, Sampath V. Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 Regulates LPS-Induced Inflammation and Alveolar Remodeling in the Developing Lung. Am J Respir Cell Mol Biol 2017; 55:767-778. [PMID: 27438994 DOI: 10.1165/rcmb.2016-0006oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In premature infants, sepsis is associated with alveolar simplification manifesting as bronchopulmonary dysplasia. The redox-dependent mechanisms underlying sepsis-induced inflammation and alveolar remodeling in the immature lung remain unclear. We developed a neonatal mouse model of sepsis-induced lung injury to investigate whether nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) regulates Toll-like receptor (TLR)-mediated inflammation and alveolar remodeling. Six-day-old NOX2+/+ and NOX2-/- mice were injected with intraperitoneal LPS to induce sepsis. Lung inflammation and canonical TLR signaling were assessed 24 hours after LPS. Alveolar development was examined in 15-day-old mice after LPS on Day 6. The in vivo efficacy of a NOX2 inhibitor (NOX2-I) on NOX2 complex assembly and sepsis-induced lung inflammation were examined. Lung cytokine expression and neutrophil influx induced with sepsis in NOX2+/+ mice was decreased by >50% in NOX2-/- mice. LPS-induced TLR4 signaling evident by inhibitor of NF-κB kinase-β and mitogen-activated protein kinase phosphorylation, and nuclear factor-κB/AP-1 translocation were attenuated in NOX2-/- mice. LPS increased matrix metalloproteinase 9 while decreasing elastin and keratinocyte growth factor levels in NOX2+/+ mice. An LPS-induced increase in matrix metalloproteinase 9 and decrease in fibroblast growth factor 7 and elastin were not evident in NOX2-/- mice. An LPS-induced reduction in radial alveolar counts and increased mean linear intercepts were attenuated in NOX2-/- mice. LPS-induced NOX2 assembly evident by p67phox/gp91phox coimmunoprecipitation was disrupted with NOX2-I. NOX2-I also mitigated LPS-induced cytokine expression, TLR pathway signaling, and alveolar simplification. In a mouse model of neonatal sepsis, NOX2 regulates proinflammatory TLR signaling and alveolar remodeling induced by a single dose of LPS. Our results provide mechanistic insight into the regulation of sepsis-induced alveolar remodeling in the developing lung.
Collapse
Affiliation(s)
- Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Sheng Xia
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Sherry M Mabry
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Angels Navarro
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Michael F Nyp
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
5
|
Yang XS, Liu SA, Liu JW, Yan Q. Fucosyltransferase IV enhances expression of MMP-12 stimulated by EGF via the ERK1/2, p38 and NF-κB pathways in A431 cells. Asian Pac J Cancer Prev 2013; 13:1657-62. [PMID: 22799384 DOI: 10.7314/apjcp.2012.13.4.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Fucosyltransferase IV (FUT4) has been implicated in cell adhesion, motility, and tumor progression in human epidermoid carcinoma A431 cells. We previously reported that it promotes cell proliferation through the ERK/MAPK and PI3K/Akt signaling pathways; however, the molecular mechanisms underlying FUT4- induced cell invasion remain unknown. In this study we determined the effect of FUT4 on expression of matrix metalloproteinase (MMP)-12 induced by EGF in A431 cells. Treatment with EGF resulted in an alteration of cell morphology and induced an increase in the expression of MMP-12. EGF induced nuclear translocation of nuclear factor κB (NF-κB) and resulted in phosphorylation of IκBα in a time-dependent manner. In addition, ERK1/2 and p38 MAPK were shown to play a crucial role in mediating EGF-induced NF-κB translocation and phosphorylation of IκBα when treated with the MAPK inhibitors, PD98059 and SB203580, which resulted in increased MMP-12 expression. Importantly, we showed that FUT4 up-regulated EGF-induced MMP-12 expression by promoting the phosphorylation of ERK1/2 and p38 MAPK, thereby inducing phosphorylation/ degradation of IκBα, NF-κB activation. Base on our data, we propose that FUT4 up-regulates expression of MMP-12 via a MAPK-NF-κB-dependent mechanism.
Collapse
Affiliation(s)
- Xue-Song Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, China.
| | | | | | | |
Collapse
|
6
|
Korfhagen TR, Kitzmiller J, Chen G, Sridharan A, Haitchi HM, Hegde RS, Divanovic S, Karp CL, Whitsett JA. SAM-pointed domain ETS factor mediates epithelial cell-intrinsic innate immune signaling during airway mucous metaplasia. Proc Natl Acad Sci U S A 2012; 109:16630-5. [PMID: 23012424 PMCID: PMC3478616 DOI: 10.1073/pnas.1208092109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Airway mucus plays a critical role in clearing inhaled toxins, particles, and pathogens. Diverse toxic, inflammatory, and infectious insults induce airway mucus secretion and goblet cell metaplasia to preserve airway sterility and homeostasis. However, goblet cell metaplasia, mucus hypersecretion, and airway obstruction are integral features of inflammatory lung diseases, including asthma, chronic obstructive lung disease, and cystic fibrosis, which cause an immense burden of morbidity and mortality. These chronic lung diseases are united by susceptibility to microbial colonization and recurrent airway infections. Whether these twinned phenomena (mucous metaplasia, compromised host defenses) are causally related has been unclear. Here, we demonstrate that SAM pointed domain ETS factor (SPDEF) was induced by rhinoviral infection of primary human airway cells and that cytoplasmic activities of SPDEF, a transcriptional regulator of airway goblet cell metaplasia, inhibited Toll-like receptor (TLR) activation of epithelial cells. SPDEF bound to and inhibited activities of TLR signaling adapters, MyD88 and TRIF, inhibiting MyD88-induced cytokine production and TRIF-induced interferon β production. Conditional expression of SPDEF in airway epithelial cells in vivo inhibited LPS-induced neutrophilic infiltration and bacterial clearance. SPDEF-mediated inhibition of both TLR and type I interferon signaling likely protects the lung against inflammatory damage when inciting stimuli are not eradicated. Present findings provide, at least in part, a molecular explanation for increased susceptibility to infection in lung diseases associated with mucous metaplasia and a mechanism by which patients with florid mucous metaplasia may tolerate microbial burdens that are usually associated with fulminant inflammatory disease in normal hosts.
Collapse
Affiliation(s)
| | | | - Gang Chen
- Divisions of Neonatology, Perinatal, and Pulmonary Biology
| | | | - Hans-Michael Haitchi
- Faculty of Medicine, University of Southampton, Southampton, S017 1BJ, United Kingdom
| | | | - Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Christopher L. Karp
- Division of Molecular Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | | |
Collapse
|
7
|
Sampath V, Garland JS, Le M, Patel AL, Konduri GG, Cohen JD, Simpson PM, Hines RN. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr Pulmonol 2012; 47:460-8. [PMID: 22058078 DOI: 10.1002/ppul.21568] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/19/2011] [Indexed: 11/11/2022]
Abstract
Current evidence supports a major role for inherited factors in determining bronchopulmonary dysplasia (BPD) susceptibility. The Toll-like receptor (TLR) family of proteins maintain pulmonary homeostasis in the developing lung by aiding pathogen recognition and clearance, regulating inflammation, and facilitating reparative tissue growth. We hypothesized that sequence variation in the TLR pathway genes would alter the susceptibility/severity of BPD in preterm infants. Very low birth-weight infants were recruited prospectively in a multi-center study involving collection of blood samples and clinical information. Nine TLR pathway single-nucleotide polymorphisms were genotyped using a multiplexed single-base extension assay. BPD outcomes were compared among infants with and without the variant allele using Chi-square or Fisher's exact tests. In our cohort (n = 289), 66 (23.6%) infants developed BPD, out of which 32 (11.2%) developed severe BPD. The TLR5 (g.1174C > T) variant was associated with BPD (P = 0.03) and severe BPD (P = 0.004). The TIRAP (g.2054C > T) variant was associated with BPD (P = 0.04). Infants heterozygous for the X-linked IRAK1 (g.6435T > C) variant had a lower incidence of BPD compared to infants homozygous for either the reference or variant allele (P = 0.03). In regression models that controlled for potential epidemiological confounders, the TIRAP variant was associated with BPD, and the TLR5 variant was associated with severe BPD. Our data support the hypothesis that aberrant pathogen recognition in premature infants arising from TLR pathway genetic variation can contribute to BPD pathogenesis.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Department of Pediatrics, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Prohinar P, Rallabhandi P, Weiss JP, Gioannini TL. Expression of functional D299G.T399I polymorphic variant of TLR4 depends more on coexpression of MD-2 than does wild-type TLR4. THE JOURNAL OF IMMUNOLOGY 2010; 184:4362-7. [PMID: 20212095 DOI: 10.4049/jimmunol.0903142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two missense variants (D299G and T399I) of TLR4 are cosegregated in individuals of European descent and, in a number of test systems, result in reduced responsiveness to endotoxin. How these changes within the ectodomain (ecd) of TLR4 affect TLR4 function is unclear. For both wild-type and D299G.T399I TLR4, we used endotoxinCD14 and endotoxinMD-2 complexes of high specific radioactivity to measure: 1) interaction of recombinant MD-2TLR4 with endotoxinCD14 and TLR4 with endotoxinMD-2; 2) expression of functional MD-2TLR4 and TLR4; and 3) MD-2TLR4 and TLR4-dependent cellular endotoxin responsiveness. Both wild-type and D299G.T399I TLR4(ecd) demonstrated high affinity (K(d) approximately 200 pM) interaction of endotoxinCD14 with MD-2TLR4(ecd) and endotoxinMD-2 with TLR4(ecd). However, levels of functional TLR4 were reduced up to 2-fold when D299G.T399I TLR4 was coexpressed with MD-2 and >10-fold when expressed without MD-2, paralleling differences in cellular endotoxin responsiveness. The dramatic effect of the D299G.T399I haplotype on expression of functional TLR4 without MD-2 suggests that cells expressing TLR4 without MD-2 are most affected by these polymorphisms.
Collapse
Affiliation(s)
- Polonca Prohinar
- Department of Internal Medicine, Roy A and Lucille J Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | |
Collapse
|
9
|
Uchio K, Sawada K, Manabe N. Expression of macrophage metalloelastase (MMP-12) in podocytes of hereditary nephrotic mice (ICGN strain). J Vet Med Sci 2009; 71:305-12. [PMID: 19346698 DOI: 10.1292/jvms.71.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Institute for Cancer Research (ICR)-derived glomerulonephritis (ICGN) mouse is a good model for renal fibrosis. In the glomeruli and tubulointerstitium of ICGN mouse kidneys, the components of the extracellular matrix (ECM) accumulated, and matrix metalloproteinases (MMPs) participated in this process. To clarify the mechanism of renal fibrosis, we investigated the expression and localization of macrophage metalloelastase (MMP-12), whose functions in kidney diseases are not fully understood, and its regulatory molecules, monocyte chemoattractive protein-1 (MCP-1) and CC chemokine receptor 2 (CCR2), in the kidneys of ICGN mice by RT-PCR, Western blotting and immunohistochemical staining, respectively. Extensive expression of MMP-12 mRNA and its protein was noted in ICGN mice with progressed nephrotic syndrome. The increase in MMP-12 expression occurred predominantly in podocytes. Furthermore, MCP-1 and CCR2 were also increased in podocytes of the ICGN strain. These results suggest that the expression of MMP-12 is involved in the progression of nephrotic syndrome in ICGN mice.
Collapse
Affiliation(s)
- Kozue Uchio
- Laboratory of Experimental Animal Models, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan.
| | | | | |
Collapse
|
10
|
Glasser SW, Witt TL, Senft AP, Baatz JE, Folger D, Maxfield MD, Akinbi HT, Newton DA, Prows DR, Korfhagen TR. Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol 2009; 297:L64-72. [PMID: 19304906 DOI: 10.1152/ajplung.90640.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with mutations in the pulmonary surfactant protein C (SP-C) gene develop interstitial lung disease and pulmonary exacerbations associated with viral infections including respiratory syncytial virus (RSV). Pulmonary infection with RSV caused more severe interstitial thickening, air space consolidation, and goblet cell hyperplasia in SP-C-deficient (Sftpc(-/-)) mice compared with SP-C replete mice. The RSV-induced pathology resolved more slowly in Sftpc(-/-) mice with lung inflammation persistent up to 30 days postinfection. Polymorphonuclear leukocyte and macrophage counts were increased in the bronchoalveolar lavage (BAL) fluid of Sftpc(-/-) mice. Viral titers and viral F and G protein mRNA were significantly increased in both Sftpc(-/-) and heterozygous Sftpc(+/-) mice compared with controls. Expression of Toll-like receptor 3 (TLR3) mRNA was increased in the lungs of Sftpc(-/-) mice relative to Sftpc(+/+) mice before and after RSV infection. Consistent with the increased TLR3 expression, BAL inflammatory cells were increased in the Sftpc(-/-) mice after exposure to a TLR3-specific ligand, poly(I:C). Preparations of purified SP-C and synthetic phospholipids blocked poly(I:C)-induced TLR3 signaling in vitro. SP-C deficiency increases the severity of RSV-induced pulmonary inflammation through regulation of TLR3 signaling.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wissinger E, Goulding J, Hussell T. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol 2009; 21:147-55. [PMID: 19223202 DOI: 10.1016/j.smim.2009.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
Abstract
Innate immunity at mucosal surfaces requires additional restraint to prevent inflammation to innocuous antigens or commensal microorganisms. The threshold above which airway macrophages become activated is raised by site-specific factors including the receptors for transforming growth factor beta, interleukin 10 and CD200; the ligands for which are produced by, or expressed on, respiratory epithelium. We discuss such site-specific regulation and how this is continually altered by prior infections. Resetting of innate reactivity represents a strategy for limiting excessive inflammation, but in some may pre-dispose to secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Erika Wissinger
- Imperial College London, National Heart and Lung Institute, Leukocyte Biology Section, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
12
|
DeLuca S, Sitara D, Kang K, Marsell R, Jonsson K, Taguchi T, Erben RG, Razzaque MS, Lanske B. Amelioration of the premature ageing-like features of Fgf-23 knockout mice by genetically restoring the systemic actions of FGF-23. J Pathol 2008; 216:345-55. [PMID: 18729070 DOI: 10.1002/path.2409] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic ablation of fibroblast growth factor 23 from mice (Fgf-23(-/-)) results in a short lifespan with numerous abnormal biochemical and morphological features. Such features include kyphosis, hypogonadism and associated infertility, osteopenia, pulmonary emphysema, severe vascular and soft tissue calcifications, and generalized atrophy of various tissues. To determine whether these widespread anomalies in Fgf-23(-/-) mice can be ameliorated by genetically restoring the systemic actions of FGF-23, we generated Fgf-23(-/-) mice expressing the human FGF-23 transgene in osteoblasts under the control of the 2.3 kb alpha1(I) collagen promoter (Fgf-23(-/-) /hFGF-23-Tg double mutants). This novel mouse model is completely void of all endogenous Fgf-23 activity, but produces human FGF-23 in bone cells that is subsequently released into the circulation. Our results suggest that lack of Fgf-23 activities results in extensive premature ageing-like features and early mortality of Fgf-23(-/-) mice, while restoring the systemic effects of FGF-23 significantly ameliorates these phenotypes, with the resultant effect being improved growth, restored fertility, and significantly prolonged survival of double mutants. With regard to their serum biochemistry, double mutants reversed the severe hyperphosphataemia, hypercalcaemia, and hypervitaminosis D found in Fgf-23(-/-) littermates; rather, double mutants show hypophosphataemia and normal serum 1,25-dihydroxyvitamin D(3) levels similar to pure FGF-23 Tg mice. These changes were associated with reduced renal expression of NaPi2a and 1 alpha-hydroxylase, compared to Fgf-23(-/-) mice. FGF-23 acts to prevent widespread abnormal features by acting systemically to regulate phosphate homeostasis and vitamin D metabolism. This novel mouse model provides us with an in vivo tool to study the systemic effects of FGF-23 in regulating mineral ion metabolism and preventing multiple abnormal phenotypes without the interference of native Fgf-23.
Collapse
Affiliation(s)
- S DeLuca
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Awomoyi AA, Rallabhandi P, Pollin TI, Lorenz E, Sztein MB, Boukhvalova MS, Hemming VG, Blanco JCG, Vogel SN. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. THE JOURNAL OF IMMUNOLOGY 2007; 179:3171-7. [PMID: 17709532 DOI: 10.4049/jimmunol.179.5.3171] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Although anti-RSV Ab prophylaxis has greatly reduced infant mortality in the United States, there is currently no vaccine or effective antiviral therapy. RSV fusion (F) protein activates cells through TLR4. Two single nucleotide polymorphisms (SNPs) encoding Asp299Gly and Thr399Ile substitutions in the TLR4 ectodomain were previously associated with TLR4 hyporesponsiveness and increased susceptibility to bacterial infection. Prevalence of these SNPs was analyzed in a case series of 105 DNA samples extracted from archived nasal lavage samples from high-risk infants/young children with confirmed RSV disease who participated in two seminal clinical trials for anti-RSV prophylaxis. Frequencies of TLR4 SNPs in the case series were compared with those of literature controls, healthy adults, infants, and young children who presented with symptoms of respiratory infections (but not preselected for high risk for RSV). Both SNPs were highly associated with symptomatic RSV disease in this largely premature population (p < 0.0001), with 89.5% and 87.6% of cases being heterozygous for Asp299Gly and Thr399Ile polymorphisms versus published control frequencies of 10.5% and 6.5%, respectively. The other two control groups had similarly low frequencies. Our data suggest that heterozygosity of these two extracellular TLR4 polymorphisms is highly associated with symptomatic RSV disease in high-risk infants and support a dual role for TLR4 SNPs in prematurity and increased susceptibility to RSV not revealed by analysis of either alone.
Collapse
Affiliation(s)
- Agnes A Awomoyi
- Department of Microbiology and Immunology, University of Maryland-Baltimore, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|