1
|
Radmard A, Kumar Srivastava R, Shrestha N, Khan J, Muzaffar S, Athar M, Banga AK. Enhancing topical delivery of ISRIB: Optimizing cream formulations with chemical enhancers and pH adjustment. Int J Pharm 2024; 665:124661. [PMID: 39244069 PMCID: PMC11601214 DOI: 10.1016/j.ijpharm.2024.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Chemical warfare agents, particularly vesicants like lewisite, pose a threat due to their ability to cause skin damage through accidental exposure or deliberate attacks. Lewisite rapidly penetrates the skin, causing inflammation and blistering. This study focuses on developing a cream formulation of a therapeutic agent, called integrated stress response inhibitor (ISRIB), to treat lewisite-induced injuries. Moreover, animal studies demonstrate a molecular target engagement (ISR) and significant efficacy of ISRIB against lewisite-induced cutaneous injury. The goal of this formulation is to enhance the delivery of ISRIB directly to affected skin areas using an oil-in-water cream emulsion system. We investigated various excipients, including oils, surfactants, emollients, and permeation enhancers, to optimize ISRIB's solubility and penetration through the skin. The result of this study indicated that the optimal formulation includes 30 % w/w of N-Methyl-2-pyrrolidone, dimethyl sulfoxide and Azone® at a pH of 5. 5. It delivered the highest amount of ISRIB into the skin, demonstrating highest skin absorption with no detectable systemic exposure. Additionally, characterization of the cream, including texture analysis, emulsion type, and content uniformity, confirmed its' suitability for topical application. These findings suggest that ISRIB cream formulation is a promising approach for the localized treatment of skin injuries caused by lewisite.
Collapse
Affiliation(s)
- Ariana Radmard
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nisha Shrestha
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
2
|
Pichayakorn W, Senarat S, Jitrangsri K, Phaechamud T. Rubber oily liquids as transdermal and periodontal pocket drug delivery systems. Int J Biol Macromol 2024; 273:133237. [PMID: 38897513 DOI: 10.1016/j.ijbiomac.2024.133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/02/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
This study investigates the incorporation of block natural rubber (NR) as a viscosity-inducing agent in NR oily liquids designed for drug delivery systems. A variety of liquids, encompassing natural oils, synthetic and non-oil liquids, and a eutectic mixture, were incorporated with NR using solvent displacement technique. Successful formulations were achieved for several oily liquids, with viscosity correlating to NR concentration. Particularly, a eutectic mixture of menthol and camphor exhibited optimal viscosity by direct dissolving enabling the development of transdermal ibuprofen delivery and injectable azithromycin for periodontitis treatment. NR prolonged the release of both drugs. The extended-release ibuprofen system holds promise for transdermal applications, while the azithromycin system displayed inhibitory effects against Staphylococcus aureus, Streptococcus mutans, and Porphyromonas gingivalis, suggesting potential for periodontitis treatment. Overall, this investigation advances the development of NR oily liquids as a versatile drug delivery system that can be applied both on the skin and for the local injection into the periodontal pocket, showcasing promise for various therapeutic applications.
Collapse
Affiliation(s)
- Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Setthapong Senarat
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
| | - Kritamorn Jitrangsri
- Department of Chemical Engineering and Pharmaceutical Chemistry, School of Engineering and Technology, Walailak University, Nakhon Srithammarat 80160, Thailand.
| | - Thawatchai Phaechamud
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000, Thailand.
| |
Collapse
|
3
|
Nandi S, Padrela L, Tajber L, Collas A. Development of long-acting injectable suspensions by continuous antisolvent crystallization: An integrated bottom-up process. Int J Pharm 2023; 648:123550. [PMID: 37890647 DOI: 10.1016/j.ijpharm.2023.123550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Our present work elucidated the operational feasibility of direct generation and stabilization of long-acting injectable (LAI) suspensions of a practically insoluble drug, itraconazole (ITZ), by combining continuous liquid antisolvent crystallization with downstream processing (i.e., centrifugal filtration and reconstitution). A novel microchannel reactor-based bottom-up crystallization setup was assembled and optimized for the continuous production of micro-suspension. Based upon the solvent screening and solubility study, N-methyl pyrrolidone (NMP) was selected as the optimal solvent and an impinging jet Y-shaped microchannel reactor (MCR) was selected as the fluidic device to provide a reproducible homogenous mixing environment. Operating parameters such as solvent to antisolvent ratio (S/AS), total jet liquid flow rates (TFRs), ITZ feed solution concentration and the maturation time in spiral tubing were tailored to 1:9 v/v, 50 mL/min, 10 g/100 g solution, and 96 h, respectively. Vitamin E TPGS (0.5% w/w) was found to be the most suitable excipient to stabilize ITZ particles amongst 14 commonly used stabilizers screened. The effect of scaling up from 25 mL to 15 L was evaluated effectively with in situ monitoring of particle size distribution (PSD) and solid-state form. Thereafter, the suspension was subjected to centrifugal filtration to remove excess solvent and increase ITZ solid fraction. As an alternative, an even more concentrated wet pellet was reconstituted with an aqueous solution of 0.5% w/w Vitamin E TPGS as resuspending agent. The ITZ LAI suspension (of 300 mg/mL solid concentration) has the optimal PSD with a D10 of 1.1 ± 0.3 µm, a D50 of 3.53 ± 0.4 µm and a D90 of 6.5 ± 0.8 µm, corroborated by scanning electron microscopy (SEM), as remained stable after 548 days of storage at 25 °C. Finally, in vitro release methods using Dialyzer, dialysis membrane sac were investigated for evaluation of dissolution of ITZ LAI suspensions. The framework presented in this manuscript provides a useful guidance for development of LAI suspensions by an integrated bottom-up approach using ITZ as model API.
Collapse
Affiliation(s)
- Snehashis Nandi
- Chemical and Pharmaceutical Development & Supply, Janssen Research & Development, Beerse, Belgium; Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland
| | - Luis Padrela
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland
| | - Lidia Tajber
- SSPC, The SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Alain Collas
- Chemical and Pharmaceutical Development & Supply, Janssen Research & Development, Beerse, Belgium.
| |
Collapse
|
4
|
Caviedes-Rubio DI, Ortiz CP, Martinez F, Delgado DR. Thermodynamic Assessment of Triclocarban Dissolution Process in N-Methyl-2-pyrrolidone + Water Cosolvent Mixtures. Molecules 2023; 28:7216. [PMID: 37894697 PMCID: PMC10609577 DOI: 10.3390/molecules28207216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Solubility is one of the most important physicochemical properties due to its involvement in physiological (bioavailability), industrial (design) and environmental (biotoxicity) processes, and in this regard, cosolvency is one of the best strategies to increase the solubility of poorly soluble drugs in aqueous systems. Thus, the aim of this research is to thermodynamically evaluate the dissolution process of triclocarban (TCC) in cosolvent mixtures of {N-methyl-2-pyrrolidone (NMP) + water (W)} at seven temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15 and 318.15 K). Solubility is determined by UV/vis spectrophotometry using the flask-shaking method. The dissolution process of the TCC is endothermic and strongly dependent on the cosolvent composition, achieving the minimum solubility in pure water and the maximum solubility in NMP. The activity coefficient decreases from pure water to NMP, reaching values less than one, demonstrating the excellent positive cosolvent effect of NMP, which is corroborated by the negative values of the Gibbs energy of transfer. In general terms, the dissolution process is endothermic, and the increase in TCC solubility may be due to the affinity of TCC with NMP, in addition to the water de-structuring capacity of NMP generating a higher number of free water molecules.
Collapse
Affiliation(s)
- Diego Ivan Caviedes-Rubio
- Programa de Ingeniería Civil, Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Universidad Cooperativa de Colombia, Sede Neiva, Calle 11 No. 1-51, Neiva 410001, Colombia;
| | - Claudia Patricia Ortiz
- Programa de Administración en Seguridad y Salud en el Trabajo, Grupo de Investigación en Seguridad y Salud en el Trabajo, Corporación Universitaria Minuto de Dios-UNIMINUTO, Neiva 410001, Colombia;
| | - Fleming Martinez
- Grupo de Investigaciones Farmacéutico-Fisicoquímicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 110321, Colombia;
| | - Daniel Ricardo Delgado
- Programa de Ingeniería Civil, Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Universidad Cooperativa de Colombia, Sede Neiva, Calle 11 No. 1-51, Neiva 410001, Colombia;
| |
Collapse
|
5
|
Bedogni G, Garcia P, Seremeta K, Okulik N, Salomon C. Preformulation and Long-Term Stability Studies of an Optimized Palatable Praziquantel Ethanol-Free Solution for Pediatric Delivery. Pharmaceutics 2023; 15:2050. [PMID: 37631264 PMCID: PMC10458622 DOI: 10.3390/pharmaceutics15082050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
To date, the treatment for cysticercosis and neurocysticercosis consists of a single oral intake of praziquantel (5-10 mg/kg), which since it is only available as tablets, hinders its administration to pediatric patients. Praziquantel is a poorly water-soluble drug which represents a challenge for its formulation in solution, particularly for the pediatric population. Thus, this study aimed to develop a palatable solution for praziquantel using pharmaceutical-accepted co-solvent systems. A design of experiments approach was applied to identify the optimal conditions for achieving a suitable amount of praziquantel in solution using co-solvent mixtures. Thus, praziquantel solubility increased from 0.38 up to 43.50 mg/mL in the optimized system. A taste masking assay in healthy human volunteers confirmed a successful reduction of drug bitterness after the addition of selected flavors and a sweetener. Stability studies were also conducted at different temperatures (4, 25, and 40 °C) for 12 months Even though the presence of the three known impurities of praziquantel was observed, their amounts never exceeded the acceptance criteria of the USP. Thus, this novel approach should be considered a valuable alternative for further preclinical studies considering the high prevalence of this infection worldwide.
Collapse
Affiliation(s)
- Giselle Bedogni
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina;
| | - Paula Garcia
- Planta Piloto de Producción de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, Rosario 2000, Argentina;
| | - Katia Seremeta
- Instituto de Investigaciones en Procesos Tecnológicos Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Chaco Austral (INIPTA-CONICET-UNCAUS), Cte. Fernández 755, Presidencia Roque Sáenz Peña 3700, Argentina; (K.S.); (N.O.)
| | - Nora Okulik
- Instituto de Investigaciones en Procesos Tecnológicos Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Chaco Austral (INIPTA-CONICET-UNCAUS), Cte. Fernández 755, Presidencia Roque Sáenz Peña 3700, Argentina; (K.S.); (N.O.)
| | - Claudio Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina;
- Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
6
|
Iyer J, Karn A, Brunsteiner M, Ray A, Davis A, Saraf I, Paudel A. Screening Autoxidation Propensities of Drugs in the Solid-State Using PVP and in the Solution State Using N-Methyl Pyrrolidone. Pharmaceutics 2023; 15:pharmaceutics15030848. [PMID: 36986709 PMCID: PMC10058359 DOI: 10.3390/pharmaceutics15030848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative degradation of drugs is one of the major routes of drug substance and drug product instability. Among the diverse routes of oxidation, autoxidation is considered to be challenging to predict and control, potentially due to the multi-step mechanism involving free radicals. C–H bond dissociation energy (C–H BDE) is evidenced to be a calculated descriptor shown to predict drug autoxidation. While computational predictions for the autoxidation propensity of drugs are both swift and possible, no literature to date has highlighted the relationship between the computed C–H BDE and the experimentally-derived autoxidation propensities of solid drugs. The objective of this study is to investigate this missing relationship. The present work is an extension to the previously reported novel autoxidation approach that involves subjecting a physical mixture of pre-milled polyvinyl pyrrolidone (PVP) K-60 and a crystalline drug under high temperature and pressurized oxygen setup. The drug degradation was measured using chromatographic methods. An improved trend between the extent of solid autoxidation and C–H BDE could be observed after normalizing the effective surface area of drugs in the crystalline state, pointing to a positive relationship. Additional studies were conducted by dissolving the drug in N-methyl pyrrolidone (NMP) and exposing the solution under a pressurized oxygen setup at diverse elevated temperatures. Chromatographic results of these samples indicated a similarity in the formed degradation products to the solid-state experiments pointing to the utility of NMP, a PVP monomer surrogate, as a stressing agent for faster and relevant autoxidation screening of drugs in formulations.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
| | - Anjali Karn
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
| | | | - Andrew Ray
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Adrian Davis
- Pfizer Worldwide Research and Development, Sandwich, Kent CT13 9NJ, UK
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
- Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-30912
| |
Collapse
|
7
|
Application of NMP and Neusilin US2-integrated liquisolid technique in mini-tablets for improving the physical performances and oral bioavailability of liposoluble supercritical fluid extracts. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Barzegar-Jalali M, Jafari P, Hemmati S, Jouyban A. Equilibrium solubility investigation and thermodynamic aspects of paracetamol, salicylic acid and 5-aminosalicylic acid in polyethylene glycol dimethyl ether 250 + water mixtures. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Tinjacá D, Martínez F, Almanza OA, Jouyban A, Acree WE. Effect of N-Methyl-pyrrolidone (NMP) on the Equilibrium Solubility of Meloxicam in Aqueous Media: Correlation, Dissolution Thermodynamics, and Preferential Solvation. ACS OMEGA 2022; 7:37988-38002. [PMID: 36312332 PMCID: PMC9609070 DOI: 10.1021/acsomega.2c05189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 05/19/2023]
Abstract
Meloxicam is an analgesic and anti-inflammatory drug widely prescribed in current therapeutics that exhibits very low solubility in water. Thus, this physicochemical property has been studied in N-methyl-pyrrolidone (NMP)-aqueous mixtures at several temperatures to expand the solubility database about pharmaceutical compounds in aqueous-mixed solvents. The flask-shake method and UV-vis spectrophotometry were used for meloxicam solubility determination as a function of temperature and mixture composition. Several cosolvency models, including the Jouyban-Acree model, were challenged for equilibrium solubility correlation and/or prediction. The van't Hoff and Gibbs equations were employed here to calculate the apparent standard thermodynamic quantities for the dissolution and mixing processes of this drug in these aqueous mixtures. Inverse Kirkwood-Buff integrals were employed to calculate the preferential solvation parameters of meloxicam by NMP in all mixtures. Meloxicam equilibrium solubility increased with increasing temperature, and maximal solubilities were observed in neat NMP at all temperatures. The mole fraction solubility of meloxicam increased from 1.137 × 10-6 in neat water to 3.639 × 10-3 in neat NMP at 298.15 K. The Jouyban-Acree model correlated the meloxicam solubility in these mixtures very well. Dissolution processes were endothermic and entropy-driven in all cases, except in neat water, where nonenthalpy- nor entropy-driven was observed. Apparent Gibbs energies of dissolution varied from 34.35 kJ·mol-1 in pure water to 7.99 kJ·mol-1 in pure NMP at a mean harmonic temperature of 303.0 K. A nonlinear enthalpy-entropy relationship was observed in the plot of dissolution enthalpy vs dissolution Gibbs energy. Meloxicam is preferentially hydrated in water-rich mixtures but preferentially solvated by NMP in the composition interval of 0.16 < x 1 < 1.00.
Collapse
Affiliation(s)
- Darío
A. Tinjacá
- Facultad
de Ciencias, Universidad El Bosque, Av. Cra. 9 No. 131A-02, Bogotá D.C.111156, Colombia
| | - Fleming Martínez
- Grupo
de Investigaciones Farmacéutico-Fisicoquímicas, Departamento
de Farmacia, Facultad de Ciencias, Universidad
Nacional de Colombia, Sede Bogotá, Cra. 30 No. 45-03, Bogotá
D.C.111156, Colombia
| | - Ovidio A. Almanza
- Grupo
de Física Aplicada, Departamento de Física, Facultad
de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cra. 30 No.
45-03, Bogotá D.C.111156, Colombia
| | - Abolghasem Jouyban
- Pharmaceutical
Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz51368, Iran
- Faculty
of Pharmacy, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin10, Turkey
| | - William E. Acree
- Department
of Chemistry, University of North Texas, Denton, Texas76203-5070, United States
| |
Collapse
|
11
|
Shiadeh SNR, Khodaverdi E, Maleki MF, Eisvand F, Boujaran H, Zarei H, Vosooghi R, Hadizadeh F, Kamali H. Lipid-liquid crystals for 2 months controlled risperidone release: In-vitro evaluation and pharmacokinetics in rabbits. Int J Pharm 2022; 618:121649. [PMID: 35278600 DOI: 10.1016/j.ijpharm.2022.121649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023]
Abstract
In this study, a drug delivery system based on lipid liquid crystal (LLC) was developed for the long-term delivery of risperidone to improve psychological treatment. Optimal LLC formulation was achieved based on maximum release after 60 days with different ratios of phosphatidylcholine (PC) to sorbitol monooleate (PC: SMO), tween grade 80 (w/w %), and tocopherol acetate (TA) (w/w %) using the Box-Behnken method. In vitro and ex vivo studies, pharmacokinetics, and histopathological examination in rabbits were conducted to compare the optimal LLC with Risperdal CONSTA®. The optimum formulation containing the PC to SMO ratio of 58.6%, tween 0.82% w/w, and TA 3.6% w/w was selected because it had the highest drug release percentage (100%) during about two months. Polarized optical microscopy (POM) revealed HII mesophase with a 2-dimensional structure. Cell culture also revealed moderate cytotoxicity for LLC-risperidone. Pharmacokinetic data displayed that the optimal LLC created a more consistent drug serum level within 60 days, and histopathology results demonstrated slight to moderate damage in rabbits' organs. Furthermore, the accelerated stability test confirmed optimum stability for LLC and risperidone. This study confirmed the better pharmacokinetic potentials of SMO-based LLC systems compared with Risperdal CONSTA®, which would promote patient compliance and obviate the difficulties of additional oral therapy.
Collapse
Affiliation(s)
- Seyedeh Nesa Rezaeian Shiadeh
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Boujaran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Zarei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Vosooghi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Mirdamadi Esfahani M, Goerlitzer ESA, Kunz U, Vogel N, Engstler J, Andrieu-Brunsen A. N-Methyl-2-pyrrolidone as a Reaction Medium for Gold(III)-Ion Reduction and Star-like Gold Nanostructure Formation. ACS OMEGA 2022; 7:9484-9495. [PMID: 35350339 PMCID: PMC8945176 DOI: 10.1021/acsomega.1c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The efficiency of a wet chemical route to synthesize gold nanostructures with tunable size and shape significantly depends on the applied solvent and the interaction of solvent molecules with other species such as gold ions. The ability of the organic solvent N-methyl-2-pyrrolidone (NMP) as a suitable medium for application in star-like gold nanostructure (AuNS) synthesis with a tunable morphology at ambient conditions has been investigated. The time-dependent analysis of the UV-vis absorption spectra of AuIIICl4 - in a pure NMP solution illustrates the role of NMP as simultaneous complexing and reducing agents. Kinetic studies indicate that AuIIICl4 - in NMP solution is reduced to AuICl2 -, with no need to use another reducing agent, any external energy sources, or solvent pretreatment. This is because AuI species stay stable in this solution unless poly(vinylpyrrolidone) (PVP) catalyzes their disproportionation. Morphological studies by transmission electron microscopy (TEM) specify the high-yield synthesis of AuNS with monocrystalline spikes in a concentrated NMP solution by PVP. This study illustrates that the presence of seeds, as another agent to catalyze the disproportionation of AuI species, makes it possible to synthesize AuNS in varying concentrations of PVP in this medium. The role of PVP concentration and the presence of seeds in the formation kinetics, morphology, and optical properties is systematically discussed. The results achieved through this study develop a straightforward and safe procedure for AuNS synthesis in high yield in a water-miscible organic polar solvent with tunable morphology and optical properties. Considering the high capability of NMP to dissolve various types of polymers and hydrophobic ligands, synthesizing AuNS in this solvent opens a window to a practical and easy way to fabricate gold-based nanomaterials with fascinating optical properties.
Collapse
Affiliation(s)
- Maleknaz Mirdamadi Esfahani
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Ulrike Kunz
- Department
of Materials and Earth Sciences, Physical
Metallurgy Group, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Joerg Engstler
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
13
|
Pandit S, Palvai S, Massaro NP, Pierce JG, Brudno Y. Tissue-reactive drugs enable materials-free local depots. J Control Release 2022; 343:142-151. [PMID: 35077743 PMCID: PMC8960365 DOI: 10.1016/j.jconrel.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Local, sustained drug delivery of potent therapeutics holds promise for the treatment of a myriad of localized diseases while eliminating systemic side effects. However, introduction of drug delivery depots such as viscous hydrogels or polymer-based implants is highly limited in stiff tissues such as desmoplastic tumors. Here, we present a method to create materials-free intratumoral drug depots through Tissue-Reactive Anchoring Pharmaceuticals (TRAPs). TRAPs diffuse into tissue and attach locally for sustained drug release. In TRAPs, potent drugs are modified with ECM-reactive groups and then locally injected to quickly react with accessible amines within the ECM, creating local drug depots. We demonstrate that locally injected TRAPs create dispersed, stable intratumoral depots deep within mouse and human pancreatic tumor tissues. TRAPs depots based on ECM-reactive paclitaxel (TRAP paclitaxel) had better solubility than free paclitaxel and enabled sustained in vitro and in vivo drug release. TRAP paclitaxel induced higher tumoral apoptosis and sustained better antitumor efficacy than the free drug. By providing continuous drug access to tumor cells, this material-free approach to sustained drug delivery of potent therapeutics has the potential in a wide variety of diseases where current injectable depots fall short.
Collapse
Affiliation(s)
- Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh. 911 Oval Drive, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Sandeep Palvai
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh. 911 Oval Drive, Raleigh, NC 27695, USA
| | - Nicholas P Massaro
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Joshua G Pierce
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh. 911 Oval Drive, Raleigh, NC 27695, USA; Lineberger Comprehensive Cancer Center, University of North Carolina - Chapel Hill, 450 West Dr., Chapel Hill, NC 27599, USA; Department of Chemistry, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Panigrahi S, Barry A, Multner S, Kasting G, Landero Figueroa JA, Satish L, Kumari H. Pirfenidone as a potential Antifibrotic Injectable for Dupuytren’s Disease. Pharm Dev Technol 2022; 27:242-250. [DOI: 10.1080/10837450.2022.2038201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Suchitra Panigrahi
- James L. Winkle College of Pharmacy, University of Cincinnati, OH 45267-0514
| | - Amanda Barry
- Shriners Hospitals for Children-Cincinnati, Research Department, Cincinnati, OH 45229
| | - Scott Multner
- Department of Chemistry, University of Cincinnati, OH 45229
| | - Gerald Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati, OH 45267-0514
- Shriners Hospitals for Children-Cincinnati, Research Department, Cincinnati, OH 45229
| | | | - Latha Satish
- Shriners Hospitals for Children-Cincinnati, Research Department, Cincinnati, OH 45229
- Department of Pathology & Laboratory Medicine, University of Cincinnati, OH 45229
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, OH 45267-0514
| |
Collapse
|
15
|
New Antifungal Compound: Impact of Cosolvency, Micellization and Complexation on Solubility and Permeability Processes. Pharmaceutics 2021; 13:pharmaceutics13111865. [PMID: 34834280 PMCID: PMC8621413 DOI: 10.3390/pharmaceutics13111865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Poor solubility of new antifungal of 1,2,4-triazole class (S-119)—a structural analogue of fluconazole in aqueous media was estimated. The solubility improvement using different excipients: biopolymers (PEGs, PVP), surfactants (Brij S20, pluronic F-127) and cyclodextrins (α-CD, β-CD, 2-HP-β-CD, 6-O-Maltosyl-β-CD) was assessed in buffer solutions pH 2.0 and pH 7.4. Additionally, 2-HP-β-CD and 6-O-Maltosyl-β-CD were proposed as promising solubilizers for S-119. According to the solubilization capacity and micelle/water partition coefficients in buffer pH 7.4 pluronic F-127 was shown to improve S-119 solubility better than Brij S20. Among biopolymers, the greatest increase in solubility was shown in PVP solutions (pH 7.4) at concentrations above 4 w/v%. Complex analysis of the driving forces of solubilization, micellization and complexation processes matched the solubility results and suggested pluronic F-127 and 6-O-Maltosyl-β-CD as the most effective solubilizing agents for S-119. The comparison of S-119 diffusion through the cellulose membrane and lipophilic PermeaPad barrier revealed a considerable effect of the lipid layer on the decrease in the permeability coefficient. According to the PermeaPad, S-119 was classified as a highly permeated substance. The addition of 1.5 w/v% CDs in donor solution moves it to low-medium permeability class.
Collapse
|
16
|
Thermodynamic insight in dissolution, distribution and permeation processes for some benzimidazoles in biologically relevant solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Shendge AK, Panja S, Basu T, Ghate NB, Mandal N. Ameliorating effects of white mulberry on iron-overload-induced oxidative stress and liver fibrosis in Swiss albino mice. Food Chem Toxicol 2021; 156:112520. [PMID: 34464637 DOI: 10.1016/j.fct.2021.112520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022]
Abstract
Excess iron causes oxidative damage of biomolecules, leading to tissue injury primarily liver failure. In this study, we explored the remediating effects of Morus alba L. (MAME) on iron-overload-induced oxidative stress and liver injury in mice. The In vitro study revealed the antioxidant and free radical scavenging properties of MAME. Intraperitoneal injection of iron-dextran was administered in Swiss albino mice to induce iron-overload condition and the mice were further treated with MAME. MAME treatment significantly decreased liver iron, serum ferritin level, oxidative stress, and restored serum parameters and liver antioxidants. Moreover, biochemical and histopathological analyses confirmed the alleviated liver damage and fibrosis upon MAME treatment. The protective effect of MAME against iron-overload-induced apoptosis was confirmed by upregulation of protein levels of Bax, Caspase-3, and PARP. The treatment also affected the expression of MAPKs (ERK, JNK, and p38). GC-MS analysis revealed the presence of various bioactive phytochemicals in MAME that may be responsible for ameliorating effects of excess iron. Thus MAME can be envisaged as an effective iron chelator in the treatment of iron-overload-induced liver injury and fibrosis.
Collapse
Affiliation(s)
- Anil Khushalrao Shendge
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Nikhil Baban Ghate
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
18
|
Rezaei H, Rahimpour E, Zhao H, Martinez F, Jouyban A. Solubility measurement and thermodynamic modeling of caffeine in N-methyl-2-pyrrolidone + isopropanol mixtures at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Solubility, dissolution thermodynamics and preferential solvation of sulfadiazine in (N-methyl-2-pyrrolidone + water) mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Senarat S, Wai Lwin W, Mahadlek J, Phaechamud T. Doxycycline hyclate-loaded in situ forming gels composed from bleached shellac, Ethocel, and Eudragit RS for periodontal pocket delivery. Saudi Pharm J 2021; 29:252-263. [PMID: 33981174 PMCID: PMC8085599 DOI: 10.1016/j.jsps.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Polymeric material plays an important role as a matrix former in the modulation of drug release of antimicrobial-loaded in situ forming gel (ISG) for efficient periodontitis treatment. This study was conducted to compare three polymers, namely bleached shellac (BS), Ethocel (EC) and Eudragit RS (ERS), as matrix formers of doxycycline hyclate (DH)-loaded solvent exchange-induced ISG. All prepared ISGs, except 25% EC ISG, exhibited the Newtonian flow behaviour. Transformation from solution into matrix-like was achieved rapidly within 5 min. Increasing the amount of these polymers extended the release of DH. DH-loaded EC and ERS ISG systems exhibited high antimicrobial activity, and all ISGs were effective in inhibiting the growth of Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Porphyromonas gingivalis and Candida albicans. By comparison, the DH-loaded ERS ISG, through the solvent exchange mechanism, was found to be ease in injection with low viscosity and sustained the release with higher concentration, meanwhile, it also exhibited interesting in vitro degradability and antimicrobial activities. Therefore, the DH-loaded ERS ISG exhibited a potential use for localized periodontal drug delivery system for the treatment periodontitis.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programe of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wai Wai Lwin
- Department of Pharmaceutics, University of Pharmacy, Mandalay, Myanmar
| | - Jongjan Mahadlek
- Pharmaceutical Intelligence Unit Prachote Plengwittaya, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Programe of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
21
|
Brzeziński M, Socka M, Makowski T, Kost B, Cieślak M, Królewska-Golińska K. Microfluidic-assisted nanoprecipitation of biodegradable nanoparticles composed of PTMC/PCL (co)polymers, tannic acid and doxorubicin for cancer treatment. Colloids Surf B Biointerfaces 2021; 201:111598. [PMID: 33618081 DOI: 10.1016/j.colsurfb.2021.111598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
This study was aimed towards the development of a novel microfluidic approach for the preparation of (co)polymeric and hybrid nanoparticles (NPs) composed of (co)polymers/tannic acid (TA) in the microfluidic flow-focusing glass-capillary device. The MiliQ water was used as water phase, whereas the organic phase was composed of poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) homopolymers and (co)polymers with different proportion of comonomers which were prepared via enzymatic polymerization that allows avoiding the usage of potentially toxic catalyst. To prepare hybrid NPs, TA was additionally added to the organic phase. Subsequently, as a result of mixing between these distinct phases in microfluidic channels, the nanoprecipitation in the form of spherical NPs occurs. The size of NPs was tuned over the range of 140-230 nm by controlling phase flow rates and the composition of NPs. Moreover, the release studies of the encapsulated anticancer drug doxorubicin (DOX) demonstrated that the drug release is greatly influenced by the (co)polymers composition, their molecular weight, NPs size, and the presence of TA. The antitumor activities of the (co)polymeric and hybrid NPs toward breast cancer cells (MCF-7) were tested in vitro. Among all tested formulation, the NPs composed of PCL/TA most efficiently inhibit the cell proliferation of MCF-7 cells, most importantly, their efficiency was higher than free DOX. The proposed strategy may provide an efficient alternative for the construction of nanocarriers with great potential in anticancer therapy.
Collapse
Affiliation(s)
- Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Marta Socka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
22
|
Volkova TV, Drozd KV, Surov AO. Effect of polymers and cyclodextrins on solubility, permeability and distribution of enzalutamide and apalutamide antiandrogens. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Rezaei H, Jouyban A, Acree WE, Barzegar-Jalali M, Rahimpour E. Solubility of codeine phosphate in N-methyl-2-pyrrolidone +2-propanol mixture at different temperatures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Siposova K, Petrenko VI, Ivankov OI, Musatov A, Bulavin LA, Avdeev MV, Kyzyma OA. Fullerenes as an Effective Amyloid Fibrils Disaggregating Nanomaterial. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32410-32419. [PMID: 32598133 DOI: 10.1021/acsami.0c07964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, determining the disassembly mechanism of amyloids under nanomaterials action is a crucial issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. In this study, the antiamyloid disassembly activity of fullerenes C60 and C70 dispersed in 1-methyl-2-pyrrolidinone (NMP) toward amyloid fibrils preformed from lysozyme and insulin was investigated using a combination of different experimental techniques. Thioflavin T fluorescence assay and atomic force microscopy were applied for monitoring of disaggregation activity of fullerenes. It was demonstrated that both types of fullerene-based complexes are very effective in disassembling preformed fibrils, and characterized by the low apparent half-maximal disaggregation concentration (DC50) in the range of ∼22-30 μg mL-1. Small-angle neutron scattering was employed to monitor the different stages of the disassembly process with respect to the size and morphology of the aggregates. Based on the obtained results, a possible disassembly mechanism for amyloid fibrils interacting with fullerene/NMP complexes was proposed. The study is a principal step in understanding of the fullerenes destruction mechanism of the protein amyloids, as well as providing valuable information on how macromolecules can be engineered to disassemble unwanted amyloid aggregates by different mechanisms.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
| | - Viktor I Petrenko
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Oleksandr I Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Leonid A Bulavin
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, 03127 Kyiv, Ukraine
| | - Mikhail V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- State University "Dubna", Universitetskaya 19, 141982 Dubna, Moscow Reg. Russia
| | - Olena A Kyzyma
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, 03127 Kyiv, Ukraine
| |
Collapse
|
25
|
Oppong F, Li Z, Fakhrabadi EA, Raorane T, Giri PM, Liberatore MW, Sarver JG, Trabbic CJ, Hosier CE, Erhardt PW, Maltese WA, Nesamony J. Investigating the Potential to Deliver and Maintain Plasma and Brain Levels of a Novel Practically Insoluble Methuosis Inducing Anticancer Agent 5-Methoxy MOMIPP Through an Injectable In Situ Forming Thermoresponsive Hydrogel Formulation. J Pharm Sci 2020; 109:2719-2728. [PMID: 32473210 DOI: 10.1016/j.xphs.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
Abstract
A new indole based chalcone molecule MOMIPP induced methuosis mediated cell death in gliobastoma and other cancer cell lines. But the drug was insoluble in water and had a very short plasma half-life. The purpose of this work was to develop a formulation that can provide sustained levels of MOMIPP in vivo. Initial studies established drug solubility in various solvents. N-methyl pyrrolidone (NMP) was determined as an excellent solvent for the drug. Subsequently a poloxamer-407 based thermoreversible gel containing NMP was used to develop the formulation. Rheological studies were performed via oscillatory temperature mode, continuous shear analysis, and oscillatory frequency mode experiments. The mechanical properties of the formulations were tested using a texture profile analyzer. The gelation temperature and time of formulations increased with increasing amounts of NMP. However, the viscosity at 20 °C and storage modulus decreased as the amount of NMP increased. Characterization studies helped to identify the gel formulation that was used to administer the drug orally, sub-cutaneously, and intra-peritoneally. When the gel was given intraperitoneally the target plasma and brain levels of over 5 μM was maintained for about 8 h. Thus, a thermoreversible gel formulation that can deliver MOMIPP in animal studies was successfully developed.
Collapse
Affiliation(s)
- Frank Oppong
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Zehui Li
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Ehsan Akbari Fakhrabadi
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio 43614
| | - Tanvi Raorane
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Paras M Giri
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Matthew W Liberatore
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio 43614
| | - Jeffrey G Sarver
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Christopher J Trabbic
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Corey E Hosier
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Paul W Erhardt
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - William A Maltese
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Jerry Nesamony
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614.
| |
Collapse
|
26
|
Substituted 1-methyl-4-phenylpyrrolidin-2-ones – Fragment-based design of N-methylpyrrolidone-derived bromodomain inhibitors. Eur J Med Chem 2020; 191:112120. [DOI: 10.1016/j.ejmech.2020.112120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
|
27
|
|
28
|
Hemelryck SV, Dewulf J, Niekus H, van Heerden M, Ingelse B, Holm R, Mannaert E, Langguth P. In vitro evaluation of poloxamer in situ forming gels for bedaquiline fumarate salt and pharmacokinetics following intramuscular injection in rats. Int J Pharm X 2019; 1:100016. [PMID: 31517281 PMCID: PMC6733418 DOI: 10.1016/j.ijpx.2019.100016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to evaluate in vitro and in vivo drug release from in situ forming gels prepared with poloxamer 338 (P338) and/or 407 (P407) in N-methyl-2-pyrrolidone (NMP)/water mixtures for the model compound bedaquiline fumarate salt. The impact of total poloxamer concentration (20%-25% (w/w)), P338/P407 ratio (100/0%-0/100% (w/w)) and NMP/water ratio (0/100%-25/75% (v/v)) on gel point temperature (GPT) was investigated via a design of experiments (DoE), showing that GPT decreased mainly with increasing poloxamer concentration and decreasing P338/P407 ratio, while the relation with NMP/water ratio was more complex resulting in a flexion. Based on the DoE, four formulations with 10 mg/g bedaquiline fumarate salt, a fixed NMP/water ratio of 25/75% (v/v) and varying total poloxamer concentration and P338/P407 ratio were selected for evaluation of gel erosion in vitro. The fastest eroding formulation had the lowest total poloxamer concentration (20% (w/w)) and the lowest P338/P407 ratio (20.4/79.6% (w/w)), while the formulation with the highest total poloxamer concentration (23.5% (w/w)) and highest P338/P407 ratio (100/0% (w/w)) showed the lowest gel erosion rate. These fast and slow eroding formulations showed a similar trend for in vitro drug release and in vivo pharmacokinetics after intramuscular (IM) injection in rats. In vivo tmax of the IM administered poloxamer in situ forming gels was about 6 h and a short-term sustained drug release was observed in vivo in rats up to 24 h after dosing, similar to a solution of bedaquiline fumarate salt in polyethylene glycol (PEG400)/water. In conclusion, IM administration of the evaluated poloxamer in situ forming gels may be useful for drugs that require a short-term sustained release, but is not able to extend drug release rates up to weeks or months.
Collapse
Key Words
- ATP, Adenosine 5′ triphosphate
- AUC80h, Area under the analyte concentration versus time curve from time zero to 80 h
- AUClast, Area under the analyte concentration versus time curve from time zero to the time of the last measurable (non-below quantification level) concentration
- AUC∞, Area under the analyte concentration vs time curve from time zero to infinite time
- C0, Analyte plasma concentration at time zero
- CAN, Acetonitrile
- CMC, Critical micellar concentration
- CMT, Critical micellar temperature
- Cmax, Maximum observed analyte plasma concentration
- DN, Dose normalized
- DoE, Design of experiments
- EO, Ethylene oxide
- GPT, Gel point temperature
- Gel erosion
- H&E, Hematoxylin and eosin
- IM, Intramuscular
- IV, Intravenous
- In situ forming gels
- In vitro release
- K2.EDTA, Potassium ethylenediaminetetraacetic acid
- LC–MS/MS, Liquid chromatography-tandem mass spectrometry
- MDR-TB, Multi-drug resistant tuberculosis
- MRM, Multiple reaction monitoring
- NMP, N-methyl-2-pyrrolidone
- P338, Poloxamer 338
- P407, Poloxamer 407
- PLGA, Poly-(DL-lactic-co-glycolic acid)
- PO, Propylene oxide
- Pharmacokinetics
- Poloxamer
- SD, Standard deviation
- Sustained release
- TFA, Trifluoroacetic acid
- UHPLC, Ultra-high performance liquid chromatography
- UV, Ultraviolet
- n, Sample size
- t1/2, Apparent terminal elimination half-life
- tlast, Sampling time until the last measurable (non-below quantification level) analyte plasma concentration
- tmax, Sampling time to reach the maximum observed analyte plasma concentration
Collapse
Affiliation(s)
- Sandy Van Hemelryck
- Clinical Pharmacology and Pharmacometrics, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jonatan Dewulf
- Molecular Imaging Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Harm Niekus
- Drug Innovation, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marjolein van Heerden
- Non-Clinical Safety, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Benno Ingelse
- Bioanalysis, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Erik Mannaert
- Clinical Pharmacology and Pharmacometrics, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Peter Langguth
- Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University, Saarstraße 21, 55122 Mainz, Germany
| |
Collapse
|
29
|
Liu Y, Chiu Y, Chen J. Hierarchical and Spiral Polymer Structures: Direct Electrospinning on Porous Anodic Aluminum Oxide Templates. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying‐Hsuan Liu
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
- Department of ChemistryMcGill University Montreal Quebec H3A 0B8 Canada
| | - Yu‐Jing Chiu
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
- Sustainable Chemical Science and TechnologyTaiwan International Graduate Program Academia Sinica and National Chiao Tung University Hsinchu 30010 Taiwan
| | - Jiun‐Tai Chen
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
- Sustainable Chemical Science and TechnologyTaiwan International Graduate Program Academia Sinica and National Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
30
|
Khajir S, Shayanfar A, Acree WE, Jouyban A. Effects of N-methylpyrrolidone and temperature on phenytoin solubility. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Hatefi A, Rahimpour E, Ghafourian T, Martinez F, Barzegar-Jalali M, Jouyban A. Solubility of ketoconazole in N-methyl-2-pyrrolidone + water mixtures at T = (293.2 to 313.2) K. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Lwin WW, Puyathorn N, Senarat S, Mahadlek J, Phaechamud T. Emerging role of polyethylene glycol on doxycycline hyclate-incorporated Eudragit RS in situ forming gel for periodontitis treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00430-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Rational design and development of a stable liquid formulation of riluzole and its pharmacokinetic evaluation after oral and IV administrations in rats. Eur J Pharm Sci 2018; 125:1-10. [PMID: 30201516 DOI: 10.1016/j.ejps.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/14/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
Abstract
Enterally administered riluzole is currently being investigated in a Phase II/III clinical trial for the treatment of acute spinal cord injury (SCI). Many SCI patients suffer from severe motor dysfunction and exhibit swallowing difficulties and cannot swallow riluzole tablets. The purpose of the present study was to develop a liquid solution formulation of riluzole, which can be administered more easily to this patient population with the capability to adjust the dose if needed. Riluzole was solubilized using water miscible organic solvents, namely, polyethylene glycol 400, propylene glycol and glycerin. A Central Composite Design (CCD) approach was used to develop an optimum co-solvent composition that can solubilize the entire 50 mg dose of riluzole in 5 ml. A three-factor five-level design was employed to investigate the effects of composition of co-solvents on riluzole solubility. The selected optimum formulation consists of 15% v/v PEG 400, 20% v/v propylene glycol and 10% v/v glycerin, with riluzole concentration of 10 mg/ml. The optimum composition was assessed for stability at different temperatures. Satisfactory stability was obtained at room temperature and 4 °C (t90 of 17 and 35 months, respectively). The optimum formulation of riluzole was suitable for both oral and intravenous administrations. Single dose pharmacokinetic studies of the optimum formulation by oral and IV routes were evaluated in rats, using commercially available Rilutek® tablets as a reference. The co-solvent formulation was well tolerated both orally and intravenously. In comparison to the commercial tablet, the co-solvent formulation had a faster rate of absorption and more sustained plasma levels with a significantly longer elimination half-life. Higher concentrations of riluzole in brain and spinal cord were achieved from co-solvent formulation as compared to tablet. The riluzole solution formulation is stable and offers advantages of ease of administration, consistent dosing, rapid onset and longer duration of action, better availability at site of action which can be extremely beneficial for the therapy in SCI patients.
Collapse
|
34
|
Thurein SM, Lertsuphotvanit N, Phaechamud T. Physicochemical properties of β-cyclodextrin solutions and precipitates prepared from injectable vehicles. Asian J Pharm Sci 2018; 13:438-449. [PMID: 32104418 PMCID: PMC7032148 DOI: 10.1016/j.ajps.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 01/12/2023] Open
Abstract
β-Cyclodextrin (β-CyD) is cyclic oligosaccharide of a glucopyranose, containing a relatively hydrophobic central cavity and hydrophilic outer surface. However, the usefulness of β-CyD is limited owing to its low aqueous solubility whereas we found that its apparent high solubility was evident in some injectable solvents including 2-pyrrolidone (PYR), N-methyl pyrrolidone (NMP) and dimethyl sulfoxide (DMSO). Therefore, in the present study, the physicochemical properties of the 30–60% w/w β-CyD in PYR, NMP and DMSO were investigated such as viscosity, water resistant, matrix formation rate and syringeability. The higher the concentration of β-CyD resulted in the increased viscosity and the higher force and energy of syringeability. β-CyD in PYR gave the highest viscosity which contributed to the lowest syringeability while β-CyD in DMSO exhibited the highest syringeability. The β-CyD in DMSO and NMP exhibited the higher rate of matrix formation. β-CyD in PYR showed the highest water resistant for phase separation while β-CyD in NMP gave the faster de-mixing rate compared to that from PYR. The difference in physicochemical properties of β-CyD dried ppts studied by scanning electron microscope (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) revealed that there was partial complexation of β-CyD with respective solvents. Both solution and precipitate characteristic properties will be useful for using β-CyD in further investigation as matrix material dissolved in the injectable vehicles as the in situ forming gel for periodontitis treatment.
Collapse
Affiliation(s)
- Sai Myo Thurein
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.,Department of Pharmacognosy, University of Pharmacy, Mandalay, Myanmar
| | - Nutdanai Lertsuphotvanit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
35
|
El-Refai K, Teaima MH, El-Nabarawi MA. Dual-purpose vardenafil hydrochloride/dapoxetine hydrochloride orodispersible tablets: in vitro formulation/evaluation, stability study and in vivo comparative pharmacokinetic study in healthy human subjects. Drug Dev Ind Pharm 2018; 44:988-1000. [DOI: 10.1080/03639045.2018.1427761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khaled El-Refai
- Central Administration of Pharmaceutical Affairs (CAPA), Cairo, Egypt
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Acharya PC, Fernandes C, Suares D, Shetty S, Tekade RK. Solubility and Solubilization Approaches in Pharmaceutical Product Development. DOSAGE FORM DESIGN CONSIDERATIONS 2018:513-547. [DOI: 10.1016/b978-0-12-814423-7.00015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Pandey SK, Goyal VK, Nalge P, Are P, Vincent S, Nirogi R. Assessment of toxicity and tolerability of a combination vehicle; 5% Pharmasolve, 45% Propylene glycol and 50% Polyethylene glycol 400 in rats following repeated intravenous administration. Regul Toxicol Pharmacol 2017; 91:103-108. [DOI: 10.1016/j.yrtph.2017.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
|
38
|
Lim MJ, Jang HJ, Yu MK, Lee KW, Min KS. Removal efficacy and cytotoxicity of a calcium hydroxide paste using N-2-methyl-pyrrolidone as a vehicle. Restor Dent Endod 2017; 42:290-300. [PMID: 29142877 PMCID: PMC5682145 DOI: 10.5395/rde.2017.42.4.290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 11/11/2022] Open
Abstract
Objectives This study investigated the removal efficacy and cytotoxicity of a newly developed calcium hydroxide paste (cleaniCal, Maruchi) using N-2-methyl-pyrrolidone (NMP) as a vehicle in comparison with ApexCal (Ivoclar Vivadent) and Calcipex II (Nishika), which use different vehicles such as polyethylene glycol and propylene glycol, respectively. Materials and Methods Thirty maxillary premolars with oval-shaped canals were divided into 3 groups and the teeth were filled with one of the pastes. After removal of the paste, micro-computed tomographic (μ-CT) imaging was obtained to assess the volume of residual paste in the root canal of each tooth. The teeth were then split longitudinally and the area of the paste-coated surface was evaluated by stereomicroscopy. The cytotoxicity of each product was assessed using an agar overlay assay. The effect of each vehicle on cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The data were analyzed using one-way analysis of variance and Tukey's tests to detect any significance (p < 0.05). Results In the μ-CT and stereomicroscopic analysis, cleaniCal exhibited less remnants of medicament than ApexCal and Calcipex. cleaniCal showed a higher cytotoxicity than the other pastes in the agar overlay assay. Furthermore, NMP exhibited lower cell viability compared to the other vehicles. Conclusions cleaniCal showed better removal efficacy compared to the other products. However, clinicians should be aware of the higher cytotoxicity of the NMP-based material and consider its possible adverse effects on periradicular tissue when it is overfilled.
Collapse
Affiliation(s)
- Myung-Jin Lim
- Department of Conservative Dentistry, Chonbuk National University School of Dentistry and Institute of Oral Bioscience, Jeonju, Korea
| | - Hyun-Jin Jang
- Department of Life Science, College of Natural Sciences, Chonbuk National University, Jeonju, Korea
| | - Mi-Kyung Yu
- Department of Conservative Dentistry, Chonbuk National University School of Dentistry and Institute of Oral Bioscience, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Kwang-Won Lee
- Department of Conservative Dentistry, Chonbuk National University School of Dentistry and Institute of Oral Bioscience, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Kyung-San Min
- Department of Conservative Dentistry, Chonbuk National University School of Dentistry and Institute of Oral Bioscience, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
39
|
|
40
|
Phaechamud T, Mahadlek J, Tuntarawongsa S. Peppermint oil/doxycycline hyclate-loaded Eudragit RS in situ forming gel for periodontitis treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0340-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Nozohouri S, Shayanfar A, Cárdenas ZJ, Martinez F, Jouyban A. Solubility of celecoxib in N-methyl-2-pyrrolidone+water mixtures at various temperatures: Experimental data and thermodynamic analysis. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0028-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.093] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Salis A, Porcu EP, Gavini E, Fois GR, Icaro Cornaglia A, Rassu G, Diana M, Maestri M, Giunchedi P, Nikolakakis I. In situ forming biodegradable poly(ε-caprolactone) microsphere systems: a challenge for transarterial embolization therapy. In vitro and preliminary ex vivo studies. Expert Opin Drug Deliv 2017; 14:453-465. [PMID: 28276966 DOI: 10.1080/17425247.2017.1295036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In situ forming biodegradable poly(ε-caprolactone) (PCL) microspheres (PCL-ISM) system was developed as a novel embolic agent for transarterial embolization (TAE) therapy of hepatocellular carcinoma (HCC). Ibuprofen sodium (Ibu-Na) was loaded on this platform to evaluate its potential for the treatment of post embolization syndrome. METHODS The influence of formulation parameters on the size/shape, encapsulation efficiency and drug release was investigated using mixture experimental design. Regression models were derived and used to optimize the formulation for particle size, encapsulation efficiency and drug release profile for TAE therapy. An ex vivo model using isolated rat livers was established to assess the in situ formation of microspheres. RESULTS All PCL-ISM components affected the studied properties and fitting indices of the regression models were high (Radj2 = 0.810 for size, 0.964 encapsulation efficiency, and 0.993 or 0.971 for drug release at 30 min or 48 h). The optimized composition was: PCL = 4%, NMP = 43.1%, oil = 48.9%, surfactant = 2% and drug = 2%. Ex vivo studies revealed that PCL-ISM was able to form microspheres in the hepatic arterial bed. CONCLUSIONS PCL-ISM system provides a novel tool for the treatment of HCC and post-embolization syndrome. It is capable of forming microspheres with desirable size and Ibu-Na release profile after injection into blood vessels.
Collapse
Affiliation(s)
- Andrea Salis
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Elena P Porcu
- b Department of Diagnostic, Pediatric, Clinical and Surgical Science , University of Pavia , Pavia , Italy
| | - Elisabetta Gavini
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Giulia R Fois
- c 'G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Antonia Icaro Cornaglia
- d Department of Public Health, Experimental and Forensic Medicine, Unit of Histology , University of Pavia , Pavia , Italy
| | - Giovanna Rassu
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Marco Diana
- c 'G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Marcello Maestri
- e Surgery 1, IRCCS Policlinico San Matteo Foundation and Department of Diagnostic, Pediatric, Clinical and Surgical Sciences , University of Pavia , Pavia , Italy
| | - Paolo Giunchedi
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Ioannis Nikolakakis
- f Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
44
|
Phaechamud T, Jantadee T, Mahadlek J, Charoensuksai P, Pichayakorn W. Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-Induced In Situ Forming Gels for Periodontitis Treatment. AAPS PharmSciTech 2017; 18:494-508. [PMID: 27116203 DOI: 10.1208/s12249-016-0534-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
Eudragit RS (ERS), a quaternary polyacrylate positively charged polymer, exhibits a very low permeability and swells in aqueous media independently of pH without dissolving. Owing to its high solubility in N-methyl pyrrolidone (NMP), it was interesting to apply as polymer matrix for solvent-exchanged in situ forming gel. The aim of this research was to prepare in situ forming gels from ERS to deliver the antimicrobial agents (doxycycline hyclate, metronidazole, and benzoyl peroxide) for periodontitis treatment. They were evaluated for viscosity and rheology, gel formation, syringeability, drug release, and antimicrobial activities. The solvent exchange between NMP and an external aqueous simulated gingival crevicular fluid stimulated the dissolved ERS transforming into the opaque rigid gel. Antimicrobial agent loaded ERS systems exhibited Newtonian flow with acceptable syringeability. The higher-loaded ERS promoted the more prolongation of drug release because of the retardation of water diffusion into the precipitated matrix. Antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis depended on type of drugs and test microorganisms. Doxycycline hyclate loaded ERS systems showed these activities greater than the others; however, all of them could inhibit all test microorganisms. Thus, the solvent exchange-induced in situ forming gels comprising ERS-antimicrobial drugs exhibited potential use as localized delivery systems for periodontitis treatment.
Collapse
|
45
|
Srichan T, Phaechamud T. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment. AAPS PharmSciTech 2017; 18:194-201. [PMID: 26951505 DOI: 10.1208/s12249-016-0507-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022] Open
Abstract
An in situ forming gel is a dosage form which is promised for site-specific therapy such as periodontal pocket of periodontitis treatment. Ethylcellulose, bleached shellac, and Eudragit RS were applied in this study as a polymeric matrix for in situ forming gel employing N-methyl pyrrolidone (NMP) as solvent. Solutions comprising ethylcellulose, bleached shellac, and Eudragit RS in NMP were evaluated for viscosity, rheology, and rate of water penetration. Ease of administration by injection was determined as the force required to expel polymeric solutions through a needle using texture analyzer. In vitro gel formation and in vitro gel degradation were conducted after injection into phosphate buffer solution pH 6.8. Ethylcellulose, bleached shellac, and Eudragit RS could form the in situ gel, in vitro. Gel viscosity and pH value depended on percentage amount of the polymer, whereas the water diffusion at early period likely relied on types of polymer. Furthermore, the solutions containing higher polymer concentration exhibited the lower degree of degradation. All the preparations were acceptable as injectable dosage forms because the applied force was lower than 50 N. All of them inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyrommonas gingivalis growth owing to antimicrobial activity of NMP which exhibited a potential use for periodontitis treatment. Moreover, the developed systems presented as the solvent exchange induced in situ forming gel and showed capability to be incorporated with the suitable antimicrobial active compounds for periodontitis treatment which should be further studied.
Collapse
|
46
|
de Medeiros AS, Zoppi A, Barbosa EG, Oliveira JI, Fernandes-Pedrosa MF, Longhi MR, da Silva-Júnior AA. Supramolecular aggregates of oligosaccharides with co-solvents in ternary systems for the solubilizing approach of triamcinolone. Carbohydr Polym 2016; 151:1040-1051. [DOI: 10.1016/j.carbpol.2016.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
47
|
Phaechamud T, Chanyaboonsub N, Setthajindalert O. Doxycycline hyclate-loaded bleached shellac in situ forming microparticle for intraperiodontal pocket local delivery. Eur J Pharm Sci 2016; 93:360-70. [PMID: 27552903 DOI: 10.1016/j.ejps.2016.08.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/23/2022]
Abstract
Bleached shellac (BS) is a water-insoluble polyester resin made up of sesquiterpenoid acids esterified with hydroxy aliphatic acids. In this study, BS dissolved in N-methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO) and 2-pyrrolidone was used as the internal phase of oil in oil emulsion using olive oil emulsified with glyceryl monostearate (GMS) as the external phase of in situ forming microparticles (ISM). Doxycycline hyclate (DH)-loaded BS ISMs were tested for emulsion stability, viscosity, rheology, transformation into microparticles, syringeability, drug release, surface topography, in vitro degradation and antimicrobial activities against Staphylococcus aureus, Streptococcus mutans and Porphyromonas gingivalis. All emulsions exhibited pseudoplastic flow and notably low syringeability force. Slower transformation from emulsion into microparticles of ISM prepared with 2-pyrrolidone was owing to slower solvent exchange of this solvent which promoted less porous structure of obtained BS matrix microparticles. The system containing 2-pyrrolidone exhibited a higher degradability than that prepared with DMSO. Developed DH-loaded BS ISMs exhibited a sustainable drug release for 47days with Fickian diffusion and effectively inhibited P. gingivalis, S. mutans and S. aureus. Therefore a DH-loaded BS ISM using olive oil containing GMS as the external phase and 2-pyrrolidone as a solvent was a suitable formulation for periodontitis treatment.
Collapse
Affiliation(s)
- Thawatchai Phaechamud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Nuttapong Chanyaboonsub
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Orn Setthajindalert
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
48
|
Barzegar-Jalali M, Mohammadzade M, Martinez F, Jouyban A. Solubility of naproxen in some aqueous mixtures of N-methyl-2-pyrrolidone at various temperatures. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Phaechamud T, Mahadlek J. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs. Int J Pharm 2015; 494:381-92. [PMID: 26302862 DOI: 10.1016/j.ijpharm.2015.08.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 08/17/2015] [Indexed: 11/27/2022]
Abstract
Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment.
Collapse
Affiliation(s)
- Thawatchai Phaechamud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000, Thailand.
| | - Jongjan Mahadlek
- Pharmaceutical Intelligence Unit Prachote Plengwittaya, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000, Thailand
| |
Collapse
|
50
|
Electrospinning of gelatin nanofiber scaffolds with mild neutral cosolvents for use in tissue engineering. Polym J 2014. [DOI: 10.1038/pj.2014.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|