1
|
Yamaguchi D, Shimizu R, Kubota R. Development of a SARS-CoV-2 viral dynamic model for patients with COVID-19 based on the amount of viral RNA and viral titer. CPT Pharmacometrics Syst Pharmacol 2024; 13:1354-1365. [PMID: 38783551 PMCID: PMC11330184 DOI: 10.1002/psp4.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The target-cell limited model, which is one of the mathematical modeling approaches providing a quantitative understanding of viral dynamics, has been applied to describe viral RNA profiles of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previous studies. However, these models have been developed mainly using patient data from the early phase of the pandemic. Furthermore, no reports focused on the profiles of the viral titer. In this study, the dynamics of both viral RNA and viral titer were characterized using data reflecting the current clinical situation in which the Omicron variant has become epidemic and vaccines for SARS-CoV-2 have become available. Consecutive data for 5212 viral RNA levels and 5216 viral titers were obtained from 720 patients with coronavirus disease 2019 (COVID-19) in a phase II/III study for ensitrelvir. Our model assumed that productively infected cells would produce only infectious viruses, which could be transformed into non-infectious viruses, and has been used to describe the dynamics of both viral RNA levels and viral titer. The time from infection to symptom onset (tinf) of unvaccinated patients was estimated to be 3.0 days, which was shorter than that of the vaccinated patients. The immune-related parameter as a power function for the vaccinated patients was 1.1 times stronger than that for the unvaccinated patients. Our model allows the prediction of the viral dynamics in patients with COVID-19 from the time of infection to symptom onset. Vaccination status was identified as a factor influencing tinf and the immune function.
Collapse
Affiliation(s)
- Daichi Yamaguchi
- Clinical Pharmacology & PharmacokineticsShionogi & Co., Ltd.OsakaJapan
| | - Ryosuke Shimizu
- Clinical Pharmacology & PharmacokineticsShionogi & Co., Ltd.OsakaJapan
| | - Ryuji Kubota
- Clinical Pharmacology & PharmacokineticsShionogi & Co., Ltd.OsakaJapan
| |
Collapse
|
2
|
Alexandre M, Prague M, McLean C, Bockstal V, Douoguih M, Thiébaut R. Prediction of long-term humoral response induced by the two-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine against Ebola. NPJ Vaccines 2023; 8:174. [PMID: 37940656 PMCID: PMC10632397 DOI: 10.1038/s41541-023-00767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV, MVA-BN-Filo two-dose vaccination regimen against Ebola has been investigated in several clinical trials. Longitudinal data on IgG-binding antibody concentrations were analyzed from 487 participants enrolled in six Phase I and Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2 consortia. A model based on ordinary differential equations describing the dynamics of antibodies and short- and long-lived antibody-secreting cells (ASCs) was used to model the humoral response from 7 days after the second vaccination to a follow-up period of 2 years. Using a population-based approach, we first assessed the robustness of the model, which was originally estimated based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified factors that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and found an influence of geographic region, sex, and age on the humoral response dynamics, with longer antibody persistence in Europeans and women and higher production of antibodies in younger participants.
Collapse
Affiliation(s)
- Marie Alexandre
- Department of Public Health, Bordeaux University, Inserm UMR 1219 Bordeaux Population Health Research Center, Inria SISTM, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Mélanie Prague
- Department of Public Health, Bordeaux University, Inserm UMR 1219 Bordeaux Population Health Research Center, Inria SISTM, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Chelsea McLean
- Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Viki Bockstal
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- ExeVir, Ghent, Belgium
| | | | - Rodolphe Thiébaut
- Department of Public Health, Bordeaux University, Inserm UMR 1219 Bordeaux Population Health Research Center, Inria SISTM, Bordeaux, France.
- Vaccine Research Institute, Créteil, France.
| |
Collapse
|
3
|
Zhang S, Agyeman AA, Hadjichrysanthou C, Standing JF. SARS-CoV-2 viral dynamic modeling to inform model selection and timing and efficacy of antiviral therapy. CPT Pharmacometrics Syst Pharmacol 2023; 12:1450-1460. [PMID: 37534815 PMCID: PMC10583246 DOI: 10.1002/psp4.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Mathematical models of viral dynamics have been reported to describe adequately the dynamic changes of severe acute respiratory syndrome-coronavirus 2 viral load within an individual host. In this study, eight published viral dynamic models were assessed, and model selection was performed. Viral load data were collected from a community surveillance study, including 2155 measurements from 162 patients (124 household and 38 non-household contacts). An extended version of the target-cell limited model that includes an eclipse phase and an immune response component that enhances viral clearance described best the data. In general, the parameter estimates showed good precision (relative standard error <10), apart from the death rate of infected cells. The parameter estimates were used to simulate the outcomes of a clinical trial of the antiviral tixagevimab-cilgavimab, a monoclonal antibody combination which blocks infection of the target cells by neutralizing the virus. The simulated outcome of the effectiveness of the antiviral therapy in controlling viral replication was in a good agreement with the clinical trial data. Early treatment with high antiviral efficacy is important for desired therapeutic outcome.
Collapse
Affiliation(s)
- Shengyuan Zhang
- Department of Pharmaceutics, School of PharmacyUniversity College LondonLondonUK
| | - Akosua A. Agyeman
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Christoforos Hadjichrysanthou
- Department of MathematicsUniversity of SussexBrightonUK
- Department of Infectious Disease Epidemiology, School of Public HealthImperial College LondonLondonUK
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
4
|
Guhl M, Mercier F, Hofmann C, Sharan S, Donnelly M, Feng K, Sun W, Sun G, Grosser S, Zhao L, Fang L, Mentré F, Comets E, Bertrand J. Impact of model misspecification on model-based tests in PK studies with parallel design: real case and simulation studies. J Pharmacokinet Pharmacodyn 2022; 49:557-577. [PMID: 36112338 PMCID: PMC9483500 DOI: 10.1007/s10928-022-09821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
This article evaluates the performance of pharmacokinetic (PK) equivalence testing between two formulations of a drug through the Two-One Sided Tests (TOST) by a model-based approach (MB-TOST), as an alternative to the classical non-compartmental approach (NCA-TOST), for a sparse design with a few time points per subject. We focused on the impact of model misspecification and the relevance of model selection for the reference data. We first analysed PK data from phase I studies of gantenerumab, a monoclonal antibody for the treatment of Alzheimer’s disease. Using the original rich sample data, we compared MB-TOST to NCA-TOST for validation. Then, the analysis was repeated on a sparse subset of the original data with MB-TOST. This analysis inspired a simulation study with rich and sparse designs. With rich designs, we compared NCA-TOST and MB-TOST in terms of type I error and study power. With both designs, we explored the impact of misspecifying the model on the performance of MB-TOST and adding a model selection step. Using the observed data, the results of both approaches were in general concordance. MB-TOST results were robust with sparse designs when the underlying PK structural model was correctly specified. Using the simulated data with a rich design, the type I error of NCA-TOST was close to the nominal level. When using the simulated model, the type I error of MB-TOST was controlled on rich and sparse designs, but using a misspecified model led to inflated type I errors. Adding a model selection step on the reference data reduced the inflation. MB-TOST appears as a robust alternative to NCA-TOST, provided that the PK model is correctly specified and the test drug has the same PK structural model as the reference drug.
Collapse
|
5
|
Lingas G, Néant N, Gaymard A, Belhadi D, Peytavin G, Hites M, Staub T, Greil R, Paiva JA, Poissy J, Peiffer-Smadja N, Costagliola D, Yazdanpanah Y, Wallet F, Gagneux-Brunon A, Mentré F, Ader F, Burdet C, Guedj J, Bouscambert-Duchamp M. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1404-1412. [PMID: 35233617 PMCID: PMC9383489 DOI: 10.1093/jac/dkac048] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background The antiviral efficacy of remdesivir in COVID-19 hospitalized patients remains controversial. Objectives To estimate the effect of remdesivir in blocking viral replication. Methods We analysed nasopharyngeal normalized viral loads from 665 hospitalized patients included in the DisCoVeRy trial (NCT 04315948; EudraCT 2020-000936-23), randomized to either standard of care (SoC) or SoC + remdesivir. We used a mathematical model to reconstruct viral kinetic profiles and estimate the antiviral efficacy of remdesivir in blocking viral replication. Additional analyses were conducted stratified on time of treatment initiation (≤7 or >7 days since symptom onset) or viral load at randomization (< or ≥3.5 log10 copies/104 cells). Results In our model, remdesivir reduced viral production by infected cells by 2-fold on average (95% CI: 1.5–3.2-fold). Model-based simulations predict that remdesivir reduced time to viral clearance by 0.7 days compared with SoC, with large inter-individual variabilities (IQR: 0.0–1.3 days). Remdesivir had a larger impact in patients with high viral load at randomization, reducing viral production by 5-fold on average (95% CI: 2.8–25-fold) and the median time to viral clearance by 2.4 days (IQR: 0.9–4.5 days). Conclusions Remdesivir halved viral production, leading to a median reduction of 0.7 days in the time to viral clearance compared with SoC. The efficacy was larger in patients with high viral load at randomization.
Collapse
Affiliation(s)
- Guillaume Lingas
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- Corresponding author. E-mail:
| | - Nadège Néant
- Université de Paris, IAME, INSERM, F-75018 Paris, France
| | - Alexandre Gaymard
- Hospices Civils de Lyon, Département de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires France Sud, F-69004, Lyon, France
- Université de Lyon, Virpath, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372, Lyon, France
| | - Drifa Belhadi
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Département d’Épidémiologie, Biostatistique et Recherche Clinique, F-75018, Paris, France
- CIC-EC 1425, INSERM, F-75018, Paris, France
| | - Gilles Peytavin
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- AP-HP, Hôpital Bichat Claude Bernard, Laboratoire de Pharmacologie-toxicologie, F-75018 Paris, France
| | - Maya Hites
- Hôpital Universitaire de Bruxelles-Hôpital Erasme, Université Libre de Bruxelles, Clinique des maladies infectieuses, Brussels, Belgium
| | - Thérèse Staub
- Centre hospitalier de Luxembourg, Service des maladies infectieuses, L-1210 Luxembourg, Luxembourg
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020, Salzburg, Austria
- AGMT, 5020 Salzburg, Austria
| | - Jose-Artur Paiva
- Centro Hospitalar São João, Emergency and Intensive Care Department, Porto, Portugal
- Universidade do Porto, Faculty of Medicine, Porto, Portugal
| | - Julien Poissy
- Université de Lille, Inserm U1285, CHU Lille, Pôle de réanimation, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Nathan Peiffer-Smadja
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - Dominique Costagliola
- Sorbonne Université, Inserm, Institut Pierre-Louis d’Épidémiologie et de Santé Publique, F-75013, Paris, France
| | - Yazdan Yazdanpanah
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France
| | - Florent Wallet
- Service de Médecine Intensive Réanimation anesthésie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France
- Université Claude Bernard Lyon 1, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, F-69372, Lyon, France
| | - Amandine Gagneux-Brunon
- CHU de Saint-Etienne, Service d’Infectiologie, F-42055 Saint-Etienne, France
- Université Jean Monnet, Université Claude Bernard Lyon 1, GIMAP, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, F-42023 Saint-Etienne, France
- CIC 1408, INSERM, F-42055 Saint-Etienne, France
| | - France Mentré
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Département d’Épidémiologie, Biostatistique et Recherche Clinique, F-75018, Paris, France
- CIC-EC 1425, INSERM, F-75018, Paris, France
- AP-HP, Hôpital Bichat, Unité de Recherche Clinique, F-75018, Paris, France
| | - Florence Ader
- Université Claude Bernard Lyon 1, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, F-69372, Lyon, France
- Hospices Civils de Lyon, Département des maladies infectieuses et tropicales, F-69004, Lyon, France
| | - Charles Burdet
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Département d’Épidémiologie, Biostatistique et Recherche Clinique, F-75018, Paris, France
| | - Jérémie Guedj
- Université de Paris, IAME, INSERM, F-75018 Paris, France
| | - Maude Bouscambert-Duchamp
- Hospices Civils de Lyon, Département de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires France Sud, F-69004, Lyon, France
| |
Collapse
|
6
|
Gonçalves A, Maisonnasse P, Donati F, Albert M, Behillil S, Contreras V, Naninck T, Marlin R, Solas C, Pizzorno A, Lemaitre J, Kahlaoui N, Terrier O, Ho Tsong Fang R, Enouf V, Dereuddre-Bosquet N, Brisebarre A, Touret F, Chapon C, Hoen B, Lina B, Rosa Calatrava M, de Lamballerie X, Mentré F, Le Grand R, van der Werf S, Guedj J. SARS-CoV-2 viral dynamics in non-human primates. PLoS Comput Biol 2021; 17:e1008785. [PMID: 33730053 PMCID: PMC8007039 DOI: 10.1371/journal.pcbi.1008785] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/29/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.
Collapse
Affiliation(s)
| | - Pauline Maisonnasse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Flora Donati
- Unité de Génétique Moléculaire des Virus à ARN, GMVR: Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | - Mélanie Albert
- Unité de Génétique Moléculaire des Virus à ARN, GMVR: Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | - Sylvie Behillil
- Unité de Génétique Moléculaire des Virus à ARN, GMVR: Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Caroline Solas
- Aix-Marseille Univ, APHM, Unité des Virus Emergents (UVE) IRD 190, INSERM 1207, Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, Marseille, France
| | - Andres Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Julien Lemaitre
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Raphael Ho Tsong Fang
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vincent Enouf
- Unité de Génétique Moléculaire des Virus à ARN, GMVR: Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
- Plate-forme de microbiologie mutualisée (P2M), Pasteur International Bioresources Network (PIBnet), Institut Pasteur, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Angela Brisebarre
- Unité de Génétique Moléculaire des Virus à ARN, GMVR: Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | - Franck Touret
- Unité des Virus Emergents, UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Catherine Chapon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Bruno Hoen
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
| | - Bruno Lina
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Laboratoire de Virologie, Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Manuel Rosa Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Xavier de Lamballerie
- Unité des Virus Emergents, UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | | | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, GMVR: Institut Pasteur, UMR CNRS 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des infections respiratoires (dont la grippe), Institut Pasteur, Paris, France
| | | |
Collapse
|
7
|
Néant N, Lingas G, Le Hingrat Q, Ghosn J, Engelmann I, Lepiller Q, Gaymard A, Ferré V, Hartard C, Plantier JC, Thibault V, Marlet J, Montes B, Bouiller K, Lescure FX, Timsit JF, Faure E, Poissy J, Chidiac C, Raffi F, Kimmoun A, Etienne M, Richard JC, Tattevin P, Garot D, Le Moing V, Bachelet D, Tardivon C, Duval X, Yazdanpanah Y, Mentré F, Laouénan C, Visseaux B, Guedj J. Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort. Proc Natl Acad Sci U S A 2021; 118:e2017962118. [PMID: 33536313 PMCID: PMC7929555 DOI: 10.1073/pnas.2017962118] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral kinetics in hospitalized patients and its association with mortality is unknown. We analyzed death and nasopharyngeal viral kinetics in 655 hospitalized patients from the prospective French COVID cohort. The model predicted a median peak viral load that coincided with symptom onset. Patients with age ≥65 y had a smaller loss rate of infected cells, leading to a delayed median time to viral clearance occurring 16 d after symptom onset as compared to 13 d in younger patients (P < 10-4). In multivariate analysis, the risk factors associated with mortality were age ≥65 y, male gender, and presence of chronic pulmonary disease (hazard ratio [HR] > 2.0). Using a joint model, viral dynamics after hospital admission was an independent predictor of mortality (HR = 1.31, P < 10-3). Finally, we used our model to simulate the effects of effective pharmacological interventions on time to viral clearance and mortality. A treatment able to reduce viral production by 90% upon hospital admission would shorten the time to viral clearance by 2.0 and 2.9 d in patients of age <65 y and ≥65 y, respectively. Assuming that the association between viral dynamics and mortality would remain similar to that observed in our population, this could translate into a reduction of mortality from 19 to 14% in patients of age ≥65 y with risk factors. Our results show that viral dynamics is associated with mortality in hospitalized patients. Strategies aiming to reduce viral load could have an effect on mortality rate in this population.
Collapse
Affiliation(s)
- Nadège Néant
- Université de Paris, INSERM, IAME, F-75018 Paris, France;
| | | | - Quentin Le Hingrat
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Virologie, F-75018 Paris, France
| | - Jade Ghosn
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hopital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, Centre Hospitalier-Universitaire de Lille, F-59037 Lille Cedex, France
| | - Quentin Lepiller
- Laboratoire de Virologie, Centre Hospitalier-Universitaire de Besançon, F-25000 Besançon, France
| | - Alexandre Gaymard
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, F-69004 Lyon, France
- Centre National de Référence des Virus Respiratoires, Hospices Civils de Lyon, Groupement Hospitalier Nord, F-69004 Lyon, France
| | - Virginie Ferré
- Service de Virologie, Centre Hospitalier-Universitaire de Nantes, F-44093 Nantes, France
| | - Cédric Hartard
- Laboratoire de Microbiologie, Centre Hospitalier-Universitaire de Nancy, F-54000 Nancy, France
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, F-54000 Nancy, France
| | - Jean-Christophe Plantier
- Normandie University, UNIROUEN Rouen, EA2656, Virology, Rouen University Hospital, F-76000 Rouen, France
| | - Vincent Thibault
- Virology, Pontchaillou University Hospital, F-35033 Rennes cedex, France
| | - Julien Marlet
- Laboratoire de Virologie, Centre Hospitalier-Universitaire de Bretonneau, F-37044 Tours, France
- INSERM UMR 1259, Université de Tours, F-37044 Tours, France
| | - Brigitte Montes
- Laboratoire de Virologie, Centre Hospitalier-Universitaire de Montpellier, F-34295 Montpellier, France
| | - Kevin Bouiller
- Infectious and Tropical Disease Department, Besancon University Hospital, F-25000 Besancon, France
- UMR CNRS 6249, Chrono Environnement, University of Bourgogne Franche-Comté, F-25000 Besancon, France
| | - François-Xavier Lescure
- AP-HP, Hopital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France
| | - Jean-François Timsit
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Service de Réanimation Médicale et Infectieuse, F-75018 Paris, France
| | - Emmanuel Faure
- Centre Hospitalier-Universitaire de Lille, Univ. Lille, Infectious Disease Department, CNRS, Inserm, U1019-UMR9017-CIIL, F-59000 Lille, France
| | - Julien Poissy
- Université de Lille, INSERM U1285, Centre Hospitalier-Universitaire de Lille, Pôle de réanimation, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Christian Chidiac
- Infectious and Tropical Disease Department, Croix-Rousse Hospital, University Hospital of Lyon, F-69004 Lyon, France
| | - François Raffi
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier-Universitaire de Nantes, F-44093 Nantes, France
- Centre d'Investigation Clinique Unité d'Investigation Clinique 1413 INSERM, Centre Hospitalier-Universitaire de Nantes, F-44093 Nantes, France
| | - Antoine Kimmoun
- Université de Lorraine, Centre Hospitalier Régional Universitaire de Nancy, INSERM U1116, F-CRIN INICRCT, Service de Médecine Intensive et Réanimation Brabois, F-54000 Nancy, France
| | - Manuel Etienne
- Infectious Diseases Department, Rouen University Hospital, F-76000 Rouen, France
| | - Jean-Christophe Richard
- Lyon University, CREATIS, CNRS UMR5220, INSERM U1044, INSA, F-69000 Lyon, France
- Intensive Care Unit, Hospices Civils de Lyon, F-69002 Lyon, France
| | - Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, F-35000 Rennes, France
| | - Denis Garot
- Centre Hospitalier Régional Universitaire de Tours, Service de Médecine Intensive Réanimation, F-37044 Tours Cedex 9, France
| | - Vincent Le Moing
- Tropical and Infectious Diseases, Saint Eloi Hospital, Université de Montpellier, Medical School, Montpellier University Hospital, F-34295 Montpellier Cedex 5, France
| | - Delphine Bachelet
- AP-HP, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, F-75018 Paris, France
| | - Coralie Tardivon
- AP-HP, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, F-75018 Paris, France
| | - Xavier Duval
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Centre d'Investigation Clinique, INSERM CIC-1425, F-75018 Paris, France
| | - Yazdan Yazdanpanah
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hopital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France
| | - France Mentré
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, F-75018 Paris, France
| | - Cédric Laouénan
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, F-75018 Paris, France
| | - Benoit Visseaux
- Université de Paris, INSERM, IAME, F-75018 Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Virologie, F-75018 Paris, France
| | - Jérémie Guedj
- Université de Paris, INSERM, IAME, F-75018 Paris, France
| |
Collapse
|
8
|
Gonçalves A, Lemenuel-Diot A, Cosson V, Jin Y, Feng S, Bo Q, Guedj J. What drives the dynamics of HBV RNA during treatment? J Viral Hepat 2021; 28:383-392. [PMID: 33074571 DOI: 10.1111/jvh.13425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
Hepatitis B virus RNA (HBV RNA)-containing particles are encapsidated pre-genomic RNA (pgRNA) detectable in chronically infected patients in addition to virions (HBV DNA) that have been suggested as a marker of the treatment efficacy. This makes promising the use of core protein allosteric modulators, such as RG7907, which disrupt the nucleocapsid assembly and profoundly reduce HBV RNA. Here, we developed a multiscale model of HBV extending the standard viral dynamic models to analyse the kinetics of HBV DNA and HBV RNA in 35 patients treated with RG7907 for 28 days. We compare the predictions with those obtained in patients treated with the nucleotide analog tenofovir. RG7907 blocked 99.3% of pgRNA encapsidation (range: 92.1%-99.9%) which led to a decline of both HBV DNA and HBV RNA. As a consequence of its mode of action, the first phase of decline of HBV RNA was rapid, uncovering the clearance of viral particles with half-life of 45 min. In contrast, HBV DNA decline was predicted to be less rapid, due to the continuous secretion of already formed viral capsids (t1/2 = 17 ± 6 h). After few days, both markers declined at the same rate, which was attributed to the loss of infected cells (t1/2 ≅ 6 ± 0.8 days). By blocking efficiently RNA reverse transcription but not its encapsidation, nucleotide analog in contrast was predicted to lead to a transient accumulation of HBV RNA both intracellularly and extracellularly. The model brings a conceptual framework for understanding the differences between HBV DNA and HBV RNA dynamics. Integration of HBV RNA in viral dynamic models may be helpful to better quantify the treatment effect, especially in viral-suppressed patients where HBV DNA is no longer detectable.
Collapse
Affiliation(s)
| | - Annabelle Lemenuel-Diot
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Valérie Cosson
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Yuyan Jin
- Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Sheng Feng
- Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Qingyan Bo
- I2O DTA, Roche Pharma Research & Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | | |
Collapse
|
9
|
Lingas G, Rosenke K, Safronetz D, Guedj J. Lassa viral dynamics in non-human primates treated with favipiravir or ribavirin. PLoS Comput Biol 2021; 17:e1008535. [PMID: 33411731 PMCID: PMC7817048 DOI: 10.1371/journal.pcbi.1008535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/20/2021] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Lassa fever is an haemorrhagic fever caused by Lassa virus (LASV). There is no vaccine approved against LASV and the only recommended antiviral treatment relies on ribavirin, despite limited evidence of efficacy. Recently, the nucleotide analogue favipiravir showed a high antiviral efficacy, with 100% survival obtained in an otherwise fully lethal non-human primate (NHP) model of Lassa fever. However the mechanism of action of the drug is not known and the absence of pharmacokinetic data limits the translation of these results to the human setting. Here we aimed to better understand the antiviral effect of favipiravir by developping the first mathematical model recapitulating Lassa viral dynamics and treatment. We analyzed the viral dynamics in 24 NHPs left untreated or treated with ribavirin or favipiravir, and we put the results in perspective with those obtained with the same drugs in the context of Ebola infection. Our model estimates favipiravir EC50 in vivo to 2.89 μg.mL-1, which is much lower than what was found against Ebola virus. The main mechanism of action of favipiravir was to decrease virus infectivity, with an efficacy of 91% at the highest dose. Based on our knowledge acquired on the drug pharmacokinetics in humans, our model predicts that favipiravir doses larger than 1200 mg twice a day should have the capability to strongly reduce the production infectious virus and provide a milestone towards a future use in humans.
Collapse
Affiliation(s)
| | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
10
|
Gonçalves A, Bertrand J, Ke R, Comets E, de Lamballerie X, Malvy D, Pizzorno A, Terrier O, Rosa Calatrava M, Mentré F, Smith P, Perelson AS, Guedj J. Timing of Antiviral Treatment Initiation is Critical to Reduce SARS-CoV-2 Viral Load. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:509-514. [PMID: 32558354 PMCID: PMC7323384 DOI: 10.1002/psp4.12543] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
We modeled the viral dynamics of 13 untreated patients infected with severe acute respiratory syndrome‐coronavirus 2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than two logs, drug efficacy needs to be > 90% if treatment is administered after symptom onset; an efficacy of 60% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 6–87% efficacy. They may help control virus if administered very early, but may not have a major effect in severely ill patients.
Collapse
Affiliation(s)
| | | | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Xavier de Lamballerie
- Institut Hospitalo-Universitaire Méditerranée Infection, UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Marseille, France
| | - Denis Malvy
- Inserm, UMR 1219, Université de Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Manuel Rosa Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Patrick Smith
- Certara, Integrated Drug Development, Princeton, New Jersey, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|