1
|
Mageshvaran D, Yadav S, Yadav V, Kuche K, Katari O, Jain S. Enhancing oral bioavailability of dasatinib via supersaturable SNEDDS: Investigation of precipitation inhibition and IVIVC through in-vitro lipolysis-permeation model. Int J Pharm 2025; 668:125007. [PMID: 39608588 DOI: 10.1016/j.ijpharm.2024.125007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Dasatinib (DASA), a potent second-generation multitarget kinase inhibitor marketed as Sprycel® (Tablet), is limited by poor oral bioavailability (14-24 %) and dose-related gastrointestinal side effects. A supersaturable self-nanoemulsifying drug delivery system (su-SNEDDS) designed to enhance DASA's solubility, sustain supersaturation, and improve oral bioavailability. The su-SNEDDS formulation comprises DASA, an oil, surfactant, co-surfactant, and polyvinylpyrrolidone (PVP) K30 as a precipitation inhibitor (PI). This innovative system demonstrated exceptional stability in gastrointestinal fluids and robustness against dilution, maintaining significantly elevated drug concentrations in the aqueous milieu. su-SNEDDS achieved ∼ 13.5-fold and 2-fold higher aqueous drug concentrations than DASA suspension and SNEDDS without PI, respectively, after 60 min of digestion. This improvement is attributed to the inhibition of crystal growth by PVP K30. In-vitro lipolysis-permeation and Caco-2 cell assays revealed significantly enhanced drug permeation with su-SNEDDS compared to DASA suspension and SNEDDS without PI. In-vivo pharmacokinetic studies further demonstrated ∼ 1.9-fold and 2.7-fold higher AUC compared to SNEDDS without PI and drug suspension, respectively. A linear correlation (R2 = 0.9042) was established between the AUC data obtained from in-vitro vs in-vivo study. These findings underscore the potential of su-SNEDDS to significantly enhance DASA's solubility, permeation and oral bioavailability, presenting a substantial advancement in pharmaceutical drug delivery systems. Moreover, in-vitro lipolysis-permeation could be promising tool to predict the in-vivo fate of the oral SNEDDS formulations.
Collapse
Affiliation(s)
- Dharshini Mageshvaran
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sheetal Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Ma Y, Yu Z, Waudby CA, Ju T, Zhou X, Brocchini S, Williams GR. Development of hyaluronic acid/β-cyclodextrin semi-interpenetrating network hydrogels for prolonged delivery of water-soluble sunitinib malate. Int J Pharm 2024; 669:125039. [PMID: 39662858 DOI: 10.1016/j.ijpharm.2024.125039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Sunitinib malate (SUM), widely used in cancer treatment for its anti-VEGF properties, has also been explored for ocular neovascular diseases. For ocular applications, sustained drug release is essential to reduce dosing frequency. Hyaluronic acid (HA)-based hydrogels are commonly used for controlled drug delivery, but their hydrophilicity leads to rapid drug diffusion, especially for water-soluble drugs like SUM. To address this, β-cyclodextrin (β-CD) polymers (2-300 kDa) were incorporated into tyramine-conjugated HA (HA-TA) (200-400 kDa) networks to extend drug release via the formation of host-guest inclusion complexes. SUM-CD intermolecular interactions were identified and characterised by 1H NMR and FTIR spectroscopies, and NOESY spectra further confirmed a 1 SUM: 2 β-CD inclusion complex. β-CD polymers (10 % w/v) were integrated into HA-TA (0.25, 0.5, 1 % w/v) networks enzymatically crosslinked using horseradish peroxidase and hydrogen peroxide, forming semi-interpenetrating polymer network hydrogels. These gels exhibited faster gelation, enhanced swelling behaviour, higher drug loading capacity, a denser matrix, and a longer SUM release duration compared to HA-TA hydrogels. In an in vitro flow model, post-gelation loading of SUM led to a longer release duration than pre-loading, with release continuing over 20 days. The HA-CD semi-IPN hydrogel therefore warrants further exploration for its potential ocular applications.
Collapse
Affiliation(s)
- Yingchang Ma
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Ziqi Yu
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Christopher A Waudby
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Xintong Zhou
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
3
|
Hwang J, Park JY, Kang J, Oh N, Li C, Yoo C, Um W, Kwak M. Enhanced Drug Delivery with Oil-in-Water Nanoemulsions: Stability and Sustained Release of Doxorubicin. Macromol Rapid Commun 2024; 45:e2400480. [PMID: 39083287 PMCID: PMC11661659 DOI: 10.1002/marc.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Indexed: 12/21/2024]
Abstract
In this study, oil-in-water nanoemulsions are prepared, an isotropic mixture of oil, surfactant, and cosurfactants. The nanoemulsions exhibit stable structures and are capable of efficiently encapsulating hydrophobic drugs such as doxorubicin (Dox). Compared to polymeric micelles, nanoemulsions demonstrate enhanced stability and loading capacity for Dox. Furthermore, nanoemulsions release Dox steadily over 14 days, with 51.6% released within the initial 24 h and up to 80% over the subsequent period. These properties suggest that nanoemulsions can mitigate the side effects related to the burst release of Dox, thereby improving therapeutic efficacy and safety. Additionally, nanoemulsion-treated cardiomyocytes show increased viability compared to those treated with free Dox, indicating the potential of nanoemulsions to alleviate Dox-induced cardiotoxicity. Overall, nanoemulsions hold promise as versatile and efficient drug carriers for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Juyoung Hwang
- Department of Chemistry and Industry 4.0 Convergence Bionics EngineeringPukyong National University45 Yongso‐Ro, Nam‐GuBusan48513Republic of Korea
- Smart Gym‐based Translational Research Center for Active Senior's HealthcarePukyong National University45 Yongso‐Ro, Nam‐GuBusan48513Republic of Korea
| | - Ji Yeong Park
- Department of BiotechnologyPukyong National University45 Yongso‐Ro, Nam‐GuBusan48513Republic of Korea
| | - Jio Kang
- Department of Chemistry and Industry 4.0 Convergence Bionics EngineeringPukyong National University45 Yongso‐Ro, Nam‐GuBusan48513Republic of Korea
| | - Nuri Oh
- Department of Chemistry and BiologyKorea Science Academy of Korea Advanced Institute of Science and Technology105–47 Baegyanggwanmun‐Ro, Busanjin‐GuBusan47162Republic of Korea
| | - Chen Li
- School of Materials Science and EngineeringDongguan University of TechnologyNo.1, Daxue Road, Songshan LakeDongguanGuangdong523808P. R. China
| | - Chung‐Yul Yoo
- Department of Energy Systems Research and ChemistryAjou UniversityYeongtong‐guSuwon16499Republic of Korea
| | - Wooram Um
- Department of BiotechnologyPukyong National University45 Yongso‐Ro, Nam‐GuBusan48513Republic of Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics EngineeringPukyong National University45 Yongso‐Ro, Nam‐GuBusan48513Republic of Korea
- Smart Gym‐based Translational Research Center for Active Senior's HealthcarePukyong National University45 Yongso‐Ro, Nam‐GuBusan48513Republic of Korea
| |
Collapse
|
4
|
Buddhadev SS, C Garala K, S S, Rahamathulla M, Ahmed MM, Farhana SA, Pasha I. Quality by design aided self-nano emulsifying drug delivery systems development for the oral delivery of Benidipine: Improvement of biopharmaceutical performance. Drug Deliv 2024; 31:2288801. [PMID: 38073402 DOI: 10.1080/10717544.2023.2288801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
The primary objective of the research effort is to establish efficient solid self-nanoemulsifying drug delivery systems (S-SNEDDS) for benidipine (BD) through the systematic application of a quality-by-design (QbD)-based paradigm. Utilizing Labrafil M 2125 CS, Kolliphor EL, and Transcutol P, the BD-S-SNEDDS were created. The central composite design was adopted to optimize numerous components. Zeta potential, drug concentration, resistance to dilution, pH, refractive index, viscosity, thermodynamic stability, and cloud point were further investigated in the most efficient formulation, BD14, which had a globule size of 156.20 ± 2.40 nm, PDI of 0.25, zeta potential of -17.36 ± 0.18 mV, self-emulsification time of 65.21 ± 1.95 s, % transmittance of 99.80 ± 0.70%, and drug release of 92.65 ± 1.70% at 15 min. S-SNEDDS were formulated using the adsorption process and investigated via Fourier transform infrared spectroscopy, Differential scanning calorimeter, Scanning electron microscopy, and powder X-ray diffraction. Optimized S-SNEDDS batch BD14 dramatically decreased blood pressure in rats in contrast to the pure drug and the commercial product, according to a pharmacodynamics investigation. Accelerated stability tests validated the product's stability. Therefore, the development of oral S-SNEDDS of BD may be advantageous for raising BD's water solubility and expanding their releasing capabilities, thereby boosting oral absorption.
Collapse
Affiliation(s)
- Sheetal S Buddhadev
- School of Pharmaceutical Sciences, Atmiya University, Rajkot, India
- Faculty of Pharmacy, Noble University, Junagadh, India
| | | | - Saisivam S
- N. R. Vekaria Institute of Pharmacy, Gujarat Technological University, Junagadh, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Ismail Pasha
- Department of Pharmacognosy, Orotta College of Medicine and Health Sciences, Asmara University, Asmara, State of Eritrea
| |
Collapse
|
5
|
Liu S. Self-assembled lipid-based nanoparticles for chemotherapy against breast cancer. Front Bioeng Biotechnol 2024; 12:1482637. [PMID: 39534673 PMCID: PMC11555772 DOI: 10.3389/fbioe.2024.1482637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Self-assembled lipid-based nanoparticles have been shown to have improved therapeutic efficacy and lower toxic side effects. Breast cancer is a common type of malignant tumor in women. Conventional drugs such as doxorubicin (DOX) have shown low therapeutic efficacy and high drug toxicity in antitumor therapy. This paper surveys research on self-assembled lipid-based nanoparticles by categorizing them under three groups: self-assembled liposomal nanostructures, self-assembled niosomes, and self-assembled lipid-polymer hybrid nanoparticles. Subsequently, the structural features and operating mechanisms of each group are summarized individually along with examples of representative drugs from each group.
Collapse
Affiliation(s)
- Shan Liu
- Department of Oncology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Reyna-Lázaro L, Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Gibbens-Bandala B, Olea-Mejía O, Morales-Avila E. Pharmaceutical Nanoplatforms Based on Self-nanoemulsifying Drug Delivery Systems for Optimal Transport and Co-delivery of siRNAs and Anticancer Drugs. J Pharm Sci 2024; 113:1907-1918. [PMID: 38369021 DOI: 10.1016/j.xphs.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.
Collapse
Affiliation(s)
- Luz Reyna-Lázaro
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Aideé Morales-Becerril
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Oscar Olea-Mejía
- Centro Conjunto de Investigación en Química Sustentable (CCIQS), Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Km 14.5 Carretera Toluca-Ixtlahuaca, San Cayetano de Morelos, 50200 Toluca, Mexico
| | - Enrique Morales-Avila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico.
| |
Collapse
|
7
|
Jansook P, Loftsson T, Stefánsson E. Drug-like properties of tyrosine kinase inhibitors in ophthalmology: Formulation and topical availability. Int J Pharm 2024; 655:124018. [PMID: 38508428 DOI: 10.1016/j.ijpharm.2024.124018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) can inhibit edema and neovascularization, such as in age-related macular degeneration and diabetic retinopathy. However, their topical administration in ophthalmology is limited by their toxicity and poor aqueous solubility. There are multiple types of TKIs, and each TKI has an affinity to more than one type of receptor. Studies have shown that ocular toxicity can be addressed by selecting TKIs that have a high affinity for specific vascular endothelial growth factor receptors (VEGFRs) but a low affinity for epidermal growth factor receptors (EGFRs). Drugs permeate from the aqueous tear fluid into the eye via passive diffusion. Thus, a sustained high concentration of the dissolved drug in the aqueous tear fluid is essential for a successful delivery to posterior tissues such as the retina. Unfortunately, the aqueous solubility of the TKIs that have the most favorable VEGFR/EGFR affinity ratio, that is, axitinib and cabozantinib, is well below 1 µg/mL, making their topical delivery very challenging. This is a review of the drug-like properties of TKIs that are currently being evaluated or have been evaluated as ophthalmic drugs. These properties include their solubilization, cyclodextrin complexation, and ability to permeate from the aqueous tear fluid to the posterior eye segment.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Payathai Road, Pathumwan, Bangkok, 10330, Thailand; Cyclodextrin Application and Nanotechnology-Based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Einar Stefánsson
- Department of Ophthalmology, Landspitali University Hospital, IS-101 Reykjavik, Iceland
| |
Collapse
|
8
|
Garbati P, Picco C, Magrassi R, Signorello P, Cacopardo L, Dalla Serra M, Faticato MG, De Luca M, Balestra F, Scavo MP, Viti F. Targeting the Gut: A Systematic Review of Specific Drug Nanocarriers. Pharmaceutics 2024; 16:431. [PMID: 38543324 PMCID: PMC10974668 DOI: 10.3390/pharmaceutics16030431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 01/05/2025] Open
Abstract
The intestine is essential for the modulation of nutrient absorption and the removal of waste. Gut pathologies, such as cancer, inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and celiac disease, which extensively impact gut functions, are thus critical for human health. Targeted drug delivery is essential to tackle these diseases, improve therapy efficacy, and minimize side effects. Recent strategies have taken advantage of both active and passive nanocarriers, which are designed to protect the drug until it reaches the correct delivery site and to modulate drug release via the use of different physical-chemical strategies. In this systematic review, we present a literature overview of the different nanocarriers used for drug delivery in a set of chronic intestinal pathologies, highlighting the rationale behind the controlled release of intestinal therapies. The overall aim is to provide the reader with useful information on the current approaches for gut targeting in novel therapeutic strategies.
Collapse
Affiliation(s)
- Patrizia Garbati
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Cristiana Picco
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Raffaella Magrassi
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Paolo Signorello
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Ludovica Cacopardo
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Mauro Dalla Serra
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Maria Grazia Faticato
- Pediatric Surgery, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Maria De Luca
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| |
Collapse
|
9
|
Self-nanoemulsifying drug delivery system for pancreatic cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
10
|
Anwer MK, Aldawsari MF, Iqbal M, Almutairy BK, Soliman GA, Aboudzadeh MA. Diosmin-Loaded Nanoemulsion-Based Gel Formulation: Development, Optimization, Wound Healing and Anti-Inflammatory Studies. Gels 2023; 9:gels9020095. [PMID: 36826265 PMCID: PMC9956956 DOI: 10.3390/gels9020095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The wound-healing process is complex and prone to interruption or failure, which can result in the development of chronic wounds that never heal. This can be overcome by seeking prompt medical attention, which will reduce the likelihood of complications and speed up the healing of the cutaneous wound. It has been established that functionalized engineered biomaterials are a possible strategy for starting skin wound care. The purpose of the current study is to develop a diosmin (DSM)-loaded nanoemulsion (NE)-based gel formulation and to investigate its wound healing and anti-inflammatory activity on rats. The DSM-loaded NEs (F1-F17) were developed and optimized with the help of Box-Behnken Design Expert. The DSM-Nes were developed using lauroglycol 90 (LG90®) as oil, Tween-80 as surfactant and transcutol-HP (THP) as co-surfactant. The optimized Nes showed globule size (41 ± 0.07 nm), polydispersity index (PDI) (0.073 ± 0.008) and percentage of entrapment efficiency (%EE) (87 ± 0.81%). This optimized DSM-loaded NEs (F1) was further evaluated and incorporated into 1% carbopol 940 gel. F1-loaded gel was then characterized for drug content, spreadability, in vitro release, wound healing, and anti-inflammatory studies. The developed gel of DSM was found to show significantly better (p < 0.05) wound-healing and anti-inflammatory activity.
Collapse
Affiliation(s)
- Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Correspondence:
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacology, National Research Centre, Giza 12622, Egypt
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| |
Collapse
|
11
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
12
|
Jampilek J, Kralova K. Insights into Lipid-Based Delivery Nanosystems of Protein-Tyrosine Kinase Inhibitors for Cancer Therapy. Pharmaceutics 2022; 14:2706. [PMID: 36559200 PMCID: PMC9783038 DOI: 10.3390/pharmaceutics14122706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
According to the WHO, cancer caused almost 10 million deaths worldwide in 2020, i.e., almost one in six deaths. Among the most common are breast, lung, colon and rectal and prostate cancers. Although the diagnosis is more perfect and spectrum of available drugs is large, there is a clear trend of an increase in cancer that ends fatally. A major advance in treatment was the introduction of gentler antineoplastics for targeted therapy-tyrosine kinase inhibitors (TKIs). Although they have undoubtedly revolutionized oncology and hematology, they have significant side effects and limited efficacy. In addition to the design of new TKIs with improved pharmacokinetic and safety profiles, and being more resistant to the development of drug resistance, high expectations are placed on the reformulation of TKIs into various drug delivery lipid-based nanosystems. This review provides an insight into the history of chemotherapy, a brief overview of the development of TKIs for the treatment of cancer and their mechanism of action and summarizes the results of the applications of self-nanoemulsifying drug delivery systems, nanoemulsions, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles and nanostructured lipid carriers used as drug delivery systems of TKIs obtained in vitro and in vivo.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
13
|
Mir SA, Hamid L, Bader GN, Shoaib A, Rahamathulla M, Alshahrani MY, Alam P, Shakeel F. Role of Nanotechnology in Overcoming the Multidrug Resistance in Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196608. [PMID: 36235145 PMCID: PMC9571152 DOI: 10.3390/molecules27196608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Cancer is one of the leading causes of morbidity and mortality around the globe and is likely to become the major cause of global death in the coming years. As per World Health Organization (WHO) report, every year there are over 10 and 9 million new cases and deaths from this disease. Chemotherapy, radiotherapy, and surgery are the three basic approaches to treating cancer. These approaches are aiming at eradicating all cancer cells with minimum off-target effects on other cell types. Most drugs have serious adverse effects due to the lack of target selectivity. On the other hand, resistance to already available drugs has emerged as a major obstacle in cancer chemotherapy, allowing cancer to proliferate irrespective of the chemotherapeutic agent. Consequently, it leads to multidrug resistance (MDR), a growing concern in the scientific community. To overcome this problem, in recent years, nanotechnology-based drug therapies have been explored and have shown great promise in overcoming resistance, with most nano-based drugs being explored at the clinical level. Through this review, we try to explain various mechanisms involved in multidrug resistance in cancer and the role nanotechnology has played in overcoming or reversing this resistance.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ambreen Shoaib
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (A.S.); (F.S.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (A.S.); (F.S.)
| |
Collapse
|
14
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
15
|
Mahmood S, Bhattarai P, Khan NR, Subhan Z, Razaque G, Albarqi HA, Alqahtani AA, Alasiri A, Zhu L. An Investigation for Skin Tissue Regeneration Enhancement/Augmentation by Curcumin-Loaded Self-Emulsifying Drug Delivery System (SEDDS). Polymers (Basel) 2022; 14:2904. [PMID: 35890680 PMCID: PMC9315559 DOI: 10.3390/polym14142904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes, one of the global metabolic disorders, is often associated with delayed wound healing due to the elevated level of free radicals at the wound site, which hampers skin regeneration. This study aimed at developing a curcumin-loaded self-emulsifying drug delivery system (SEDDS) for diabetic wound healing and skin tissue regeneration. For this purpose, various curcumin-loaded SEDDS formulations were prepared and optimized. Then, the SEDDS formulations were characterized by the emulsion droplet size, surface charge, drug content/entrapment efficiency, drug release, and stability. In vitro, the formulations were assessed for the cellular uptake, cytotoxicity, cell migration, and inhibition of the intracellular ROS production in the NIH3T3 fibroblasts. In vivo, the formulations' wound healing and skin regeneration potential were evaluated on the induced diabetic rats. The results indicated that, after being dispersed in the aqueous medium, the optimized SEDDS formulation was readily emulsified and formed a homogenous dispersion with a droplet size of 37.29 ± 3.47 nm, surface charge of -20.75 ± 0.07 mV, and PDI value of less than 0.3. The drug content in the optimized formulation was found to be 70.51% ± 2.31%, with an encapsulation efficiency of 87.36% ± 0.61%. The SEDDS showed a delayed drug release pattern compared to the pure drug solution, and the drug release rate followed the Fickian diffusion kinetically. In the cell culture, the formulations showed lower cytotoxicity, higher cellular uptake, and increased ROS production inhibition, and promoted the cell migration in the scratch assay compared to the pure drug. The in vivo data indicated that the curcumin-loaded SEDDS-treated diabetic rats had significantly faster-wound healing and re-epithelialization compared with the untreated and pure drug-treated groups. Our findings in this work suggest that the curcumin-loaded SEDDS might have great potential in facilitating diabetic wound healing and skin tissue regeneration.
Collapse
Affiliation(s)
- Saima Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan;
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Prapanna Bhattarai
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| | - Nauman Rahim Khan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, KPK, Pakistan
| | - Zakia Subhan
- Institute of Medical Sciences, Khyber Medical University, Kohat 26000, KPK, Pakistan;
| | - Ghulam Razaque
- Faculty of Pharmacy, University of Baluchistan, Quetta 87300, Baluchistan, Pakistan;
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Lin Zhu
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
16
|
Development of Chitosan-Coated PLGA-Based Nanoparticles for Improved Oral Olaparib Delivery: In Vitro Characterization, and In Vivo Pharmacokinetic Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10071329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Olaparib (OLP) is an orally active poly (ADP-ribose) polymerase enzyme inhibitor, approved for treatment for the metastatic stage of prostate, pancreatic, breast and ovarian cancer. Due to its low bioavailability, an increase in dose and frequency is required to achieve therapeutic benefits, which also results in associated toxicity in patients. In the current study, OLP-loaded poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) (OLP-PLGA NPs) and a coating of OLP-PLGA NPs with chitosan (CS) (OLP-CS-PLGA NPs) were prepared successfully in order to improve the dissolution rate and bioavailability. The developed OLP-PLGA NPs were evaluated for hydrodynamic particle size (392 ± 5.3 nm), PDI (0.360 ± 0.03), ZP (−26.9 ± 2.1 mV), EE (71.39 ± 5.5%) and DL (14.86 ± 1.4%), and OLP-CS-PLGA NPs, hydrodynamic particle size (622 ± 9.5 nm), PDI (0.321 ± 0.02), ZP (+36.0 ± 1.7 mV), EE (84.78 ± 6.3%) and DL (11.05 ± 2.6%). The in vitro release profile of both developed NPs showed a sustained release pattern. Moreover, the pharmacokinetics results exhibited a 2.0- and 4.75-fold increase in the bioavailability of OLP-PLGA NPs and OLP-CS-PLGA NPs, respectively, compared to normal OLP suspension. The results revealed that OLP-CS-PLGA NPs could be an effective approach to sustaining and improving the bioavailability of OLP.
Collapse
|
17
|
Ahmed MM, Anwer MK, Fatima F, Aldawsari MF, Alalaiwe A, Alali AS, Alharthi AI, Kalam MA. Boosting the Anticancer Activity of Sunitinib Malate in Breast Cancer through Lipid Polymer Hybrid Nanoparticles Approach. Polymers (Basel) 2022; 14:2459. [PMID: 35746034 PMCID: PMC9227860 DOI: 10.3390/polym14122459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, lipid-polymer hybrid nanoparticles (LPHNPs) fabricated with lipoid-90H and chitosan, sunitinib malate (SM), an anticancer drug was loaded using lecithin as a stabilizer by employing emulsion solvent evaporation technique. Four formulations (SLPN1-SLPN4) were developed by varying the concentration of chitosan polymer. Based on particle characterization, SLPN4 was optimized with size (439 ± 5.8 nm), PDI (0.269), ZP (+34 ± 5.3 mV), and EE (83.03 ± 4.9%). Further, the optimized formulation was characterized by FTIR, DSC, XRD, SEM, and in vitro release studies. In-vitro release of the drug from SPN4 was found to be 84.11 ± 2.54% as compared with pure drug SM 24.13 ± 2.67%; in 48 h, release kinetics followed the Korsmeyer-Peppas model with Fickian release mechanism. The SLPN4 exhibited a potent cytotoxicity against MCF-7 breast cancer, as evident by caspase 3, 9, and p53 activities. According to the findings, SM-loaded LPHNPs might be a promising therapy option for breast cancer.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Abdulrahman I. Alharthi
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia;
| | - Mohd Abul Kalam
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Abushal AS, Aleanizy FS, Alqahtani FY, Shakeel F, Iqbal M, Haq N, Alsarra IA. Self-Nanoemulsifying Drug Delivery System (SNEDDS) of Apremilast: In Vitro Evaluation and Pharmacokinetics Studies. Molecules 2022; 27:3085. [PMID: 35630561 PMCID: PMC9145325 DOI: 10.3390/molecules27103085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Psoriatic arthritis is an autoimmune disease of the joints that can lead to persistent inflammation, irreversible joint damage and disability. The current treatments are of limited efficacy and inconvenient. Apremilast (APR) immediate release tablets Otezla® have 20-33% bioavailability compared to the APR absolute bioavailability of 73%. As a result, self-nanoemulsifying drug delivery systems (SNEDDS) of APR were formulated to enhance APR's solubility, dissolution, and oral bioavailability. The drug assay was carried out using a developed and validated HPLC method. Various thermodynamic tests were carried out on APR-SNEDDS. Stable SNEDDS were characterized then subjected to in vitro drug release studies via dialysis membrane. The optimum formulation was F9, which showed the maximum in vitro drug release (94.9%) over 24 h, and this was further investigated in in vivo studies. F9 was composed of 15% oil, 60% Smix, and 25% water and had the lowest droplet size (17.505 ± 0.247 nm), low PDI (0.147 ± 0.014), low ZP (-13.35 mV), highest %T (99.15 ± 0.131) and optimum increases in the relative bioavailability (703.66%) compared to APR suspension (100%) over 24 h. These findings showed that APR-SNEDDS is a possible alternative delivery system for APR. Further studies are warranted to evaluate the major factors that influence the encapsulation efficiency and stability of APR-containing SNEDDS.
Collapse
Affiliation(s)
- Ahad S. Abushal
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Fadilah S. Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| |
Collapse
|
19
|
Katekar R, Sen S, Riyazuddin M, Husain A, Garg R, Verma S, Mitra K, Gayen JR. Augmented experimental design for bioavailability enhancement: a robust formulation of abiraterone acetate. J Liposome Res 2022; 33:65-76. [PMID: 35521749 DOI: 10.1080/08982104.2022.2069811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abiraterone acetate (ABRTA) is clinically beneficial in management of metastatic castration-resistant prostate cancer (PC-3). With highlighted low solubility and permeability, orally hampered treatment of ABRTA necessitate high dose to achieve therapeutic efficacy. To triumph these challenges, we aimed to develop intestinal lymphatic transport facilitating lipid-based delivery to enhance bioavailability. ABRTA-containing self-nano emulsified drug delivery (ABRTA-SNEDDS) was statistically optimized by D-optimal design using design expert. Optimized formulation was characterized for particle size, thermodynamic stability, in vitro release, in vivo bioavailability, intestinal lymphatic transport, in vitro cytotoxic effect, anti-metastatic activity, and apoptosis study. Moreover, hemolysis and histopathology studies have been performed to assess pre-clinical safety. Nano-sized particles and successful saturated drug loading were obtained for optimized formulation. In vitro release upto 98.61 ± 3.20% reveal effective release of formulation at intestinal pH 6.8. ABRTA-SNEDDS formulation shows enhanced in vivo exposure of Abiraterone (2.5-fold) than ABRTA suspension in Sprague-Dawley rats. In vitro efficacy in PC-3 cell line indicates 3.69-fold higher therapeutic potential of nano drug delivery system. Hemolysis and histopathology study indicates no significant toxicities to red blood cells and tissues, respectively. Apparently, an opportunistic strategy to increasing bioavailability of ABRTA via intestinal lymphatic transport will create a viable platform in rapidly evolving chemotherapy. Enhanced translational utility of delivery was also supported through in vitro therapeutic efficacy and safety assessments. HighlightsAbiraterone acetate is a prostate cancer drug, impeded with low bioavailability.ABRTA loaded in self nano emulsifying drug delivery enhanced its bioavailability.Intestinal lymphatic transport played role in enhanced bioavailability of ABRTA.ABRTA-SNEDDS enhanced in vitro cytotoxic activity of ABRTA.ABRTA-SNEDDS found safe in preclinical safety evaluations.
Collapse
Affiliation(s)
- Roshan Katekar
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumati Sen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammed Riyazuddin
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Athar Husain
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Garg
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saurabh Verma
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Sophisticated Analytical Instrumental Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
20
|
Development of Apremilast Nanoemulsion-Loaded Chitosan Gels: In Vitro Evaluations and Anti-Inflammatory and Wound Healing Studies on a Rat Model. Gels 2022; 8:gels8050253. [PMID: 35621551 PMCID: PMC9141762 DOI: 10.3390/gels8050253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Apremilast (APL) has profound anti-inflammatory and wound healing activity, alongside other dermal care. This study aims to develop APL-loaded NEs (ANE1-ANE5) using eucalyptus oil (EO) as the oil and Tween-80 and transcutol-HP (THP) as a surfactant and co-surfactant, respectively. The prepared NEs were then evaluated based on mean droplet size (12.63 ± 1.2 nm), PDI (0.269 ± 0.012), ZP (−23.00 ± 5.86), RI (1.315 ± 0.02), and %T (99.89 ± 0.38) and ANE4 was optimized. Further, optimized NEs (ANE4) were incorporated into chitosan gel (2%, w/v). The developed ANE4-loaded chitosan gel was then evaluated for pH, spreadability, in vitro diffusion, and wound healing and anti-inflammatory studies. Moreover, in vivo studies denoted improved anti-inflammatory and wound healing activity and represented a decrease in wound size percentage (99.68 ± 0.345%) for the APNE2 gel test compared to a negative control (86.48 ± 0.87%) and standard control (92.82 ± 0.34%). Thus, the formulation of ANE4-loaded chitosan gels is an efficient topical treatment strategy for inflammatory and wound healing conditions.
Collapse
|
21
|
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AM, Ming LC, Goh KW, Hadi MA. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel) 2022; 14:cancers14071732. [PMID: 35406504 PMCID: PMC8996939 DOI: 10.3390/cancers14071732] [Citation(s) in RCA: 297] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer. Global incidence and mortality are likely to be increased in the coming decades. Although the deaths associated with CRC are very high in high-income countries, the incidence and fatalities related to CRC are growing in developing countries too. CRC detected early is entirely curable by surgery and subsequent medications. However, the recurrence rate is high, and cancer drug resistance increases the treatment failure rate. Access to early diagnosis and treatment of CRC for survival is somewhat possible in developed countries. However, these facilities are rarely available in developing countries. Highlighting the current status of CRC, its development, risk factors, and management is crucial in creating public awareness. Therefore, in this review, we have comprehensively discussed the current global epidemiology, drug resistance, challenges, risk factors, and preventive and treatment strategies of CRC. Additionally, there is a brief discussion on the CRC development pathways and recommendations for preventing and treating CRC.
Collapse
Affiliation(s)
- Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (M.S.H.); (L.C.M.); Tel.: +60-1169609649 (M.S.H.); +673-246-0922 (ext. 2202) (L.C.M.)
| | - Hidayah Karuniawati
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia
| | - Ammar Abdulrahman Jairoun
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Health and Safety Department, Dubai Municipality, Dubai 67, United Arab Emirates
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia;
| | - Der Jiun Ooi
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Ya Chee Lim
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - K. M. Kaderi Kibria
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - A.K. M. Mohiuddin
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
- Correspondence: (M.S.H.); (L.C.M.); Tel.: +60-1169609649 (M.S.H.); +673-246-0922 (ext. 2202) (L.C.M.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | | |
Collapse
|
22
|
Ali A, Bhadane R, Asl AA, Wilén CE, Salo-Ahen O, Rosenholm JM, Bansal KK. Functional block copolymer micelles based on poly (jasmine lactone) for improving the loading efficiency of weakly basic drugs. RSC Adv 2022; 12:26763-26775. [PMID: 36320859 PMCID: PMC9490767 DOI: 10.1039/d2ra03962a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Functionalization of polymers is an attractive approach to introduce specific molecular forces that can enhance drug–polymer interaction to achieve higher drug loading when used as drug delivery systems. The novel amphiphilic block copolymer of methoxy poly(ethylene glycol) and poly(jasmine lactone) i.e., mPEG-b-PJL, derived from renewable jasmine lactone provides free allyl groups on the backbone thus, allowing flexible and facile post-synthesis functionalization. In this study, mPEG-b-PJL and its carboxyl functionalized polymer mPEG-b-PJL-COOH were utilised to explore the effect of ionic interactions on the drug–polymer behaviour. Various drugs with different pKa values were employed to prepare drug-loaded polymeric micelles (PMs) of mPEG-b-PJL, mPEG-b-PJL-COOH and Soluplus® (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer) via a nanoprecipitation method. Electrostatic interactions between the COOH pendant on mPEG-b-PJL-COOH and the basic drugs were shown to influence the entrapment efficiency. Additionally, molecular dynamics (MD) simulations were employed to understand the polymer–drug interactions at the molecular level and how polymer functionalization influenced these interactions. The release kinetics of the anti-cancer drug sunitinib from mPEG-b-PJL and mPEG-b-PJL-COOH was assessed, and it demonstrated a sustainable drug release pattern, which depended on both pH and temperature. Furthermore, the cytotoxicity of sunitinib-loaded micelles on cancer cells was evaluated. The drug-loaded micelles exhibited dose-dependent toxicity. Also, haemolysis capacity of these polymers was investigated. In summary, polymer functionalization seems a promising approach to overcome challenges that hinder the application of polymer-based drug delivery systems such as low drug loading degree. Block copolymer micelles with a functional core have been synthesized and evaluated for their drug delivery capability. High drug loading was observed due to strong ionic interactions, while cytotoxicity of polymers was found to be low.![]()
Collapse
Affiliation(s)
- Aliaa Ali
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Afshin Ansari Asl
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Carl-Eric Wilén
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Outi Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
23
|
Razmimanesh F, Sodeifian G. Investigation of temperature-responsive tocosomal nanocarriers as the efficient and robust drug delivery system for Sunitinib malate anti-cancer drug: Effects of MW and chain length of PNIPAAm on LCST and dissolution rate. J Pharm Sci 2021; 111:1937-1951. [PMID: 34963573 DOI: 10.1016/j.xphs.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
In this study, for the first time, the coated tocosome by blend of chitosan, CS, and poly(N-isopropylacrylamide), PNIPAAm, was developed as the efficient and robust drug delivery system with improved drug encapsulation efficiency, extended stability, proper particle size and industrial upscaling for Sunitinib malate anti-cancer drug. Tocosome was synthesized by using Mozafari method as a scalable and robust method and without the need for organic solvents. The effects of tocosome composition and drug concentration on the stability, particle size of tocosome, zeta potential, encapsulation efficacy and loading of drug into it were investigated by Taguchi method, and optimum composition was selected for combining with the polymeric blend. Homopolymer of PNIPAAm was synthesized by two different polymerization methods, including free radical and reversible addition-fragmentation chain transfer (RAFT). Effects of molecular weight (MW) and chain length of the polymers on lower critical solution temperature (LCST) were examined. The developed nanocarrier in this research, CS-Raft-PNIPAAm-tocosome, indicated LCST value beyond 37°C (about 45°C) and this is suitable for hyperthermia and spatio-temporal release of drug particles.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran.
| |
Collapse
|
24
|
Shakeel F, Alamer MM, Alam P, Alshetaili A, Haq N, Alanazi FK, Alshehri S, Ghoneim MM, Alsarra IA. Hepatoprotective Effects of Bioflavonoid Luteolin Using Self-Nanoemulsifying Drug Delivery System. Molecules 2021; 26:7497. [PMID: 34946581 PMCID: PMC8703857 DOI: 10.3390/molecules26247497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Moad M. Alamer
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nazrul Haq
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (I.A.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (I.A.A.)
| |
Collapse
|
25
|
Anwer MK, Iqbal M, Aldawsari MF, Alalaiwe A, Ahmed MM, Muharram MM, Ezzeldin E, Mahmoud MA, Imam F, Ali R. Improved antimicrobial activity and oral bioavailability of delafloxacin by self-nanoemulsifying drug delivery system (SNEDDS). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Md S, Alhakamy NA, Aldawsari HM, Ahmad J, Alharbi WS, Asfour HZ. Resveratrol loaded self-nanoemulsifying drug delivery system (SNEDDS) for pancreatic cancer: Formulation design, optimization and in vitro evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Razmimanesh F, Sodeifian G, Sajadian SA. An investigation into Sunitinib malate nanoparticle production by US- RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Ansari MJ, Alnakhli M, Al-Otaibi T, Meanazel OA, Anwer MK, Ahmed MM, Alshahrani SM, Alshetaili A, Aldawsari MF, Alalaiwe AS, Alanazi AZ, Zahrani MA, Ahmad N. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021; 11:1546-1567. [PMID: 33408767 PMCID: PMC7778595 DOI: 10.7150/thno.48662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent progress in nanomedicine and targeted therapy brings new breeze into the field of therapeutic applications of tyrosine kinase inhibitors (TKIs). These drugs are known for many side effects due to non-targeted mechanism of action that negatively impact quality of patients' lives or that are responsible for failure of the drugs in clinical trials. Some nanocarrier properties provide improvement of drug efficacy, reduce the incidence of adverse events, enhance drug bioavailability, helps to overcome the blood-brain barrier, increase drug stability or allow for specific delivery of TKIs to the diseased cells. Moreover, nanotechnology can bring new perspectives into combination therapy, which can be highly efficient in connection with TKIs. Lastly, nanotechnology in combination with TKIs can be utilized in the field of theranostics, i.e. for simultaneous therapeutic and diagnostic purposes. The review provides a comprehensive overview of advantages and future prospects of conjunction of nanotransporters with TKIs as a highly promising approach to anticancer therapy.
Collapse
Affiliation(s)
- Veronika Smidova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zita Goliasova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
30
|
Ruiz-Picazo A, Lozoya-Agullo I, González-Álvarez I, Bermejo M, González-Álvarez M. Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opin Drug Deliv 2020; 18:1005-1024. [PMID: 32842776 DOI: 10.1080/17425247.2020.1813108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Excipients are necessary to develop oral dosage forms of any Active Pharmaceutical Ingredient (API). Traditionally, excipients have been considered inactive and inert substances, but, over the years, numerous studies have contradicted this belief. This review focuses on the effect of excipients on the physiological variables affecting oral absorption along the different segments of the gastrointestinal tract. The effect of excipients on the segmental absorption variables are illustrated with examples to help understand the complexity of predicting their in vivo effects. AREAS COVERED The effects of excipients on disintegration, solubility and dissolution, transit time, and absorption are analyzed in the context of the different gastrointestinal segments and the physiological factors affecting release and membrane permeation. The experimental techniques used to study excipient effects and their human predictive ability are reviewed. EXPERT OPINION The observed effects of excipient in oral absorption process have been characterized in the past, mainly in vitro (i.e. in dissolution studies, in vitro cell culture methods or in situ animal studies). Unfortunately, a clear link with their effects in vivo, i.e. their impact on Cmax or AUC, which need a mechanistic approach is still missing. The information compiled in this review leads to the conclusion that the effect of excipients in API oral absorption and bioavailability is undeniable and shows the need of implementing standardized and reproducible preclinical tools coupled with mechanistic and predictive physiological-based models to improve the current empirical retrospective approach.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Lozoya-Agullo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
31
|
Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
33
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Alshehri S, Shakeel F. Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol + water) mixtures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Mokhtarpour M, Shekaari H, Shayanfar A. Design and characterization of ascorbic acid based therapeutic deep eutectic solvent as a new ion-gel for delivery of sunitinib malate. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Liu Y, Liu W, Xiong S, Luo J, Li Y, Zhao Y, Wang Q, Zhang Z, Chen X, Chen T. Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int J Pharm 2020; 577:119053. [DOI: 10.1016/j.ijpharm.2020.119053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
|
37
|
Preparation and evaluation of spray dried rosuvastatin calcium-PVP microparticles for the improvement of serum lipid profile. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Anwer MK, Mohammad M, Iqbal M, Ansari MN, Ezzeldin E, Fatima F, Alshahrani SM, Aldawsari MF, Alalaiwe A, Alzahrani AA, Aldayel AM. Sustained release and enhanced oral bioavailability of rivaroxaban by PLGA nanoparticles with no food effect. J Thromb Thrombolysis 2020; 49:404-412. [DOI: 10.1007/s11239-019-02022-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Alshehri S, Imam SS, Hussain A, Alyousef AM, Altamimi M, Alsulays B, Shakeel F. Flufenamic Acid-Loaded Self-Nanoemulsifying Drug Delivery System for Oral Delivery: From Formulation Statistical Optimization to Preclinical Anti-Inflammatory Assessment. J Oleo Sci 2020; 69:1257-1271. [PMID: 32908093 DOI: 10.5650/jos.ess20070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University
- College of Pharmacy, Almaarefa University
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| | | | - Mohammad Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| | - Bader Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| |
Collapse
|
40
|
Sodeifian G, Razmimanesh F, Sajadian SA. Prediction of solubility of sunitinib malate (an anti-cancer drug) in supercritical carbon dioxide (SC–CO2): Experimental correlations and thermodynamic modeling. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111740] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Altamimi M, Haq N, Alshehri S, Qamar W, Shakeel F. Enhanced Skin Permeation of Hydrocortisone Using Nanoemulsion as Potential Vehicle. ChemistrySelect 2019. [DOI: 10.1002/slct.201902007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mohammad Altamimi
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Nazrul Haq
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Sultan Alshehri
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Wajhul Qamar
- Central LaboratoryCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
- Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Faiyaz Shakeel
- Department of PharmaceuticsCollege of PharmacyKing Saud University, P.O. Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
42
|
Hussain A, Shakeel F, Singh SK, Alsarra IA, Faruk A, Alanazi FK, Peter Christoper GV. Solidified SNEDDS for the oral delivery of rifampicin: Evaluation, proof of concept, in vivo kinetics, and in silico GastroPlus TM simulation. Int J Pharm 2019; 566:203-217. [PMID: 31132448 DOI: 10.1016/j.ijpharm.2019.05.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/01/2022]
Abstract
The present investigation was performed to develop a rifampicin (RIF)-loaded solidified self-nanoemulsifying drug delivery system (SNEDDS) (solidified RIF-OF1) for in vitro and in vivo evaluations. Optimized formulations were tested for their powder flow characteristics, loading efficiency, and in vitro dissolution (at pH-1.2, 6.8 and 7.4). Compatibility studies were also performed. The formulations were also tested for hemocompatibility, intestinal permeation, histopathological effects, and in vivo pharmacokinetics. Additionally, an in silico simulation study using GastroPlus was performed. At different varied pH values, we observed immediate release (T85% within 15 min) based on the dissolution profile. This could be due to labrasol-assisted RIF solubilization. In vitro hemolysis study of the reconstituted RIF-OF1 revealed normal architecture of erythrocytes compared to the positive control (lysed and fragmented). Through in vivo permeation and biopsy studies, a rationale for facilitated intestinal permeation of RIF with components deemed physiological safe (normal anatomy of mucosal membrane evidenced from biopsy study) could be established. The in vitro-in vivo correlation (IVIVC) plus module of GastroPlusTM simulation showed a good IVIVC between in vitro release and in vivo absorption with a predicted systemic absorption of ∼96.5%. Solidified SNEDDS showed improved pharmacokinetic profiles compared to RIF suspension. Solid RIF-SNEDDS was demonstrated to be a suitable carrier for enhanced intestinal permeation and oral bioavailability. Hence, it may serve as a suitable alternative to conventional delivery systems for tuberculosis treatment.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| | - Fars K Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
43
|
Xiong S, Liu W, Li D, Chen X, Liu F, Yuan D, Pan H, Wang Q, Fang S, Chen T. Oral Delivery of Puerarin Nanocrystals To Improve Brain Accumulation and Anti-Parkinsonian Efficacy. Mol Pharm 2019; 16:1444-1455. [PMID: 30811206 DOI: 10.1021/acs.molpharmaceut.8b01012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Puerarin (PU) has emerged as a promising herb-derived anti-Parkinsonism compound. However, the undesirable water solubility as well as the unwanted bioavailability of PU limit its application. Therefore, this study aimed to develop and characterize PU nanocrystals (PU-NCs) with enhanced oral bioavailability and improved brain accumulation for the treatment of Parkinson's disease (PD). The fabricated PU-NCs were approximately spherical, with a mean size of 83.05 ± 1.96 nm, a PDI of 0.047 ± 0.009, a drug loading of 72.7%, and a rapid dissolution rate in vitro. Molecular dynamics simulation of PU and Pluronic F68 demonstrated the interaction energy and binding energy of -88.1 kJ/mol and -40.201 ± 0.685 kJ/mol, respectively, indicating a spontaneous binding with van der Waals interactions. In addition, the cellular uptake and permeability of PU-NCs were significantly enhanced as compared to PU alone ( p < 0.01). Moreover, PU-NCs exerted a significant neuroprotective effect against the cellular damage induced by the 1-methyl-4-phenylpyridinium ion (MPP+). Besides, PU-NCs demonstrated no obvious toxic effects on zebrafish, as evidenced by the unaltered morphology, hatching, survival rate, body length, and heart rate. Fluorescence resonance energy transfer (FRET) imaging revealed that intact nanocrystals were found in the intestine and brain of adult zebrafish gavaged with DiO/DiI/PU-NCs. Increased values of Cmax and AUC0- t were observed in the plasma of rats following oral administration of PU-NCs compared to PU suspension. Likewise, brain accumulation of PU-NCs was higher than that of PU suspension. Furthermore, PU-NCs attenuated dopamine depletion, ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits, and enhanced the levels of dopamine and its metabolites. Taken altogether, this study provides evidence that PU-NCs could be exploited as a potential oral delivery system to treat PD, by improving the poor bioavailability of PU and enhancing their delivery into the brain.
Collapse
Affiliation(s)
- Sha Xiong
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Wei Liu
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Dongli Li
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Macau , China
| | - Fang Liu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 501405 , China
| | - Dongsheng Yuan
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Huafeng Pan
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Qi Wang
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Shuhuan Fang
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Tongkai Chen
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| |
Collapse
|
44
|
Alshahrani SM. Preparation, Characterization and in vivo Anti-inflammatory Studies of Ostrich Oil Based Nanoemulsion. J Oleo Sci 2019; 68:203-208. [DOI: 10.5650/jos.ess18213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Saad M. Alshahrani
- Department of Pharmaceutics, College of Pharmacy Prince Sattam Bin Abdulaziz University
| |
Collapse
|
45
|
Tiwari A, Saraf S, Verma A, Panda PK, Jain SK. Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J Gastroenterol 2018; 24:4428-4435. [PMID: 30357011 PMCID: PMC6196338 DOI: 10.3748/wjg.v24.i39.4428] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/24/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer of mortality in the world. Chemotherapy based treatment leads to innumerable side effects as it delivers the anticancer drug to both normal cells besides cancer cells. Sonic Hedgehog (SHH), Wnt wingless-type mouse mammary tumor virus/β-catenin, transforming growth factor-β/SMAD, epidermal growth factor receptor and Notch are the main signaling pathways involved in the progression of CRC. Targeted therapies necessitate information regarding the particular aberrant pathways. Advancements in gene therapies have resulted in the recognition of novel therapeutic targets related with these signal-transduction cascades. CRC is a step-wise process where mutations occur over the time and activation of oncogenes and deactivation of tissue suppressor genes takes place. Genetic changes which are responsible for the induction of carcinogenesis include loss of heterozygosity in tumor suppressor genes such as adenomatous polyposis coli, mutation or deletion of genes like p53 and K-ras. Therefore, many gene-therapy approaches like gene correction, virus-directed enzyme-prodrug therapy, immunogenetic manipulation and virotherapy are currently being explored. Development of novel strategies for the safe and effective delivery of drugs to the cancerous site is the need of the hour. This editorial accentuates different novel strategies with emphasis on gene therapy and immunotherapy for the management of CRC.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Pritish Kumar Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| |
Collapse
|
46
|
AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Self-emulsifying drug–delivery systems modulate P-glycoprotein activity: role of excipients and formulation aspects. Nanomedicine (Lond) 2018; 13:1813-1834. [DOI: 10.2217/nnm-2017-0354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Self-emulsifying drug–delivery systems (SEDDS) have been widely employed to ameliorate the oral bioavailability of P-glycoprotein (P-gp) substrate drugs and to overcome multidrug resistance in cancer cells. However, the role of formulation aspects in the reduced P-gp activity is not fully understood. In this review, we first explore the role of various SEDDS excipients in the reduced P-gp activity with the main emphasis on the effective excipient concentration range for excipient-mediated modulation of P-gp activity and then we discuss the synergistic effect of various formulation aspects on the excipient-mediated modulation of P-gp activity. This review provides an approach to develop a rationally designed SEDDS to overcome P-gp-mediated drug efflux.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ayat A Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed M El-Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|