1
|
Chalampalakis Z, Ortner M, Almuttairi M, Bauer M, Tamm EG, Schmidt AI, Geist BK, Hacker M, Langer O, Frass-Kriegl R, Rausch I. Development of quantitative PET/MR imaging for measurements of hepatic portal vein input function: a phantom study. EJNMMI Phys 2024; 11:90. [PMID: 39489802 PMCID: PMC11532313 DOI: 10.1186/s40658-024-00694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Accurate pharmacokinetic modelling in PET necessitates measurements of an input function, which ideally is acquired non-invasively from image data. For hepatic pharmacokinetic modelling two input functions need to be considered, to account for the blood supply from the hepatic artery and portal vein. Image-derived measurements at the portal vein are challenging due to its small size and image artifacts caused by respiratory motion. In this work we seek to demonstrate, using phantom experiments, how a dedicated PET/MR protocol can tackle these challenges and potentially provide input function measurements of the portal vein in a clinical setup. METHODS A custom 3D printed PET/MR phantom was constructed to mimic the liver and portal vein. PET/MR acquisitions were made with emulated respiratory motion. The PET/MR imaging protocol consisted of high-resolution anatomical MR imaging of the portal vein, followed by a PET acquisition in parallel to a dedicated motion-tracking MR sequence. Motion tracking and deformation information were extracted from PET data and subsequently used in PET reconstruction to produce dynamic series of motion-free PET images. Anatomical MR images were used post PET reconstruction for partial volume correction of the input function measurements. RESULTS Reconstruction of dynamic PET data with motion-compensation provided nearly motion-free series of PET frame data, suitable for image derived input function measurements of the portal vein. After partial volume correction, the individual input function measurements were within a 16.1% error range from the true activity in the portal vein compartment at the time of PET acquisition. CONCLUSION The proposed protocol demonstrates clinically feasible PET/MR imaging of the liver for pharmacokinetic studies with accurate quantification of the portal vein input function, including correction for respiratory motion and partial volume effects.
Collapse
Affiliation(s)
- Zacharias Chalampalakis
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Markus Ortner
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Masar Almuttairi
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ernesto Gomez Tamm
- High-field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Albrecht Ingo Schmidt
- High-field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Barbara Katharina Geist
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roberta Frass-Kriegl
- High-field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Hernández-Lozano I, Leterrier S, Mairinger S, Stanek J, Zacher AS, Breyer L, Hacker M, Zeitlinger M, Pahnke J, Tournier N, Wanek T, Langer O. Performance and Sensitivity of [ 99mTc]Tc-sestamibi Compared with Positron Emission Tomography Radiotracers to Measure P-glycoprotein Function in the Kidneys and Liver. Mol Pharm 2024; 21:932-943. [PMID: 38225758 PMCID: PMC10848257 DOI: 10.1021/acs.molpharmaceut.3c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
P-glycoprotein (P-gp, encoded in humans by the ABCB1 gene and in rodents by the Abcb1a/b genes) is a membrane transporter that can restrict the intestinal absorption and tissue distribution of many drugs and may also contribute to renal and hepatobiliary drug excretion. The aim of this study was to compare the performance and sensitivity of currently available radiolabeled P-gp substrates for positron emission tomography (PET) with the single-photon emission computed tomography (SPECT) radiotracer [99mTc]Tc-sestamibi for measuring the P-gp function in the kidneys and liver. Wild-type, heterozygous (Abcb1a/b(+/-)), and homozygous (Abcb1a/b(-/-)) Abcb1a/b knockout mice were used as models of different P-gp abundance in excretory organs. Animals underwent either dynamic PET scans after intravenous injection of [11C]N-desmethyl-loperamide, (R)-[11C]verapamil, or [11C]metoclopramide or consecutive static SPECT scans after intravenous injection of [99mTc]Tc-sestamibi. P-gp in the kidneys and liver of the mouse models was analyzed with immunofluorescence labeling and Western blotting. In the kidneys, Abcb1a/b() mice had intermediate P-gp abundance compared with wild-type and Abcb1a/b(-/-) mice. Among the four tested radiotracers, renal clearance of radioactivity (CLurine,kidney) was significantly reduced (-83%) in Abcb1a/b(-/-) mice only for [99mTc]Tc-sestamibi. Biliary clearance of radioactivity (CLbile,liver) was significantly reduced in Abcb1a/b(-/-) mice for [11C]N-desmethyl-loperamide (-47%), [11C]metoclopramide (-25%), and [99mTc]Tc-sestamibi (-79%). However, in Abcb1a/b(+/-) mice, CLbile,liver was significantly reduced (-47%) only for [99mTc]Tc-sestamibi. Among the tested radiotracers, [99mTc]Tc-sestamibi performed best in measuring the P-gp function in the kidneys and liver. Owing to its widespread clinical availability, [99mTc]Tc-sestamibi represents a promising probe substrate to assess systemic P-gp-mediated drug-drug interactions and to measure renal and hepatic P-gp function under different (patho-)physiological conditions.
Collapse
Affiliation(s)
| | - Sarah Leterrier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm,
Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Stanek
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna S. Zacher
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lara Breyer
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Jens Pahnke
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab, University
of Oslo (UiO) and Oslo University Hospital (OUS), 0372 Oslo, Norway
- Lübeck
Institute of Experimental Dermatology (LIED), Pahnke Lab, University of Lübeck and University Medical
Center Schleswig-Holstein, 23538 Lübeck, Germany
- Department
of Pharmacology, Faculty of Medicine, University
of Latvia, 1004 Ri̅ga, Latvia
- Department
of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm,
Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Thomas Wanek
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Shi D, Dong Y, Zhou W, Bai L, Huang J, Han Y, Sun P, Huang Y, Huang Y, Chen L, Cao M, Wu H, Huang S. Pharmacokinetic analysis of 6-O-[ 18F]FEE for PET imaging of EGFR mutation. Bioorg Med Chem Lett 2023; 85:129217. [PMID: 36889652 DOI: 10.1016/j.bmcl.2023.129217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
6-O-[18F]Fluoroethylerlotinib (6-O-[18F]FEE), with a suitable half-life for commercial distribution, may be a good replacement for [11C]erlotinib to identify epidermal growth factor receptor (EGFR) positive tumors with activating mutations to tyrosine kinase inhibitors therapy. In this study, we explored the fully automated synthesis of 6-O-[18F]FEE and investigated its pharmacokinetics in tumor-bearing mice. 6-O-[18F]FEE with high specific activity (28-100 GBq/μmol) and radiochemistry purity (over 99 %) was obtained by two-step reaction and Radio-HPLC separation in PET-MF-2 V-IT-1 automated synthesizer. PET imaging of 6-O-[18F]FEE in HCC827, A431, and U87 tumor-bearing mice with different EGFR expression and mutation was performed. Uptake and blocking of PET imaging indicated that the probe specifically targeted exon 19 deleted EGFR (the quantitative analysis of tumor-to-mouse ratio for HCC827, HCC827 blocking, U87, A431 was 2.58 ± 0.24, 1.20 ± 0.15, 1.18 ± 0.19, and 1.05 ± 0.13 respectively). Dynamic imaging was used to study the pharmacokinetics of the probe in tumor-bearing mice. Logan plot graphical analysis demonstrated late linearity and a high fitting correlation coefficient (0.998), supporting reversible kinetics. According to the Akaike Information Criterion (AIC) rule, the 2-compartment reversible model was more consistent with the metabolic properties of 6-O-[18F]FEE. The automated radiosynthesis and pharmacokinetic analysis will promote clinically transformation of 6-O-[18F]FEE.
Collapse
Affiliation(s)
- Dazhi Shi
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Ye Dong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Wenlan Zhou
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Lu Bai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Jiawen Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and, Peking Union Medical College, Shenzhen 518116, China
| | - Yanjiang Han
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Yanchao Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Yong Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and, Peking Union Medical College, Shenzhen 518116, China
| | - Li Chen
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Min Cao
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Hubing Wu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| | - Shun Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
4
|
Hernández-Lozano I, Mairinger S, Filip T, Löbsch M, Stanek J, Kuntner C, Bauer M, Zeitlinger M, Hacker M, Helbich TH, Wanek T, Langer O. Positron Emission Tomography-Based Pharmacokinetic Analysis To Assess Renal Transporter-Mediated Drug-Drug Interactions of Antimicrobial Drugs. Antimicrob Agents Chemother 2023; 67:e0149322. [PMID: 36786609 PMCID: PMC10019293 DOI: 10.1128/aac.01493-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Transporter-mediated drug-drug interactions (DDIs) are of concern in antimicrobial drug development, as they can have serious safety consequences. We used positron emission tomography (PET) imaging-based pharmacokinetic (PK) analysis to assess the effect of different drugs, which may cause transporter-mediated DDIs, on the tissue distribution and excretion of [18F]ciprofloxacin as a radiolabeled model antimicrobial drug. Mice underwent PET scans after intravenous injection of [18F]ciprofloxacin, without and with pretreatment with either probenecid (150 mg/kg), cimetidine (50 mg/kg), or pyrimethamine (5 mg/kg). A 3-compartment kidney PK model was used to assess the involvement of renal transporters in the examined DDIs. Pretreatment with probenecid and cimetidine significantly decreased the renal clearance (CLrenal) of [18F]ciprofloxacin. The effect of cimetidine (-86%) was greater than that of probenecid (-63%), which contrasted with previously published clinical data. The kidney PK model revealed that the decrease in CLrenal was caused by inhibition of basal uptake transporters and apical efflux transporters in kidney proximal tubule cells. Changes in the urinary excretion of [18F]ciprofloxacin after pretreatment with probenecid and cimetidine resulted in increased blood and organ exposure to [18F]ciprofloxacin. Our results suggest that multiple membrane transporters mediate the tubular secretion of ciprofloxacin, with possible species differences between mice and humans. Concomitant medication inhibiting renal transporters may precipitate DDIs, leading to decreased urinary excretion and increased blood and organ exposure to ciprofloxacin, potentially exacerbating adverse effects. Our study highlights the strength of PET imaging-based PK analysis to assess transporter-mediated DDIs at a whole-body level.
Collapse
Affiliation(s)
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Wanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol Ther 2022; 238:108271. [DOI: 10.1016/j.pharmthera.2022.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
|
6
|
Marie S, Hernández-Lozano I, Le Vée M, Breuil L, Saba W, Goislard M, Goutal S, Truillet C, Langer O, Fardel O, Tournier N. Pharmacokinetic Imaging Using 99mTc-Mebrofenin to Untangle the Pattern of Hepatocyte Transporter Disruptions Induced by Endotoxemia in Rats. Pharmaceuticals (Basel) 2022; 15:ph15040392. [PMID: 35455390 PMCID: PMC9028474 DOI: 10.3390/ph15040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endotoxemia-induced inflammation may impact the activity of hepatocyte transporters, which control the hepatobiliary elimination of drugs and bile acids. 99mTc-mebrofenin is a non-metabolized substrate of transporters expressed at the different poles of hepatocytes. 99mTc-mebrofenin imaging was performed in rats after the injection of lipopolysaccharide (LPS). Changes in transporter expression were assessed using quantitative polymerase chain reaction of resected liver samples. Moreover, the particular impact of pharmacokinetic drug–drug interactions in the context of endotoxemia was investigated using rifampicin (40 mg/kg), a potent inhibitor of hepatocyte transporters. LPS increased 99mTc-mebrofenin exposure in the liver (1.7 ± 0.4-fold). Kinetic modeling revealed that endotoxemia did not impact the blood-to-liver uptake of 99mTc-mebrofenin, which is mediated by organic anion-transporting polypeptide (Oatp) transporters. However, liver-to-bile and liver-to-blood efflux rates were dramatically decreased, leading to liver accumulation. The transcriptomic profile of hepatocyte transporters consistently showed a downregulation of multidrug resistance-associated proteins 2 and 3 (Mrp2 and Mrp3), which mediate the canalicular and sinusoidal efflux of 99mTc-mebrofenin in hepatocytes, respectively. Rifampicin effectively blocked both the Oatp-mediated influx and the Mrp2/3-related efflux of 99mTc-mebrofenin. The additive impact of endotoxemia and rifampicin led to a 3.0 ± 1.3-fold increase in blood exposure compared with healthy non-treated animals. 99mTc-mebrofenin imaging is useful to investigate disease-associated change in hepatocyte transporter function.
Collapse
Affiliation(s)
- Solène Marie
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
- Faculté de Pharmacie, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- AP-HP, Université Paris-Saclay, Hôpital Bicêtre, Pharmacie Clinique, 94270 Le Kremlin Bicêtre, France
| | | | - Marc Le Vée
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35043 Rennes, France
| | - Louise Breuil
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Maud Goislard
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Sébastien Goutal
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Olivier Fardel
- Univ. Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35043 Rennes, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| |
Collapse
|
7
|
Wang L, Zhu Z, Tran D, Seo SK, Pan X. Advancing Estimation of Hepatobiliary Clearances in Physiologically Based Pharmacokinetic Models of Rosuvastatin Using Human Hepatic Concentrations. Pharm Res 2021; 38:2035-2046. [PMID: 34862570 DOI: 10.1007/s11095-021-03138-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To estimate hepatobiliary clearances of rosuvastatin via simultaneously fitting to reported human positron emission tomography (PET) data in the liver and gallbladder. METHODS A hepatobiliary model incorporating five intrinsic hepatobiliary clearances (active uptake clearance at the sinusoidal membrane, efflux clearance by passive diffusion through the sinusoidal membrane, influx clearance by passive diffusion through sinusoidal membrane, clearance of biliary excretion at the canalicular membrane, and intercompartment clearance from the intrahepatic bile duct to the gallbladder) and three compartments (liver, intrahepatic bile duct, and gallbladder) was developed to simultaneously fit rosuvastatin liver and gallbladder data from a representative subject reported by Billington et al. (1). Two liver blood supply input functions, arterial input function and dual input function (using peripheral venous as an alternative to portal vein), were assessed. Additionally, the predictive performance between the established model and four reported models trained with only systemic exposure data, was evaluated by comparing simulated liver and gallbladder profiles with observations. RESULTS The established hepatobiliary model well captured the kinetic profiles of rosuvastatin in the liver and gallbladder during the PET scans. Application of dual input function led to a marked underestimation of liver concentrations at the initial stage after i.v. dosing which cannot be offset by altering model parameter values. The simulated hepatobiliary profiles from three of the reported models demonstrated substantial deviation from the observed data. CONCLUSIONS The present study highlights the necessity of using hepatobiliary data to verify and improve the predictive performance of hepatic disposition of rosuvastatin.
Collapse
Affiliation(s)
- Li Wang
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Zhiyao Zhu
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Doanh Tran
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Shirley K Seo
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Xiaolei Pan
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
8
|
Pastor CM, Brouwer KLR. New Pharmacokinetic Parameters of Imaging Substrates Quantified from Rat Liver Compartments. Drug Metab Dispos 2021; 50:58-64. [PMID: 34670777 DOI: 10.1124/dmd.121.000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Hepatobiliary imaging is increasingly used by pharmacologists to quantify liver concentrations of transporter-dependent drugs. However, liver imaging does not quantify concentrations in extracellular space, hepatocytes, and bile canaliculi. Our study compared the compartmental distribution of two hepatobiliary substrates gadobenate dimeglumine [BOPTA; 0.08 liver extraction ratio (ER)] and mebrofenin (MEB; 0.93 ER) in a model of perfused rat liver. A gamma counter placed over livers measured liver concentrations. Livers were preperfused with gadopentetate dimeglumine to measure extracellular concentrations. Concentrations coming from bile canaliculi and hepatocytes were calculated. Transporter activities were assessed by concentration ratios between compartments and pharmacokinetic parameters that describe the accumulation and decay profiles of hepatocyte concentrations. The high liver concentrations of MEB relied mainly on hepatocyte and bile canaliculi concentrations. In contrast, the three compartments contributed to the low liver concentrations obtained during BOPTA perfusion. Nonlinear regression analysis of substrate accumulation in hepatocytes revealed that cellular efflux is measurable ∼4 minutes after the start of perfusion. The hepatocyte-to-extracellular concentration ratio measured at this time point was much higher during MEB perfusion. BOPTA transport by multidrug resistance associated protein 2 induced an aquaporin-mediated water transport, whereas MEB transport did not. BOPTA clearance from hepatocytes to bile canaliculi was higher than MEB clearance. MEB did not efflux back to sinusoids, whereas BOPTA basolateral efflux contributed to the decrease in hepatocyte concentrations. In conclusion, our ex vivo model quantifies substrate compartmental distribution and transport across hepatocyte membranes and provides an additional understanding of substrate distribution in the liver. SIGNIFICANCE STATEMENT: When transporter-dependent drugs target hepatocytes, cellular concentrations are important to investigate. Low concentrations on cellular targets impair drug therapeutic effects, whereas excessive hepatocyte concentrations may induce cellular toxicity. With a gamma counter placed over rat perfused livers, we measured substrate concentrations in the extracellular space, hepatocytes, and bile canaliculi. Transport across hepatocyte membranes was calculated. The study provides an additional understanding of substrate distribution in the liver.
Collapse
Affiliation(s)
- Catherine M Pastor
- Department of Radiology, University Hospital of Geneva, Switzerland (C.M.P.); Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75006 Paris, France (C.M.P.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (K.L.R.B.)
| | - Kim L R Brouwer
- Department of Radiology, University Hospital of Geneva, Switzerland (C.M.P.); Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, F-75006 Paris, France (C.M.P.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (K.L.R.B.)
| |
Collapse
|
9
|
Assessing the Functional Redundancy between P-gp and BCRP in Controlling the Brain Distribution and Biliary Excretion of Dual Substrates with PET Imaging in Mice. Pharmaceutics 2021; 13:pharmaceutics13081286. [PMID: 34452247 PMCID: PMC8399697 DOI: 10.3390/pharmaceutics13081286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are co-localized at the blood–brain barrier, where they display functional redundancy to restrict the brain distribution of dual P-gp/BCRP substrate drugs. We used positron emission tomography (PET) with the metabolically stable P-gp/BCRP substrates [11C]tariquidar, [11C]erlotinib, and [11C]elacridar to assess whether a similar functional redundancy as at the BBB exists in the liver, where both transporters mediate the biliary excretion of drugs. Wild-type, Abcb1a/b(−/−), Abcg2(−/−), and Abcb1a/b(−/−)Abcg2(−/−) mice underwent dynamic whole-body PET scans after i.v. injection of either [11C]tariquidar, [11C]erlotinib, or [11C]elacridar. Brain uptake of all three radiotracers was markedly higher in Abcb1a/b(−/−)Abcg2(−/−) mice than in wild-type mice, while only moderately changed in Abcb1a/b(−/−) and Abcg2(−/−) mice. The transfer of radioactivity from liver to excreted bile was significantly lower in Abcb1a/b(−/−)Abcg2(−/−) mice and almost unchanged in Abcb1a/b(−/−) and Abcg2(−/−) mice (with the exception of [11C]erlotinib, for which biliary excretion was also significantly reduced in Abcg2(−/−) mice). Our data provide evidence for redundancy between P-gp and BCRP in controlling both the brain distribution and biliary excretion of dual P-gp/BCRP substrates and highlight the utility of PET as an upcoming tool to assess the effect of transporters on drug disposition at a whole-body level.
Collapse
|
10
|
Imaging-Based Characterization of a Slco2b1(-/-) Mouse Model Using [ 11C]Erlotinib and [ 99mTc]Mebrofenin as Probe Substrates. Pharmaceutics 2021; 13:pharmaceutics13060918. [PMID: 34205780 PMCID: PMC8233734 DOI: 10.3390/pharmaceutics13060918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 01/19/2023] Open
Abstract
Organic anion-transporting polypeptide 2B1 (OATP2B1) is co-localized with OATP1B1 and OATP1B3 in the basolateral hepatocyte membrane, where it is thought to contribute to the hepatic uptake of drugs. We characterized a novel Slco2b1(-/-) mouse model using positron emission tomography (PET) imaging with [11C]erlotinib (a putative OATP2B1-selective substrate) and planar scintigraphic imaging with [99mTc]mebrofenin (an OATP1B1/1B3 substrate, which is not transported by OATP2B1). Dynamic 40-min scans were performed after intravenous injection of either [11C]erlotinib or [99mTc]mebrofenin in wild-type and Slco2b1(-/-) mice. A pharmacokinetic model was used to estimate the hepatic uptake clearance (CL1) and the rate constants for transfer of radioactivity from the liver to the blood (k2) and excreted bile (k3). CL1 was significantly reduced in Slco2b1(-/-) mice for both radiotracers (p < 0.05), and k2 was significantly lower (p < 0.01) in Slco2b1(-/-) mice for [11C]erlotinib, but not for [99mTc]mebrofenin. Our data support previous evidence that OATP transporters may contribute to the hepatic uptake of [11C]erlotinib. However, the decreased hepatic uptake of the OATP1B1/1B3 substrate [99mTc]mebrofenin in Slco2b1(-/-) mice questions the utility of this mouse model to assess the relative contribution of OATP2B1 to the liver uptake of drugs which are substrates of multiple OATPs.
Collapse
|
11
|
Hernández-Lozano I, Wanek T, Sauberer M, Filip T, Mairinger S, Stanek J, Traxl A, Karch R, Schuetz JD, Langer O. Influence of ABC transporters on the excretion of ciprofloxacin assessed with PET imaging in mice. Eur J Pharm Sci 2021; 163:105854. [PMID: 33865975 DOI: 10.1016/j.ejps.2021.105854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022]
Abstract
Ciprofloxacin is a commonly prescribed fluoroquinolone antibiotic which is cleared by active tubular secretion and intestinal excretion. Ciprofloxacin is a known substrate of the ATP-binding cassette (ABC) transporters breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 4 (MRP4). In this work, we used positron emission tomography (PET) imaging to investigate the influence of BCRP, MRP4, MRP2 and P-glycoprotein (P-gp) on the excretion of [18F]ciprofloxacin in mice. Dynamic 90-min PET scans were performed after intravenous injection of [18F]ciprofloxacin in wild-type mice without and with pre-treatment with the broad-spectrum MRP inhibitor MK571. Moreover, [18F]ciprofloxacin PET scans were performed in Abcc4(-/-), Abcc2(-/-), Abcc4(-/-)Abcg2(-/-) and Abcb1a/b(-/-)Abcg2(-/-) mice. In addition to non-compartmental pharmacokinetic (PK) analysis, a novel three-compartment PK model was developed for a detailed assessment of the renal disposition of [18F]ciprofloxacin. In MK571 pre-treated mice, a significant increase in the blood exposure to [18F]ciprofloxacin was observed along with a significant reduction in the renal and intestinal clearances. PK modelling revealed a significant reduction in renal radioactivity uptake (CL1) and in the rate constants for transfer of radioactivity from the corticomedullary renal region into blood (k2) and urine (k3), respectively, after MK571 administration. No changes in the renal clearance or in the estimated kidney PK model parameters were observed in any of the studied knockout models, while a significant reduction in the intestinal clearance was observed in Abcc2(-/-) and Abcc4(-/-)Abcg2(-/-) mice. Our data failed to reveal a role of any of the studied ABC transporters in the tubular secretion of ciprofloxacin. This may indicate that ciprofloxacin is handled in the kidneys by more than one transporter family, most likely with a great degree of mutual functional redundancy. Our study highlights the potential of PET imaging for an assessment of transporter-mediated renal excretion of radiolabelled drugs.
Collapse
Affiliation(s)
- Irene Hernández-Lozano
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Alexander Traxl
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Rudolf Karch
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria.
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 38105 Memphis, TN, USA.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Validation of Pharmacological Protocols for Targeted Inhibition of Canalicular MRP2 Activity in Hepatocytes Using [ 99mTc]mebrofenin Imaging in Rats. Pharmaceutics 2020; 12:pharmaceutics12060486. [PMID: 32471244 PMCID: PMC7355955 DOI: 10.3390/pharmaceutics12060486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
The multidrug resistance-associated protein 2 (MRP2) mediates the biliary excretion of drugs and metabolites. [99mTc]mebrofenin may be employed as a probe for hepatic MRP2 activity because its biliary excretion is predominantly mediated by this transporter. As the liver uptake of [99mTc]mebrofenin depends on organic anion-transporting polypeptide (OATP) activity, a safe protocol for targeted inhibition of hepatic MRP2 is needed to study the intrinsic role of each transporter system. Diltiazem (DTZ) and cyclosporin A (CsA) were first confirmed to be potent MRP2 inhibitors in vitro. Dynamic acquisitions were performed in rats (n = 5-6 per group) to assess the kinetics of [99mTc]mebrofenin in the liver, intestine and heart-blood pool after increasing doses of inhibitors. Their impact on hepatic blood flow was assessed using Doppler ultrasound (n = 4). DTZ (s.c., 10 mg/kg) and low-dose CsA (i.v., 0.01 mg/kg) selectively decreased the transfer of [99mTc]mebrofenin from the liver to the bile (k3). Higher doses of DTZ and CsA did not further decrease k3 but dose-dependently decreased the uptake (k1) and backflux (k2) rate constants between blood and liver. High dose of DTZ (i.v., 3 mg/kg) but not CsA (i.v., 5 mg/kg) significantly decreased the blood flow in the portal vein and hepatic artery. Targeted pharmacological inhibition of hepatic MRP2 activity can be achieved in vivo without impacting OATP activity and liver blood flow. Clinical studies are warranted to validate [99mTc]mebrofenin in combination with low-dose CsA as a novel substrate/inhibitor pair to untangle the role of OATP and MRP2 activity in liver diseases.
Collapse
|
13
|
Hernández Lozano I, Langer O. Use of imaging to assess the activity of hepatic transporters. Expert Opin Drug Metab Toxicol 2020; 16:149-164. [PMID: 31951754 PMCID: PMC7055509 DOI: 10.1080/17425255.2020.1718107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Membrane transporters of the SLC and ABC families are abundantly expressed in the liver, where they control the transfer of drugs/drug metabolites across the sinusoidal and canalicular hepatocyte membranes and play a pivotal role in hepatic drug clearance. Noninvasive imaging methods, such as PET, SPECT or MRI, allow for measuring the activity of hepatic transporters in vivo, provided that suitable transporter imaging probes are available.Areas covered: We give an overview of the working principles of imaging-based assessment of hepatic transporter activity. We discuss different currently available PET/SPECT radiotracers and MRI contrast agents and their applications to measure hepatic transporter activity in health and disease. We cover mathematical modeling approaches to obtain quantitative parameters of transporter activity and provide a critical assessment of methodological limitations and challenges associated with this approach.Expert opinion: PET in combination with pharmacokinetic modeling can be potentially applied in drug development to study the distribution of new drug candidates to the liver and their clearance mechanisms. This approach bears potential to mechanistically assess transporter-mediated drug-drug interactions, to assess the influence of disease on hepatic drug disposition and to validate and refine currently available in vitro-in vivo extrapolation methods to predict hepatic clearance of drugs.
Collapse
Affiliation(s)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
14
|
Hernández Lozano I, Bauer M, Wulkersdorfer B, Traxl A, Philippe C, Weber M, Häusler S, Stieger B, Jäger W, Mairinger S, Wanek T, Hacker M, Zeitlinger M, Langer O. Measurement of Hepatic ABCB1 and ABCG2 Transport Activity with [ 11C]Tariquidar and PET in Humans and Mice. Mol Pharm 2019; 17:316-326. [PMID: 31790256 DOI: 10.1021/acs.molpharmaceut.9b01060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
P-Glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in the canalicular membrane of hepatocytes mediate the biliary excretion of drugs and drug metabolites. To measure hepatic ABCB1 and ABCG2 activity, we performed positron emission tomography (PET) scans with the ABCB1/ABCG2 substrate [11C]tariquidar in healthy volunteers and wild-type, Abcb1a/b(-/-), Abcg2(-/-), and Abcb1a/b(-/-)Abcg2(-/-) mice without and with coadministration of unlabeled tariquidar. PET data were analyzed with a three-compartment pharmacokinetic model. [11C]Tariquidar underwent hepatobiliary excretion in both humans and mice, and tariquidar coadministration caused a significant reduction in the rate constant for the transfer of radioactivity from the liver into bile (by -74% in humans and by -62% in wild-type mice), suggesting inhibition of canalicular efflux transporter activity. Radio-thin-layer chromatography analysis revealed that the majority of radioactivity (>87%) in the mouse liver and bile was composed of unmetabolized [11C]tariquidar. PET data in transporter knockout mice revealed that both ABCB1 and ABCG2 mediated biliary excretion of [11C]tariquidar. In vitro experiments indicated that tariquidar is not a substrate of major hepatic basolateral uptake transporters (SLCO1B1, SLCO1B3, SLCO2B1, SLC22A1, and SLC22A3). Our data suggest that [11C]tariquidar can be used to measure hepatic canalicular ABCB1/ABCG2 transport activity without a confounding effect of uptake transporters.
Collapse
Affiliation(s)
- Irene Hernández Lozano
- Department of Clinical Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
| | - Martin Bauer
- Department of Clinical Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
| | - Beatrix Wulkersdorfer
- Department of Clinical Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
| | - Alexander Traxl
- Preclinical Molecular Imaging , AIT Austrian Institute of Technology GmbH , Seibersdorf 2444 , Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy , Medical University of Vienna , Vienna 1090 , Austria
| | - Maria Weber
- Department of Clinical Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
| | - Stephanie Häusler
- Department of Clinical Pharmacology and Toxicology , University Hospital Zurich, University of Zurich , Zurich 8006 , Switzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology , University Hospital Zurich, University of Zurich , Zurich 8006 , Switzerland
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics , University of Vienna , Vienna 1090 , Austria
| | - Severin Mairinger
- Preclinical Molecular Imaging , AIT Austrian Institute of Technology GmbH , Seibersdorf 2444 , Austria
| | - Thomas Wanek
- Preclinical Molecular Imaging , AIT Austrian Institute of Technology GmbH , Seibersdorf 2444 , Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy , Medical University of Vienna , Vienna 1090 , Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
| | - Oliver Langer
- Department of Clinical Pharmacology , Medical University of Vienna , Vienna 1090 , Austria.,Preclinical Molecular Imaging , AIT Austrian Institute of Technology GmbH , Seibersdorf 2444 , Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy , Medical University of Vienna , Vienna 1090 , Austria
| |
Collapse
|