1
|
Zhong J, Doughty R, Thymann T, Sangild PT, Nguyen DN, Muk T. Insulin-like growth factor-1 effects on kidney development in preterm piglets. Pediatr Res 2024:10.1038/s41390-024-03222-3. [PMID: 38762663 DOI: 10.1038/s41390-024-03222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Preterm birth disrupts fetal kidney development, potentially leading to postnatal acute kidney injury. Preterm infants are deficient in insulin-like growth factor 1 (IGF-1), a growth factor that stimulates organ development. By utilizing a preterm pig model, this study investigated whether IGF-1 supplementation enhances preterm kidney maturation. METHODS Cesarean-delivered preterm pigs were treated systemically IGF-1 or vehicle control for 5, 9 or 19 days after birth. Blood, urine, and kidney tissue were collected for biochemical, histological and gene expression analyses. Age-matched term-born pigs were sacrificed at similar postnatal ages and served as the reference group. RESULTS Compared with term pigs, preterm pigs exhibited impaired kidney maturation, as indicated by analyses of renal morphology, histopathology, and inflammatory and injury markers. Supplementation with IGF-1 reduced signs of kidney immaturity, particularly in the first week of life, as indicated by improved morphology, upregulated expression of key developmental genes, reduced severity and incidence of microscopic lesions, and decreased levels of inflammatory and injury markers. No association was seen between the symptoms of necrotizing enterocolitis and kidney defects. CONCLUSION Preterm birth in pigs impairs kidney maturation and exogenous IGF-1 treatment partially reverses this impairment. Early IGF-1 supplementation could support the development of preterm kidneys. IMPACT Preterm birth may disrupt kidney development in newborns, potentially leading to morphological changes, injury, and inflammation. Preterm pigs have previously been used as models for preterm infants, but not for kidney development. IGF-1 supplementation promotes kidney maturation and alleviates renal impairments in the first week of life in preterm pigs. IGF-1 may hold potential as a supportive therapy for preterm infants sensitive to acute kidney injury.
Collapse
Affiliation(s)
- Jingren Zhong
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Richard Doughty
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tik Muk
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Starr MC, Barreto E, Charlton J, Vega M, Brophy PD, Ray Bignall ON, Sutherland SM, Menon S, Devarajan P, Akcan Arikan A, Basu R, Goldstein S, Soranno DE. Advances in pediatric acute kidney injury pathobiology: a report from the 26th Acute Disease Quality Initiative (ADQI) conference. Pediatr Nephrol 2024; 39:941-953. [PMID: 37792076 PMCID: PMC10817846 DOI: 10.1007/s00467-023-06154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In the past decade, there have been substantial advances in our understanding of the pathobiology of pediatric acute kidney injury (AKI). In particular, animal models and studies focused on the relationship between kidney development, nephron number, and kidney health have identified a number of heterogeneous pathophysiologies underlying AKI. Despite this progress, gaps remain in our understanding of the pathobiology of pediatric AKI. METHODS During the 26th Acute Disease Quality Initiative (ADQI) Consensus conference, a multidisciplinary group of experts discussed the evidence and used a modified Delphi process to achieve consensus on recommendations for opportunities to advance translational research in pediatric AKI. The current state of research understanding as well as gaps and opportunities for advancement in research was discussed, and recommendations were summarized. RESULTS Consensus was reached that to improve translational pediatric AKI advancements, diverse teams spanning pre-clinical to epidemiological scientists must work in concert together and that results must be shared with the community we serve with patient involvement. Public and private research support and meaningful partnerships with adult research efforts are required. Particular focus is warranted to investigate the pediatric nuances of AKI, including the effect of development as a biological variable on AKI incidence, severity, and outcomes. CONCLUSIONS Although AKI is common and associated with significant morbidity, the biologic basis of the disease spectrum throughout varying nephron developmental stages remains poorly understood. An incomplete understanding of factors contributing to kidney health, the diverse pathobiologies underlying AKI in children, and the historically siloed approach to research limit advances in the field. The recommendations outlined herein identify gaps and outline a strategic approach to advance the field of pediatric AKI via multidisciplinary translational research.
Collapse
Affiliation(s)
- Michelle C Starr
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
- Pediatric and Adolescent Comparative Effectiveness Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erin Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Molly Vega
- Renal and Apheresis Services, Texas Children's Hospital, Houston, TX, USA
| | - Patrick D Brophy
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA
| | - O N Ray Bignall
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shina Menon
- Division of Pediatric Nephrology, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Prasad Devarajan
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Ayse Akcan Arikan
- Department of Pediatrics, Divisions of Critical Care and Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Rajit Basu
- Department of Pediatrics, Division of Critical Care, Northwestern University, Chicago, IL, USA
| | - Stuart Goldstein
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Danielle E Soranno
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Bioengineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Iacobelli S, Lapillonne A, Boubred F. Early postnatal nutrition and renal consequences in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03080-z. [PMID: 38374220 DOI: 10.1038/s41390-024-03080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Perinatal nutritional factors may lead to decreased nephron endowment, decreased kidney function, and long-term development of chronic kidney disease and non-communicable diseases. At the same time, optimal postnatal nutrition and catch-up growth are associated with better neurodevelopmental outcomes in preterm infants. Therefore, nutritional management of preterm infants is a major challenge for neonatologists. In this context, the Section of Nutrition, Gastroenterology and Metabolism reviewed the current knowledge on nutritional issues related to kidney function. This narrative review discusses the clinical impact of early postnatal nutrition on long-term kidney function. In preterm infants, data are largely lacking to determine the extent to which early nutrition contributes to nephrogenesis and nephron endowment. However, some nutritional principles may help clinicians better protect the developing kidney in preterm infants. IMPACT: Clinical data show that preterm infants are an emerging population at high risk for chronic kidney disease. Both undernutrition and overnutrition can alter long-term kidney function. In preterm infants, data are largely lacking to determine the extent to which early postnatal nutrition contributes to nephrogenesis, nephron endowment and increased risk for chronic kidney disease. Some nutritional principles may help clinicians better protect the developing kidney in preterm infants: avoiding extrauterine growth restriction; providing adequate protein and caloric intakes; limiting exposure to high and prolonged hyperglycaemia; avoiding micronutrient deficiencies and maintaining acid-base and electrolyte balance.
Collapse
Affiliation(s)
- Silvia Iacobelli
- Réanimation Néonatale et Pédiatrique, CHU La Réunion, Saint-Pierre, France.
- Centre d'Études Périnatales de l'Océan Indien (UR7388), Université de La Réunion, de La Réunion, France.
| | - Alexandre Lapillonne
- Service de Médecine néonatale, CHU La Conception, APHM, Marseille, France
- Aix-Marseille Université, C2VN, INRAe, INSERM, Marseille, France
| | - Farid Boubred
- Department of Neonatology, APHP, Necker-Enfants Malades University Hospital, EHU 7328 Paris Cite University Paris, Paris, France
- CNRC Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Xiao N, Starr M, Stolfi A, Hamdani G, Hashmat S, Kiessling SG, Sethna C, Kallash M, Matloff R, Woroniecki R, Sanderson K, Yamaguchi I, Cha SD, Semanik MG, Chanchlani R, Flynn JT, Mitsnefes M. Blood Pressure Outcomes in NICU-Admitted Infants with Neonatal Hypertension: A Pediatric Nephrology Research Consortium Study. J Pediatr 2024; 264:113765. [PMID: 37778410 PMCID: PMC10980536 DOI: 10.1016/j.jpeds.2023.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To describe the blood pressure outcomes of infants admitted to the neonatal intensive care unit (NICU) with idiopathic (nonsecondary) hypertension (HTN) who were discharged on antihypertensive therapy. STUDY DESIGN Retrospective, multicenter study of 14 centers within the Pediatric Nephrology Research Consortium. We included all infants with a diagnosis of idiopathic HTN discharged from the NICU on antihypertensive treatment. The primary outcome was time to discontinuation of antihypertensive therapy, grouped into (≤6 months, >6 months to 1 year, and >1 year). Comparisons between groups were made with χ2 tests, Fisher's exact tests, and ANOVA. RESULTS Data from 118 infants (66% male) were included. Calcium channel blockers were the most prescribed class of antihypertensives (56%) in the cohort. The percentages remaining on antihypertensives after NICU discharge were 60% at 6 months, 26% at 1 year, and 7% at 2 years. Antenatal steroid treatment was associated with decreased likelihood of antihypertensive therapy >1 year after discharge. CONCLUSIONS This multicenter study reports that most infants admitted to the NICU diagnosed with idiopathic HTN will discontinue antihypertensive treatment by 2 years after NICU discharge. These data provide important insights into the outcome of neonatal HTN, but should be confirmed prospectively.
Collapse
Affiliation(s)
- Nianzhou Xiao
- Department of Nephrology, Valley Children's Healthcare, Madera, CA.
| | - Michelle Starr
- Riley Hospital for Children and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; Division of Nephrology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA
| | - Adrienne Stolfi
- Department of Pediatrics, Wright State University, Dayton, OH
| | - Gilad Hamdani
- Nephrology and Hypertension Institute, Schneider's Children Medical Center, Petah Tikva, Israel
| | - Shireen Hashmat
- Department of Pediatrics, University of Chicago, Chicago, IL
| | - Stefan G Kiessling
- Division of Pediatric Nephrology, Kentucky Children's Hospital, University of Kentucky, Lexington, KY
| | - Christina Sethna
- Division of Pediatric Nephrology, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell, Queens, NY
| | - Mahmoud Kallash
- Division of Nephrology, Nationwide Children's Hospital, Columbus, OH
| | - Robyn Matloff
- Division of Pediatric Nephrology, Connecticut Children's Hospital, University of Connecticut School of Medicine, Hartford, CT
| | - Robert Woroniecki
- Division of Pediatric Nephrology and Hypertension, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY
| | - Keia Sanderson
- Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, NC
| | - Ikuyo Yamaguchi
- Division of Nephrology and Hypertension, Department of Pediatrics, Oklahoma Children's Hospital at University of Oklahoma Health Sciences Center, Oklahoma, OK
| | - Stephen D Cha
- Division of Nephrology, Akron Children's Hospital, Akron, OH
| | - Michael G Semanik
- Division of Nephrology, Department of Pediatrics, University of Wisconsin at Madison, Madison, WI
| | - Rahul Chanchlani
- Division of Pediatric Nephrology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Joseph T Flynn
- Division of Nephrology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA
| | - Mark Mitsnefes
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, OH
| |
Collapse
|
5
|
Fukunaga S, Fujita Y. Low glomerular number at birth can lead to the development of chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1120801. [PMID: 36777357 PMCID: PMC9909536 DOI: 10.3389/fendo.2023.1120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) prevalence is increasing worldwide, and reducing the number of patients with CKD is of utmost importance. The environment during the fetal, perinatal, and early childhood stages may influence CKD development (developmental origins of health and disease). Under conditions of maternal malnutrition, the glomerular number of infants reduces, and the risk of developing CKD may increase. Nephron progenitor cells and ureteric buds interact with each other to form glomeruli at the tip of the ureteric bud. Thus, the number of glomeruli is determined by the number of ureteric bud branches, which are reportedly decreased due to maternal malnutrition, in turn reducing the glomerular number. Four possible mechanisms can explain the low glomerular number resulting from maternal malnutrition: 1) suppression of c-Ret expression, 2) suppression of nephron formation by renin-angiotensin-aldosterone system inhibition, 3) exposure to excess glucocorticoids, and 4) promotion of apoptosis. Additionally, nephron formation does not continue after birth in humans. Therefore, a low glomerular number at birth is a lifelong burden on the glomeruli and increases the risk of developing CKD. Therefore, it is important to maintain the glomerular number at birth. Accurate glomerular counts are essential for conducting studies on the glomerular number. The dissector/fractionator method is the gold standard; however, it can only be performed at some institutions. Recently, methods have been developed to measure the glomerular number by combining computed tomography and pathological examination and measure the glomerular count using magnetic resonance imaging. Models of decreased and increased glomerular numbers have been developed. Moreover, research regarding the causes of decreased glomerular number and its relationship with development of lifestyle-related diseases and renal dysfunction has significantly progressed, furthering our understanding of the importance of glomerular number.
Collapse
Affiliation(s)
- Shohei Fukunaga
- Division of Nephrology, Shimane University Hospital, Izumo, Shimane, Japan
- *Correspondence: Shohei Fukunaga, ; Yuki Fujita,
| | - Yuki Fujita
- Department of Developmental Biology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
- *Correspondence: Shohei Fukunaga, ; Yuki Fujita,
| |
Collapse
|
6
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Sutherland MR, Malik W, Nguyen VB, Tran V, Polglase GR, Black MJ. Renal morphology and glomerular capillarisation in young adult sheep born moderately preterm. J Dev Orig Health Dis 2021; 12:975-981. [PMID: 33300490 DOI: 10.1017/s2040174420001208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Preterm birth (delivery <37 weeks of gestation) is associated with impaired glomerular capillary growth in neonates; if this persists, it may be a contributing factor in the increased risk of hypertension and chronic kidney disease in people born preterm. Therefore, in this study, we aimed to determine the long-term impact of preterm birth on renal morphology, in adult sheep. Singleton male sheep were delivered moderately preterm at 132 days (~0.9) of gestation (n = 6) or at term (147 days gestation; n = 6) and euthanised at 14.5 months of age (early adulthood). Stereological methods were used to determine mean renal corpuscle and glomerular volumes, and glomerular capillary length and surface area, in the outer, mid and inner regions of the renal cortex. Glomerulosclerosis and interstitial collagen levels were assessed histologically. By 14.5 months of age, there was no difference between the term and preterm sheep in body or kidney weight. Renal corpuscle volume was significantly larger in the preterm sheep than the term sheep, with the preterm sheep exhibiting enlarged Bowman's spaces; however, there was no difference in glomerular volume between groups, with no impact of preterm birth on capillary length or surface area per glomerulus. There was also no difference in interstitial collagen levels or glomerulosclerosis index between groups. Findings suggest that moderate preterm birth does not adversely affect glomerular structure in early adulthood. The enlarged Bowman's space in the renal corpuscles of the preterm sheep kidneys, however, is of concern and merits further research into its cause and functional consequences.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology and the Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Waleed Malik
- Department of Anatomy and Developmental Biology and the Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Vivian B Nguyen
- Department of Anatomy and Developmental Biology and the Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Vivian Tran
- Department of Anatomy and Developmental Biology and the Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University and the Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and the Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Nüsken E, Voggel J, Fink G, Dötsch J, Nüsken KD. Impact of early-life diet on long-term renal health. Mol Cell Pediatr 2020; 7:17. [PMID: 33269431 PMCID: PMC7710776 DOI: 10.1186/s40348-020-00109-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
In the last years, great advances have been made in the effort to understand how nutritional influences can affect long-term renal health. Evidence has accumulated that maternal nutrition before and during pregnancy and lactation as well as early postnatal nutrition is of special significance. In this review, we summarize epidemiologic and experimental data on the renal effects of perinatal exposure to energy restriction, low-protein diet, high-fat diet, high-fructose diet, and high- and low-salt diet as well as micronutrient deficiencies. Interestingly, different modifications during early-life diet may end up with similar sequelae for the offspring. On the other hand, molecular pathways can be influenced in opposite directions by different dietary interventions during early life. Importantly, postnatal nutrition significantly modifies the phenotype induced by maternal diet. Sequelae of altered macro- or micronutrient intakes include altered nephron count, blood pressure dysregulation, altered sodium handling, endothelial dysfunction, inflammation, mitochondrial dysfunction, and oxidative stress. In addition, renal prostaglandin metabolism as well as renal AMPK, mTOR, and PPAR signaling can be affected and the renin-angiotensin-aldosterone system may be dysregulated. Lately, the influence of early-life diet on gut microbiota leading to altered short chain fatty acid profiles has been discussed in the etiology of arterial hypertension. Against this background, the preventive and therapeutic potential of perinatal nutritional interventions regarding kidney disease is an emerging field of research. Especially individuals at risk (e.g., newborns from mothers who suffered from malnutrition during gestation) could disproportionately benefit from well-targeted dietary interventions.
Collapse
Affiliation(s)
- Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
9
|
Walton SL, Singh RR, Little MH, Bowles J, Li J, Moritz KM. Prolonged prenatal hypoxia selectively disrupts collecting duct patterning and postnatal function in male mouse offspring. J Physiol 2018; 596:5873-5889. [PMID: 29676801 DOI: 10.1113/jp275918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS In the present study, we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation. Female offspring showed no obvious signs of impaired kidney development and did not develop kidney disease, suggesting an underlying protection mechanism from the hypoxia insult. These results help us better understand the long-lasting impact of gestational hypoxia on kidney development and the increased risk of chronic kidney disease. ABSTRACT Prenatal hypoxia is a common perturbation to arise during pregnancy, and can lead to adverse health outcomes in later life. The long-lasting impact of prenatal hypoxia on postnatal kidney development and maturation of the renal tubules, particularly the collecting duct system, is relatively unknown. In the present study, we used a model of moderate chronic maternal hypoxia throughout late gestation (12% O2 exposure from embryonic day 14.5 until birth). Histological analyses revealed marked changes in the tubular architecture of male hypoxia-exposed neonates as early as postnatal day 7, with disrupted medullary development and altered expression of Ctnnb1 and Crabp2 (encoding a retinoic acid binding protein). Kidneys of the RARElacZ line offspring exposed to hypoxia showed reduced β-galactosidase activity, indicating reduced retinoic acid-directed transcriptional activation. Wild-type male mice exposed to hypoxia had an early decline in urine concentrating capacity, evident at 4 months of age. At 12 months of age, hypoxia-exposed male mice displayed a compromised response to a water deprivation challenge, which was was correlated with an altered cellular composition of the collecting duct and diminished expression of aquaporin 2. There were no differences in the tubular structures or urine concentrating capacity between the control and hypoxia-exposed female offspring at any age. The findings of the present study suggest that prenatal hypoxia selectively disrupts collecting duct patterning through altered Wnt/β-catenin and retinoic acid signalling and this results in impaired function in male mouse offspring in later life.
Collapse
Affiliation(s)
- Sarah L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Reetu R Singh
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Melissa H Little
- Murdoch Childrens Research Institute, Parkville, VIC, Australia.,Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joan Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Abstract
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early nutritional concepts with specific modifications in macro- or micronutrients are among the most promising approaches to improve future renal health.
Collapse
Affiliation(s)
- Eva Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Effects of preterm birth and ventilation on glomerular capillary growth in the neonatal lamb kidney. J Hypertens 2017; 34:1988-97. [PMID: 27428042 DOI: 10.1097/hjh.0000000000001028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Preterm birth is linked to the development of hypertension later in life. This may relate to impaired glomerular capillary growth following preterm birth. The aim of this study was to determine the effects of preterm birth, and/or ventilation, on glomerular capillary growth in the neonatal lamb kidney. METHODS Four experimental groups were analysed: preterm lambs delivered at 130 days gestation (term = 147 days) and mechanically ventilated for 3 days (preterm ventilated: n = 9), 133 days gestational controls (gestational control: n = 5), term controls, unassisted breathing for 3 days (term control: n = 8), and term lambs ventilated for 3 days (term ventilated: n = 5). In perfusion-fixed kidneys, total nephron number, average total capillary length, and surface area per renal corpuscle were stereologically assessed, and total renal filtration surface area (TRFSA) was calculated. RESULTS In comparison with term controls, preterm lambs had significantly reduced glomerular capillary length, surface area, and TRFSA, indicative of a low renal functional capacity. Term-ventilated lambs exhibited significantly reduced glomerular capillary length and surface area compared with term controls, indicating that ventilation impairs glomerular capillary growth independently of preterm birth. CONCLUSION Impaired glomerular capillary growth and subsequent reduced TRFSA following preterm birth may mediate the increased predisposition to hypertension later in life.
Collapse
|
12
|
Staub E, Dahl MJ, Yost C, Bowen S, Aoki T, Blair A, Wang Z, Null DM, Yoder BA, Albertine KH. Preterm birth and ventilation decrease surface density of glomerular capillaries in lambs, regardless of postnatal respiratory support mode. Pediatr Res 2017; 82:93-100. [PMID: 28060793 PMCID: PMC5687580 DOI: 10.1038/pr.2017.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prematurity is often complicated by respiratory support, including invasive mechanical ventilation (IMV) and noninvasive support (NIS). Compared with IMV, NIS reduces injury to the lung and brain. Prematurity may also disrupt glomerular architecture. Whether NIS differentially affects glomerular architecture is incompletely understood. We hypothesized that IMV would lead to greater disruption of glomerular architecture than NIS. METHODS This is a secondary analysis of kidneys from moderately preterm lambs delivered at ~131 d gestation (term ~150 d) that had antenatal steroid exposure and surfactant treatment before resuscitation by IMV. At ~3 h of age, half of the lambs were switched to NIS. Support was for 3 d or 21 d. Structural indices of glomerular architecture were quantified. RESULTS The number of glomerular generations was unaffected by moderate preterm birth and respiratory support, either IMV or NIS. At 3 d and 21 d of IMV or NIS, glomerular capillary surface density was not different. Glomerular capillary surface density was significantly lower in the inner and outer cortex compared with unventilated gestation age-matched or postnatal age-matched reference lambs. CONCLUSION Moderate preterm birth and invasive or noninvasive respiratory support decreases glomerular capillarization in the lamb kidney. This adverse effect on glomerular development may contribute to increased risk for adult-onset hypertension and renal dysfunction.
Collapse
Affiliation(s)
- Eveline Staub
- Division of Neonatology, University Children's Hospital Basel UKBB, Basel, Switzerland,Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Mar Janna Dahl
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Calan Yost
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Sydney Bowen
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Toshio Aoki
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Adam Blair
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Zhengming Wang
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Donald M Null
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA,Division of Neonatology, University of California, Davis, CA, USA
| | - Bradley A Yoder
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Kurt H Albertine
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Schmiedchen B, Longardt AC, Loui A, Bührer C, Raila J, Schweigert FJ. Effect of vitamin A supplementation on the urinary retinol excretion in very low birth weight infants. Eur J Pediatr 2016; 175:365-72. [PMID: 26475348 DOI: 10.1007/s00431-015-2647-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Despite high-dose vitamin A supplementation of very low birth weight infants (VLBW, <1500 g), their vitamin A status does not improve substantially. Unknown is the impact of urinary retinol excretion on the serum retinol concentration in these infants. Therefore, the effect of high-dose vitamin A supplementation on the urinary vitamin A excretion in VLBW infants was investigated. Sixty-three VLBW infants were treated with vitamin A (5000 IU intramuscular, 3 times/week for 4 weeks); 38 untreated infants were classified as control group. On days 3 and 28 of life, retinol, retinol-binding protein 4 (RBP4), glomerular filtration rate, proteinuria, and Tamm-Horsfall protein were quantified in urine. On day 3 of life, substantial retinol and RBP4 losses were found in both groups, which significantly decreased until day 28. Notwithstanding, the retinol excretion was higher (P < 0.01) under vitamin A supplementation as compared to infants of the control group. On day 28 of life, the urinary retinol concentrations were predictive for serum retinol concentrations in the vitamin A treated (P < 0.01), but not in the control group (P = 0.570). CONCLUSION High urinary retinol excretion may limit the vitamin A supplementation efficacy in VLBW infants. Advanced age and thus postnatal kidney maturation seems to be an important contributor in the prevention of urinary retinol losses.
Collapse
Affiliation(s)
- Bettina Schmiedchen
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | | | - Andrea Loui
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Florian J Schweigert
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
14
|
Abstract
An adverse intrauterine environment is associated with an increased risk of elevated blood pressure and kidney disease in later life. Many studies have focused on low birth weight, prematurity and growth restriction as surrogate markers of an adverse intrauterine environment; however, high birth weight, exposure to maternal diabetes and rapid growth during early childhood are also emerging as developmental risk factors for chronic diseases. Altered programming of nephron number is an important link between exposure to developmental stressors and subsequent risk of hypertension and kidney disease. Maternal, fetal, and childhood nutrition are crucial contributors to these programming effects. Resource-poor countries experience the sequential burdens of fetal and childhood undernutrition and subsequent overnutrition, which synergistically act to augment the effects of developmental programming; this observation might explain in part the disproportionate burden of chronic disease in these regions. Numerous nutritional interventions have been effective in reducing the short-term risk of low birth weight and prematurity. Understanding the potential long-term benefits of such interventions is crucial to inform policy decisions to interrupt the developmental programming cycle and stem the growing epidemics of hypertension and kidney disease worldwide.
Collapse
|
15
|
Singh RR, Denton KM. Role of the kidney in the fetal programming of adult cardiovascular disease: an update. Curr Opin Pharmacol 2015; 21:53-9. [PMID: 25588322 DOI: 10.1016/j.coph.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
It is well established that an adverse in utero environment can impinge upon fetal development and place the offspring on a track leading to future cardiovascular disease. Significantly, this may occur in the absence of any outward manifestations at birth. In this brief review, we focus on potential renal mechanisms that lead to adaptations in glomerular and tubular function that initiate hypertension of developmental origin and examine potential therapeutic interventions. This report updates recent data in this field.
Collapse
Affiliation(s)
- Reetu R Singh
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
16
|
Abstract
The normal development of the kidney may be affected by several factors, including abnormalities in placental function, resulting in fetal growth restriction, exposure to maternal disease states, including hypertension and diabetes, antenatal steroids, chorioamnionitis, and preterm delivery. After preterm birth, several further insults may occur that may influence nephrogenesis and renal health, including exposure to nephrotoxic medications, postnatal growth failure, and obesity after growth restriction. In this review article, common clinical neonatal scenarios are used to highlight these renal risk factors, and the animal and human evidence on which these risk factors are based are discussed.
Collapse
Affiliation(s)
- Megan Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Dana Ryan
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - M Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Alison L Kent
- Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, PO Box 11, Woden 2606, Australian Capital Territory, Australia; Australian National University Medical School, Canberra 2601, Australian Capital Territory, Australia.
| |
Collapse
|
17
|
|
18
|
Sutherland MR, O'Reilly M, Kenna K, Ong K, Harding R, Sozo F, Black MJ. Neonatal hyperoxia: effects on nephrogenesis and long-term glomerular structure. Am J Physiol Renal Physiol 2013; 304:F1308-16. [PMID: 23427140 DOI: 10.1152/ajprenal.00172.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preterm neonates are born while nephrogenesis is ongoing and are commonly exposed to factors in the extrauterine environment that may impair renal development. Supplemental oxygen therapy exposes the preterm infant to a hyperoxic environment that may induce oxidative stress. Our aim was to determine the immediate and long-term effects of exposure to hyperoxia, during the period of postnatal nephrogenesis, on renal development. Newborn mice (C57BL/6J) were kept in a normoxic (room air, 21% oxygen) or a controlled hyperoxic (65% oxygen) environment from birth to postnatal day 7 (P7d). From P7d, animals were maintained in room air until early adulthood at postnatal day 56 (P56d) or middle age (10 mo; P10mo). Pups were assessed for glomerular maturity and renal corpuscle cross-sectional area at P7d (control n = 14; hyperoxic n = 14). Nephron number and renal corpuscle size were determined stereologically at P56d (control n = 14; hyperoxic n = 14) and P10mo (control n = 10; hyperoxic n = 10). At P7d, there was no effect of hyperoxia on glomerular size or maturity. In early adulthood (P56d), body weights, relative kidney weights and volumes, and nephron number were not different between groups, but the renal corpuscles were significantly enlarged. This was no longer evident at P10mo, with relative kidney weights and volumes, nephron number, and renal corpuscle size not different between groups. Furthermore, hyperoxia exposure did not significantly accelerate glomerulosclerosis in middle age. Hence, our findings show no overt long-term deleterious effects of early life hyperoxia on glomerular structure.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Gray SP, Cullen-McEwen LA, Bertram JF, Moritz KM. Mechanism of alcohol-induced impairment in renal development: Could it be reduced by retinoic acid? Clin Exp Pharmacol Physiol 2012; 39:807-13. [DOI: 10.1111/j.1440-1681.2011.05597.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health. Int J Nephrol 2012; 2012:136942. [PMID: 22970368 PMCID: PMC3434386 DOI: 10.1155/2012/136942] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/23/2012] [Accepted: 07/02/2012] [Indexed: 01/05/2023] Open
Abstract
Epidemiological studies have clearly demonstrated a strong association between low birth weight and long-term renal disease. A potential mediator of this long-term risk is a reduction in nephron endowment in the low birth weight infant at the beginning of life. Importantly, nephrons are only formed early in life; during normal gestation, nephrogenesis is complete by about 32–36 weeks, with no new nephrons formed after this time during the lifetime of the individual. Hence, given that a loss of a critical number of nephrons is the hallmark of renal disease, an increased severity and acceleration of renal disease is likely when the number of nephrons is already reduced prior to disease onset. Low birth weight can result from intrauterine growth restriction (IUGR) or preterm birth; a high proportion of babies born prematurely also exhibit IUGR. In this paper, we describe how IUGR and preterm birth adversely impact on nephrogenesis and how a subsequent reduced nephron endowment at the beginning of life may lead to long-term risk of renal disease, but not necessarily hypertension.
Collapse
|
21
|
Sutherland MR, Yoder BA, McCurnin D, Seidner S, Gubhaju L, Clyman RI, Black MJ. Effects of ibuprofen treatment on the developing preterm baboon kidney. Am J Physiol Renal Physiol 2012. [PMID: 22357916 DOI: 10.1152/ajpren al.00216.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Preterm neonates are commonly exposed postnatally to pharmacological treatments for a patent ductus arteriosus. Exposure of the developing kidney to nephrotoxic medications may adversely impact renal development. This study aimed to determine the effect of early postnatal ibuprofen treatment, both alone and in combination with a nitric oxide synthase inhibitor (NOSi), on renal development and morphology. Baboon neonates were delivered prematurely at 125-day (125d) gestation (term = 185d) and were euthanized at birth or postnatal day 6. Neonates were divided into four groups: 125d gestational controls (n = 8), Untreated (n = 8), Ibuprofen (n = 6), and ibuprofen (Ibu)+NOSi (n = 4). Animals in the Ibuprofen and Ibu+NOSi groups received five doses of ibuprofen, with the Ibuprofen+NOSi animals additionally administered a NOS inhibitor (N(G)-monomethyl-l-arginine). There was no difference among groups in body weight, kidney weight, or glomerular generation number. Nephrogenic zone width was significantly reduced in the Ibuprofen group (123.5 ± 7.4 μm) compared with the 125d gestational control (176.1 ± 6.9 μm) and Untreated animals (169.7 ± 78.8 μm). In the Ibu+NOSi group, nephrogenic zone width averaged 152.7 ± 3.9 μm, which was not significantly different from any other group. Morphologically abnormal glomeruli were present at a range of 0.0-22.9% in the Untreated group, 0.0-6.1% in the Ibuprofen group, and 0.0-1.4% in the Ibu+NOSi group. In conclusion, early postnatal ibuprofen exposure is associated with a reduced nephrogenic zone width, which may suggest the early cessation of nephrogenesis following treatment. Ultimately, this may impact the number of nephrons formed in the preterm kidney.
Collapse
Affiliation(s)
- Megan R Sutherland
- Dept. of Anatomy and Developmental Biology, Bldg. 76, Monash Univ., Clayton, Victoria, Australia, 3800
| | | | | | | | | | | | | |
Collapse
|
22
|
Sutherland MR, Yoder BA, McCurnin D, Seidner S, Gubhaju L, Clyman RI, Black MJ. Effects of ibuprofen treatment on the developing preterm baboon kidney. Am J Physiol Renal Physiol 2012; 302:F1286-92. [PMID: 22357916 DOI: 10.1152/ajprenal.00216.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Preterm neonates are commonly exposed postnatally to pharmacological treatments for a patent ductus arteriosus. Exposure of the developing kidney to nephrotoxic medications may adversely impact renal development. This study aimed to determine the effect of early postnatal ibuprofen treatment, both alone and in combination with a nitric oxide synthase inhibitor (NOSi), on renal development and morphology. Baboon neonates were delivered prematurely at 125-day (125d) gestation (term = 185d) and were euthanized at birth or postnatal day 6. Neonates were divided into four groups: 125d gestational controls (n = 8), Untreated (n = 8), Ibuprofen (n = 6), and ibuprofen (Ibu)+NOSi (n = 4). Animals in the Ibuprofen and Ibu+NOSi groups received five doses of ibuprofen, with the Ibuprofen+NOSi animals additionally administered a NOS inhibitor (N(G)-monomethyl-l-arginine). There was no difference among groups in body weight, kidney weight, or glomerular generation number. Nephrogenic zone width was significantly reduced in the Ibuprofen group (123.5 ± 7.4 μm) compared with the 125d gestational control (176.1 ± 6.9 μm) and Untreated animals (169.7 ± 78.8 μm). In the Ibu+NOSi group, nephrogenic zone width averaged 152.7 ± 3.9 μm, which was not significantly different from any other group. Morphologically abnormal glomeruli were present at a range of 0.0-22.9% in the Untreated group, 0.0-6.1% in the Ibuprofen group, and 0.0-1.4% in the Ibu+NOSi group. In conclusion, early postnatal ibuprofen exposure is associated with a reduced nephrogenic zone width, which may suggest the early cessation of nephrogenesis following treatment. Ultimately, this may impact the number of nephrons formed in the preterm kidney.
Collapse
Affiliation(s)
- Megan R Sutherland
- Dept. of Anatomy and Developmental Biology, Bldg. 76, Monash Univ., Clayton, Victoria, Australia, 3800
| | | | | | | | | | | | | |
Collapse
|
23
|
Gubhaju L, Sutherland MR, Black MJ. Preterm birth and the kidney: implications for long-term renal health. Reprod Sci 2011; 18:322-33. [PMID: 21427457 DOI: 10.1177/1933719111401659] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the majority of preterm neonates now survive infancy, there is emerging epidemiological evidence to demonstrate that individuals born preterm exhibit an elevated risk for the development of hypertension and renal impairment later in life, thus supporting the developmental origins of health and disease hypothesis. The increased risk may potentially be attributed to a negative impact of preterm birth on nephron endowment. Indeed, at the time when most preterm neonates are delivered, nephrogenesis in the kidney is still ongoing with the majority of nephrons normally formed during the third trimester of pregnancy. A number of clinical studies have provided evidence of altered renal function during the neonatal period, but to date there have been limited studies describing the consequences of preterm birth on kidney structure. Importantly, studies in the preterm baboon have shown that nephrogenesis is clearly ongoing following preterm birth; however, the presence of abnormal glomeruli (up to 18% in some cases) is of concern. Similar glomerular abnormalities have been described in autopsied preterm infants. Prenatal and postnatal factors such as exposure to certain medications, hyperoxia and intrauterine and/or extrauterine growth restriction are likely to have a significant influence on nephrogenesis and final nephron endowment. Further studies are required to determine the factors contributing to renal maldevelopment and to identify potential interventional strategies to maximize nephron endowment at the start of life, thereby optimizing long-term renal health for preterm individuals.
Collapse
Affiliation(s)
- Lina Gubhaju
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
24
|
Sutherland MR, Gubhaju L, Black MJ. Stereological assessment of renal development in a baboon model of preterm birth. Am J Nephrol 2011; 33 Suppl 1:25-33. [PMID: 21659732 DOI: 10.1159/000327073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At the time when most preterm babies are delivered, nephrogenesis is still ongoing, with the majority of nephrons normally formed during the third trimester of pregnancy. The extrauterine environment, however, is suboptimal for organogenesis, and therefore renal development is likely to be adversely affected by preterm birth. In the long-term, there is emerging evidence of high blood pressure and renal dysfunction amongst young adults born preterm. There is little knowledge to date, however, regarding the effects of preterm birth on renal structural development, perhaps due to the lack of an appropriate animal model. We have demonstrated that the baboon (Papio sp.) has a similar time course of nephrogenesis as the human kidney, and the baboon neonate can also be cared for in the same manner as a human neonate following preterm birth. Through a series of studies assessing renal development in the baboon model of preterm birth, involving the use of gold-standard stereological techniques, we have demonstrated that nephron endowment in the preterm baboon kidney is not reduced. Furthermore, antenatal glucocorticoid exposure prior to preterm delivery was associated with an increase in mature nephrons. There was, however, evidence of morphological abnormalities in a variable percentage of the glomeruli formed ex utero. Further research is therefore essential in order to establish what factors are involved in contributing to the glomerular abnormalities, and to identify ways in which 'normal' renal development can be conserved and optimised in the extrauterine setting.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | | | | |
Collapse
|
25
|
Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RSC, Hoy WE, Bertram JF, Black MJ. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol 2011; 22:1365-74. [PMID: 21636639 DOI: 10.1681/asn.2010121266] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nephrogenesis is ongoing at the time of birth for the majority of preterm infants, but whether postnatal renal development follows a similar trajectory to normal in utero growth is unknown. Here, we examined tissue collected at autopsy from 28 kidneys from preterm neonates, whose postnatal survival ranged from 2 to 68 days, including 6 that had restricted intrauterine growth. In addition, we examined kidneys from 32 still-born gestational controls. We assessed the width of the nephrogenic zone, number of glomerular generations, cross-sectional area of the renal corpuscle, and glomerular maturity and morphology. Renal maturation accelerated after preterm birth, with an increased number of glomerular generations and a decreased width of the nephrogenic zone in the kidneys of preterm neonates. Of particular concern, compared with gestational controls, preterm kidneys had a greater percentage of morphologically abnormal glomeruli and a significantly larger cross-sectional area of the renal corpuscle, suggestive of renal hyperfiltration. These observations suggest that the preterm kidney may have fewer functional nephrons, thereby increasing vulnerability to impaired renal function in both the early postnatal period and later in life.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Galinsky R, Moss TJM, Gubhaju L, Hooper SB, Black MJ, Polglase GR. Effect of intra-amniotic lipopolysaccharide on nephron number in preterm fetal sheep. Am J Physiol Renal Physiol 2011; 301:F280-5. [PMID: 21593183 DOI: 10.1152/ajprenal.00066.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chorioamnionitis is an antecedent of preterm birth. We aimed to determine the effect of experimental chorioamnionitis in fetal sheep during late gestation on 1) nephron number, 2) renal corpuscle volume, and 3) renal inflammation. We hypothesized that exposure to chorioamnionitis would lead to inflammation in fetal kidneys and adversely impact on the development of nephrons, leading to a reduction in nephron number. At ∼121 days of gestation (term ∼147 days), pregnant ewes bearing twin or singleton fetuses received a single intra-amniotic injection of lipopolysaccharide (n = 6; 3 singletons, 3 twins); controls were either untreated or received an intra-amniotic injection of saline (n = 8; 4 singletons, 4 twins). One twin was used from each twin-bearing ewe. At ∼128 days of gestation, fetuses were delivered via Caesarean section. Kidneys were collected and stereologically analyzed to determine nephron number and renal corpuscle volume. Renal inflammation was assessed using immunohistochemistry. Experimental chorioamnionitis did not affect body weight or relative kidney weight. There was a significant reduction in nephron number but no change in renal corpuscle volume in LPS-exposed fetuses relative to controls. On average, nephron number was significantly reduced by 23 and 18% in singleton and twin LPS-exposed fetuses, respectively. The degree of renal inflammation did not differ between groups. Importantly, this study demonstrates that exposure to experimental chorioamnionitis adversely impacts on nephron number in the developing fetus.
Collapse
Affiliation(s)
- Robert Galinsky
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Gubhaju L, Sutherland MR, Yoder BA, Zulli A, Bertram JF, Black MJ. Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol 2009; 297:F1668-77. [PMID: 19759270 DOI: 10.1152/ajprenal.00163.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nephrogenesis occurs predominantly in late gestation at a time when preterm infants are already delivered. The aims of this study were to assess the effect of preterm birth and the effect of antenatal glucocorticoid treatment on nephrogenesis. Preterm baboons, which were delivered at 125 days gestation and ventilated for up to 21 days postnatally, were compared with gestational controls. A cohort of preterm baboons that had been exposed to antenatal glucocorticoids were compared with unexposed preterm baboons. The number of glomerular generations was estimated using a medullary ray glomerular-counting method, and glomerular number was estimated using unbiased stereology. CD31 and WT-1 localization was examined using immunohistochemistry and VEGF was localized using in situ hybridization. The number of glomerular generations was not affected by preterm birth, and total glomerular numbers were within the normal range. Kidneys were significantly enlarged in preterm baboons with a significant decrease in glomerular density (number of glomeruli per gram of kidney) in the preterm kidney compared with gestational controls. Neonates exposed to antenatal steroids had an increased kidney-to-body weight ratio and also more developed glomeruli compared with unexposed controls. Abnormal glomeruli, with a cystic Bowman's space and shrunken glomerular tuft, were often present in the superficial renal cortex of both the steroid-exposed and unexposed preterm kidneys; steroid exposure had no significant effect on the proportion of abnormal glomeruli. The proportion of abnormal glomeruli in the preterm kidneys ranged from 0.2 to 18%. In conclusion, although nephrogenesis is ongoing in the extrauterine environment, our findings demonstrate that preterm birth, independent of steroid exposure, is associated with a high proportion of abnormal glomeruli in some, but not all neonatal kidneys. Whether final nephron endowment is affected in those kidneys exhibiting a high proportion of abnormal glomeruli is yet to be confirmed.
Collapse
Affiliation(s)
- Lina Gubhaju
- Dept. of Anatomy and Developmental Biology, Monash Univ., Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|