1
|
Luo S, Lu Z, Wang L, Li Y, Zeng Y, Lu H. Hepatocyte HIF-2α aggravates NAFLD by inducing ferroptosis through increasing extracellular iron. Am J Physiol Endocrinol Metab 2025; 328:E92-E104. [PMID: 39679942 DOI: 10.1152/ajpendo.00287.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Recent research has illuminated the pivotal role of the hypoxia-inducible factor-2α (HIF-2α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway in the progression of nonalcoholic fatty liver disease (NAFLD). Meanwhile, it has been reported that HIF-2α is involved in iron regulation, and that aberrant iron distribution leads to liver lipogenesis. Therefore, we hypothesize that HIF-2α exacerbates fatty liver by affecting iron distribution. To substantiate this hypothesis, we utilized liver-specific HIF-2α knockout mice and the LO2 cell line with overexpressed HIF-2α. HIF-2α overexpression (OE) was induced via lentiviral infection, followed by exposure to free fatty acids (FFAs) and deferoxamine (DFO). In animal experiments, hepatic HIF-2α knockout resulted in lower liver lipid levels, lower liver weight, and higher serum iron levels. Enrichment in autophagy, ferroptosis, and the PI3K-AKT pathway was demonstrated through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in the liver of mice. In vitro experiments showed that HIF-2α increased supernatant iron. In the HIF-2α OE group, the addition of FFA led to decreased levels of reduced glutathione (GSH) and glutathione peroxidase 4 (GPX4) protein, along with increased lipid peroxidation (LPO), cellular lipid droplets, and triglyceride content. Impressively, DFO intervention decreased supernatant iron, reversed these changes by increasing GSH and GPX4 levels, and simultaneously reduced LPO levels, cellular lipid droplets, and triglyceride content. In addition, the expression of proteins related to β-oxidation increased, and lipid deposition in hepatocytes improved, which may be associated with the PI3K/AKT pathway. In summary, our findings suggest that HIF-2α-mediated iron flux enhances NAFLD cell susceptibility to ferroptosis, thereby impacting lipid metabolism-related genes and contributing to lipid accumulation.NEW & NOTEWORTHY The experiment demonstrated that HIF-2α increased extracellular iron. In LO2 cells overexpressing HIF-2α, FFAs not only increased cellular lipid and triglyceride levels but also induced key features of ferroptosis, such as reduced GSH and GPX4 levels and increased LPO, despite the absence of cellular iron overload. These effects were reversed by lowering extracellular iron with DFO. Furthermore, DFO treatment increased β-oxidation protein expression and improved lipid deposition in hepatocytes, potentially through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhanjin Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lingling Wang
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingjuan Zeng
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology & Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
2
|
Mohammadi M, Rahmani S, Ebrahimi Z, Nowroozi G, Mahmoudi F, Shahlaei M, Moradi S. In Situ Forming Hydrogel Reinforced with Antibiotic-Loaded Mesoporous Silica Nanoparticles for the Treatment of Bacterial Keratitis. AAPS PharmSciTech 2024; 25:254. [PMID: 39443345 DOI: 10.1208/s12249-024-02969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Bacterial keratitis (BK) is a serious ocular infection that can lead to vision impairment or blindness if not treated promptly. Herein, we report the development of a versatile composite hydrogel consisting of silk fibroin and sodium alginate, reinforced by antibiotic-loaded mesoporous silica nanoparticles (MSNs) for the treatment of BK. The drug delivery system is constructed by incorporating vancomycin- and ceftazidime-loaded MSNs into the hydrogel network. The synthesized MSNs were found to be spherical in shape with an average size of about 95 nm. The loading capacities of both drugs were approximately 45% and 43%, for vancomycin and ceftazidime respectively. Moreover, the formulation exhibited a sustained release profile, with 92% of vancomycin and 90% of ceftazidime released over a 24 h period. The cytocompatibility of the drug carrier was also confirmed by MTT assay results. In addition, we performed molecular dynamics (MD) simulations to better reflect the drug-drug and drug-MSN interactions. The results obtained from RMSD, number of contacts, and MSD analyses perfectly corroborated the experimental findings. In brief, the designed drug-MSN@hydrogel could mark an intriguing new chapter in the treatment of BK.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokoufeh Rahmani
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohre Ebrahimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Nowroozi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Attia L, Chen L, Doyle PS. Orthogonal Gelations to Synthesize Core-Shell Hydrogels Loaded with Nanoemulsion-Templated Drug Nanoparticles for Versatile Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2301667. [PMID: 37507108 PMCID: PMC11469203 DOI: 10.1002/adhm.202301667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hydrophobic active pharmaceutical ingredients (APIs) are ubiquitous in the drug development pipeline, but their poor bioavailability often prevents their translation into drug products. Industrial processes to formulate hydrophobic APIs are expensive, difficult to optimize, and not flexible enough to incorporate customizable drug release profiles into drug products. Here, a novel, dual-responsive gelation process that exploits orthogonal thermo-responsive and ion-responsive gelations is introduced. This one-step "dual gelation" synthesizes core-shell (methylcellulose-alginate) hydrogel particles and encapsulates drug-laden nanoemulsions in the hydrogel matrices. In situ crystallization templates drug nanocrystals inside the polymeric core, while a kinetically stable amorphous solid dispersion is templated in the shell. Drug release is explored as a function of particle geometry, and programmable release is demonstrated for various therapeutic applications including delayed pulsatile release and sequential release of a model fixed-dose combination drug product of ibuprofen and fenofibrate. Independent control over drug loading between the shell and the core is demonstrated. This formulation approach is shown to be a flexible process to develop drug products with biocompatible materials, facile synthesis, and precise drug release performance. This work suggests and applies a novel method to leverage orthogonal gel chemistries to generate functional core-shell hydrogel particles.
Collapse
Affiliation(s)
- Lucas Attia
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Liang‐Hsun Chen
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Campus for Research Excellence and Technological EnterpriseSingapore138602Singapore
| |
Collapse
|
4
|
Jia Y, Jiang Y, He Y, Zhang W, Zou J, Magar KT, Boucetta H, Teng C, He W. Approved Nanomedicine against Diseases. Pharmaceutics 2023; 15:774. [PMID: 36986635 PMCID: PMC10059816 DOI: 10.3390/pharmaceutics15030774] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
Nanomedicine is a branch of medicine using nanotechnology to prevent and treat diseases. Nanotechnology represents one of the most effective approaches in elevating a drug's treatment efficacy and reducing toxicity by improving drug solubility, altering biodistribution, and controlling the release. The development of nanotechnology and materials has brought a profound revolution to medicine, significantly affecting the treatment of various major diseases such as cancer, injection, and cardiovascular diseases. Nanomedicine has experienced explosive growth in the past few years. Although the clinical transition of nanomedicine is not very satisfactory, traditional drugs still occupy a dominant position in formulation development, but increasingly active drugs have adopted nanoscale forms to limit side effects and improve efficacy. The review summarized the approved nanomedicine, its indications, and the properties of commonly used nanocarriers and nanotechnology.
Collapse
Affiliation(s)
- Yuanchao Jia
- Nanjing Vtrying Pharmatech Co., Ltd., Nanjing 211122, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | | | - Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
5
|
Du K, Huang X, Peng A, Yang Q, Chen D, Zhang J, Qi R. Engineered Fenofibrate as Oxidation-Sensitive Nanoparticles with ROS Scavenging and PPARα-Activating Bioactivity to Ameliorate Nonalcoholic Fatty Liver Disease. Mol Pharm 2023; 20:159-171. [PMID: 36342356 DOI: 10.1021/acs.molpharmaceut.2c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in western countries and China. Fenofibrate (FNB) can activate peroxisome proliferator-activated receptor α (PPARα) to increase fatty acid oxidation and ameliorate NAFLD. However, the application of FNB is limited in clinic due to its poor water solubility and low oral bioavailability. In this study, FNB-loaded nanoparticles (FNB-NP) based on a reactive oxygen species (ROS)-responsive peroxalate ester derived from vitamin E (OVE) and an amphiphilic conjugate 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG) were developed to enhance the preventive effects of FNB against NAFLD. In in vitro studies, FNB-NP displayed a high encapsulation efficiency of 97.25 ± 0.6% and a drug loading efficiency of 29.67 ± 0.1%, with a size of 197.0 ± 0.2 nm. FNB released from FNB-NP was dramatically accelerated in the medium with high H2O2 concentrations. Moreover, FNB-NP exhibited well storage stability and plasma stability. In pharmacokinetic (PK) studies, FNB-NP, compared with FNB crude drug, significantly increased the AUC0→t and AUC0→∞ of the plasma FNB acid by 3.3- and 3.4-fold, respectively. In pharmacodynamics (PD) studies, compared with an equal dose of FNB crude drug, FNB-NP more significantly reduced hepatic lipid deposition via facilitating FNB release in the liver and further upregulating PPARα expression in NAFLD mice. Meanwhile, oxidative stress in NAFLD was significantly suppressed after FNB-NP administration, suggesting that OVE plays a synergistic effect on antioxidation. Therefore, ROS-sensitive FNB delivery formulations FNB-NP enhance the preventive effects of FNB against NAFLD and could be further studied as a promising drug for the treatment of NAFLD in clinic.
Collapse
Affiliation(s)
- Kaiyue Du
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Xin Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Ankang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Qinghua Yang
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing400038, China
| | - Du Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing400038, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing100191, China
| |
Collapse
|
6
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
7
|
Development of Fenofibrate/Randomly Methylated β-Cyclodextrin-Loaded Eudragit ® RL 100 Nanoparticles for Ocular Delivery. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154755. [PMID: 35897940 PMCID: PMC9370055 DOI: 10.3390/molecules27154755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/01/2023]
Abstract
Fenofibrate (FE) has been shown to markedly reduce the progression of diabetic retinopathy and age-related macular degeneration in clinical trials and animal models. Owing to the limited aqueous solubility of FE, it may hamper ocular bioavailability and result in low efficiency to treat such diseases. To enhance the solubility of FE, water-soluble FE/cyclodextrin (CD) complex formation was determined by a phase-solubility technique. Randomly methylated-β-CD (RMβCD) exhibited the best solubility and the highest complexation efficiency (CE) for FE. Additionally, water-soluble polymers (i.e., hydroxypropyl methyl cellulose and polyvinyl alcohol [PVA]) enhanced the solubility of FE/RMβCD complexes. Solid- and solution-state characterizations were performed to elucidate and confirm the formation of inclusion FE/RMβCD complex. FE-loaded Eudragit® nanoparticle (EuNP) dispersions and suspensions were developed. The physicochemical properties (i.e., pH, osmolality, viscosity, particle size, size distribution, and zeta potential) were within acceptable ranges. Moreover, in vitro mucoadhesion, in vitro release, and in vitro permeation studies revealed that the FE-loaded EuNP eye drop suspensions had excellent mucoadhesive properties and sustained FE release. The hemolytic activity, hen’s egg test on chorioallantoic membrane assay, and in vitro cytotoxicity test showed that the FE formulations had low hemolytic activity, were cytocompatible, and were moderately irritable to the eyes. In conclusion, PVA-stabilized FE/RMβCD-loaded EuNP eye drop suspensions were successfully developed, warranting further in vivo testing.
Collapse
|
8
|
Omachi Y. Gastroretentive Sustained-Release Tablets Combined with a Solid Self-Micro-Emulsifying Drug Delivery System Adsorbed onto Fujicalin®. AAPS PharmSciTech 2022; 23:157. [PMID: 35672486 DOI: 10.1208/s12249-022-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Gastroretentive drug delivery systems (GRDDS) get retained in the stomach for a long time, thus facilitating the absorption of drugs in the upper gastrointestinal tract. However, drugs that are difficult to dissolve or unstable in an acidic environment are not suitable for GRDDS. The current study designs GRDDS combined with a self-micro-emulsifying drug delivery system (SMEDDS) for drugs with solubility or stability problems in the stomach. The model drug fenofibrate was formulated into the optimized liquid SMEDDS composed of 50 w/w% Capryol® PGMC, 40 w/w% Kolliphor® RH40, and 10 w/w% Transcutol® HP and solidified through adsorption on several porous adsorbents. In a dissolution medium at pH 1.2, the powdered SMEDDS using Fujicalin® dissolved quickly and achieved higher drug dissolution than other adsorbents. Based on these results, a gastroretentive bilayer tablet consisting of a drug release layer and a swelling layer was designed. The drug release layer was formulated with the powdered SMEDDS and hydroxypropyl methylcellulose (HPMC) as a release modifier. HPMC was also added to the swelling layer as a water-swellable polymer. The dissolution rate depended on the viscosity of the HPMC in the drug release layer. The time for 90% drug release was extended from 3.7 to 12.0 h by increasing the viscosity grade of HPMC from 0.1 to 100 K. Moreover, the tablet swelled and maintained a size comparable to a human pylorus diameter or more for at least 24 h. This GRDDS could apply to a broader range of drug candidates.
Collapse
Affiliation(s)
- Yoshihiro Omachi
- Pharmaceutical Technology R&D Division, Spera Pharma, Inc., 17-85, Jusohonmachi 2-chome, Yodogawa ku, Osaka, 532-0024, Japan.
| |
Collapse
|
9
|
Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov Today 2022; 27:2363-2372. [PMID: 35569762 DOI: 10.1016/j.drudis.2022.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), caused by an accumulation of fat deposits in hepatocytes, prevalently affects at least one-third of the world's population. The progression of this disorder can potentially include a spectrum of consecutive stages, specifically: steatosis, steatohepatitis and cirrhosis. Fenofibrate exhibits potential therapeutic efficacy for NAFLD owing to several properties, which include antioxidant, apoptotic, anti-inflammatory and antifibrotic activity. In the present review, we discuss the direct or indirect impact of fenofibrate on genes involved at various stages in the progression of NAFLD. Moreover, we have reviewed studies that compare fenofibrate with other drugs in treating NAFLD, as well as recent clinical trials, in an attempt to identify reliable scientific and clinical evidence concerning the therapeutic effects and benefits of fenofibrate on NAFLD. Teaser.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Lu L, Xu Q, Wang J, Wu S, Luo Z, Lu W. Drug Nanocrystals for Active Tumor-Targeted Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040797. [PMID: 35456631 PMCID: PMC9026472 DOI: 10.3390/pharmaceutics14040797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Drug nanocrystals, which are comprised of active pharmaceutical ingredients and only a small amount of essential stabilizers, have the ability to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs; in turn, drug nanocrystal technology can be utilized to develop novel formulations of chemotherapeutic drugs. Compared with passive targeting strategy, active tumor-targeted drug delivery, typically enabled by specific targeting ligands or molecules modified onto the surface of nanomedicines, circumvents the weak and heterogeneous enhanced permeability and retention (EPR) effect in human tumors and overcomes the disadvantages of nonspecific drug distribution, high administration dosage and undesired side effects, thereby contributing to improving the efficacy and safety of conventional nanomedicines for chemotherapy. Continuous efforts have been made in the development of active tumor-targeted drug nanocrystals delivery systems in recent years, most of which are encouraging and also enlightening for further investigation and clinical translation.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence:
| |
Collapse
|
11
|
Liu J, Sun Y, Cheng M, Liu Q, Liu W, Gao C, Feng J, Jin Y, Tu L. Improving Oral Bioavailability of Luteolin Nanocrystals by Surface Modification of Sodium Dodecyl Sulfate. AAPS PharmSciTech 2021; 22:133. [PMID: 33855636 DOI: 10.1208/s12249-021-02012-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/04/2021] [Indexed: 12/24/2022] Open
Abstract
Luteolin suffers from drawbacks like low solubility and bioavailability, thus hindering its application in the clinic. In this study, we employed sodium dodecyl sulfate (SDS), an efficient tight junction opening agent, to modify the surface of luteolin nanocrystals, aiming to enhance the bioavailability of luteolin (LUT) and luteolin nanocrystals (LNC). The particle sizes of SDS-modified luteolin nanocrystals (SLNC) were slightly larger than that of LNC, and the zeta potential of LNC and SLNC was -25.0 ± 0.7 mV and -43.5 ± 0.4 mV, respectively. Both LNC and SLNC exhibited enhanced saturation solubility and high stability in the liquid state. In the cellular study, we found that SDS has cytotoxicity on caco-2 cells and could open the tight junction of the caco-2 monolayer, which could lead to an enhanced transport of luteolin across the intestinal membrane. The bioavailability of luteolin was enhanced for 1.90-fold by luteolin nanocrystals, and after modification with SDS, the bioavailability was enhanced to 3.48-fold. Our experiments demonstrated that SDS could efficiently open the tight junction and enhance the bioavailability of luteolin thereafter, revealing the construction of SDS-modified nanocrystals is a good strategy for enhancing the oral bioavailability of poorly soluble drugs like luteolin.
Collapse
|
12
|
Eckert RW, Wiemann S, Keck CM. Improved Dermal and Transdermal Delivery of Curcumin with SmartFilms and Nanocrystals. Molecules 2021; 26:1633. [PMID: 33804137 PMCID: PMC8000619 DOI: 10.3390/molecules26061633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
Poor aqueous solubility of active compounds is a major issue in today's drug delivery. In this study the smartFilm-technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of curcumin particles within the suspensions increased the passive dermal penetration of curcumin. The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the stratum corneum and maintains a high local concentration gradient between drug particles and skin. Thus, leading to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nano-particulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.
Collapse
Affiliation(s)
| | | | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (R.W.E.); (S.W.)
| |
Collapse
|
13
|
Design of Non-Haemolytic Nanoemulsions for Intravenous Administration of Hydrophobic APIs. Pharmaceutics 2020; 12:pharmaceutics12121141. [PMID: 33255606 PMCID: PMC7760703 DOI: 10.3390/pharmaceutics12121141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Among advanced formulation strategies, nanoemulsions are considered useful drug-delivery systems allowing to improve the solubility and the bioavailability of lipophilic drugs. To select safe excipients for nanoemulsion formulation and to discard any haemolytic potential, an in vitro miniaturized test was performed on human whole blood. From haemolysis results obtained on eighteen of the most commonly used excipients, a medium chain triglyceride, a surfactant, and a solubilizer were selected for formulation assays. Based on a design of experiments and a ternary diagram, the feasibility of nanoemulsions was determined. The composition was defined to produce monodisperse nanodroplets with a diameter of either 50 or 120 nm, and their physicochemical properties were optimized to be suitable for intravenous administration. These nanoemulsions, stable over 21 days in storage conditions, were shown to be able to encapsulate with high encapsulation efficiency and high drug loading, up to 16% (w/w), two water practically insoluble drug models: ibuprofen and fenofibrate. Both drugs may be released according to a modulable profile in sink conditions. Such nanoemulsions appear as a very promising and attractive strategy for the efficient early preclinical development of hydrophobic drugs.
Collapse
|
14
|
Almasri R, Joyce P, Schultz HB, Thomas N, Bremmell KE, Prestidge CA. Porous Nanostructure, Lipid Composition, and Degree of Drug Supersaturation Modulate In Vitro Fenofibrate Solubilization in Silica-Lipid Hybrids. Pharmaceutics 2020; 12:pharmaceutics12070687. [PMID: 32708197 PMCID: PMC7408050 DOI: 10.3390/pharmaceutics12070687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
The unique nanostructured matrix obtained by silica-lipid hybrids (SLHs) is well known to improve the dissolution, absorption, and bioavailability of poorly water-soluble drugs (PWSDs). The aim of this study was to investigate the impact of: (i) drug load: 3–22.7% w/w, (ii) lipid type: medium-chain triglyceride (Captex 300) and mono and diester of caprylic acid (Capmul PG8), and (iii) silica nanostructure: spray dried fumed silica (FS) and mesoporous silica (MPS), on the in vitro dissolution, solubilization, and solid-state stability of the model drug fenofibrate (FEN). Greater FEN crystallinity was detected at higher drug loads and within the MPS formulations. Furthermore, an increased rate and extent of dissolution was achieved by FS formulations when compared to crystalline FEN (5–10-fold), a commercial product; APO-fenofibrate (2.4–4-fold) and corresponding MPS formulations (2–4-fold). Precipitation of FEN during in vitro lipolysis restricted data interpretation, however a synergistic effect between MPS and Captex 300 in enhancing FEN aqueous solubilization was attained. It was concluded that a balance between in vitro performance and drug loading is key, and the optimum drug load was determined to be between 7–16% w/w, which corresponds to (200–400% equilibrium solubility in lipid Seq). This study provides valuable insight into the impact of key characteristics of SLHs, in constructing optimized solid-state lipid-based formulations for the oral delivery of PWSDs.
Collapse
Affiliation(s)
- Ruba Almasri
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Hayley B. Schultz
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Kristen E. Bremmell
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Clive A. Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8830-22438
| |
Collapse
|
15
|
Fu Q, Jin X, Zhang Z, Lv H. Preparation and in vitro antitumor effects on MDA-MB-231 cells of niclosamide nanocrystals stabilized by poloxamer188 and PBS. Int J Pharm 2020; 584:119432. [DOI: 10.1016/j.ijpharm.2020.119432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
|
16
|
Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101617] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Kumar R, Kumar VB, Gedanken A. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. ULTRASONICS SONOCHEMISTRY 2020; 64:105009. [PMID: 32106066 DOI: 10.1016/j.ultsonch.2020.105009] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 05/27/2023]
Abstract
Carbon-based nanomaterials are gaining more and more interest because of their wide range of applications. Carbon dots (CDs) have shown exclusive interest due to unique and novel physicochemical, optical, electrical, and biological properties. Since their discovery, CDs became a promising material for wide range of research applications from energy to biomedical and tissue engineering applications. At same time several new methods have been developed for the synthesis of CDs. Compared to many of these methods, the sonochemical preparation is a green method with advantages such as facile, mild experimental conditions, green energy sources, and feasibility to formulate CDs and doped CDs with controlled physicochemical properties and lower toxicity. In the last five years, the sonochemically synthesized CDs were extensively studied in a wide range of applications. In this review, we discussed the sonochemical assisted synthesis of CDs, doped CDs and their nanocomposites. In addition to the synthetic route, we will discuss the effect of various experimental parameters on the physicochemical properties of CDs; and their applications in different research areas such as bioimaging, drug delivery, catalysis, antibacterial, polymerization, neural tissue engineering, dye absorption, ointments, electronic devices, lithium ion batteries, and supercapacitors. This review concludes with further research directions to be explored for the applications of sonochemical synthesized CDs.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel; Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Vijay Bhooshan Kumar
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Aharon Gedanken
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
18
|
Machmudah S, Winardi S, Wahyudiono, Kanda H, Goto M. Formation of Fine Particles from Curcumin/PVP by the Supercritical Antisolvent Process with a Coaxial Nozzle. ACS OMEGA 2020; 5:6705-6714. [PMID: 32258906 PMCID: PMC7114885 DOI: 10.1021/acsomega.9b04495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/10/2020] [Indexed: 09/29/2023]
Abstract
The production of fine particles via the supercritical carbon dioxide (SC-CO2) antisolvent process was carried out. The experiments were conducted at temperatures of 40-60 °C and pressures of 8-12 MPa with a 15 mL min-1 carbon dioxide (CO2) and 0.5 mL min-1 feed solution flow rate. As a feed solution, the curcumin and the polyvinylpyrrolidone (PVP) powder were dissolved in acetone and ethanol at concentrations of 1.0 mg mL-1 and 2.0-4.0% in weight, respectively. Scanning electron microscopy (SEM) images described that most of the precipitated particle products have spherical morphologies with a size of less than 1 μm. The Fourier transform infrared spectroscopy (FT-IR) spectra exhibited that the curcumin structural properties did not shift after the SC-CO2 antisolvent process. Moreover, the PVP addition in the curcumin particle products can enhance the curcumin dissolution in distilled water significantly.
Collapse
Affiliation(s)
- Siti Machmudah
- Department
of Chemical Engineering, Sepuluh Nopember
Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Sugeng Winardi
- Department
of Chemical Engineering, Sepuluh Nopember
Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Wahyudiono
- Department
of Materials Process Engineering, Nagoya
University, Furo−cho, Chikusa−ku, Nagoya 464-8603, Japan
| | - Hideki Kanda
- Department
of Materials Process Engineering, Nagoya
University, Furo−cho, Chikusa−ku, Nagoya 464-8603, Japan
| | - Motonobu Goto
- Department
of Materials Process Engineering, Nagoya
University, Furo−cho, Chikusa−ku, Nagoya 464-8603, Japan
| |
Collapse
|
19
|
Drop-by-drop solvent hot antisolvent interaction method for engineering nanocrystallization of sulfamethoxazole to enhanced water solubility and bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Affiliation(s)
- Raj Kumar
- School of Basic Sciences and Advanced Materials Research CentreIndian Institute of Technology Mandi Mandi, Himachal Pradesh India- 175005
| |
Collapse
|
21
|
Kumar R, Singh A, Sharma K, Dhasmana D, Garg N, Siril PF. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110184. [DOI: 10.1016/j.msec.2019.110184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/17/2019] [Accepted: 09/09/2019] [Indexed: 12/29/2022]
|
22
|
Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Sudirman S, Lai CS, Yan YL, Yeh HI, Kong ZL. Histological evidence of chitosan-encapsulated curcumin suppresses heart and kidney damages on streptozotocin-induced type-1 diabetes in mice model. Sci Rep 2019; 9:15233. [PMID: 31645652 PMCID: PMC6811681 DOI: 10.1038/s41598-019-51821-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023] Open
Abstract
High blood glucose in diabetic patients often causes cardiovascular diseases (CVDs) that threats to human life. Curcumin (Cur) is known as an antioxidant agent, possesses anti-inflammatory activity, and prevents CVDs. However, the clinical application of curcumin was limited due to its low bioavailability. This study aimed to investigate the ameliorative effects of chitosan-encapsulated curcumin (CEC) on heart and kidney damages in streptozotocin-induced type-1 diabetes C57BL/6 mice model. The results showed that Cur- and CEC-treatments downregulated the blood sugar and total cholesterol level as well as enhanced insulin secretion. However, blood pressure, triglycerides content, and very low-density lipoprotein-cholesterol content were not changed. Histochemistry analysis revealed that both curcumin and chitosan-encapsulated curcumin ameliorated cell hypertrophy and nucleus enlargement in the left ventricular of heart and reduced fibrosis in the kidney, especially after the chitosan-encapsulated curcumin treatment. Our study suggested that chitosan can effectively enhance the protective effect of curcumin on the heart and kidney damages in type-1 diabetes mice model.
Collapse
Affiliation(s)
- Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Yi-Ling Yan
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan.
| |
Collapse
|
24
|
Immediate-released pelletized solid dispersion containing fenofibrate: Formulation, in vitro characterization, and bioequivalence studies in experimental beagle dogs. Int J Pharm 2019; 570:118661. [DOI: 10.1016/j.ijpharm.2019.118661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
|
25
|
Kumar R. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: A literature survey. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Kumar R, Singh A, Garg N. Acoustic Cavitation-Assisted Formulation of Solid Lipid Nanoparticles using Different Stabilizers. ACS OMEGA 2019; 4:13360-13370. [PMID: 31460464 PMCID: PMC6705237 DOI: 10.1021/acsomega.9b01532] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/26/2019] [Indexed: 05/04/2023]
Abstract
Because of excellent bioavailability and high biocompatibility, solid lipid nanoparticles (SLNs) have gained attention in recent years, especially in drug delivery systems. SLNs are composed of a drug that is loaded in a lipid matrix and stabilized by surfactants. In this work, we have investigated the feasibility of the acoustic cavitation-assisted hot melt mixing method for the formulation of SLNs using different stabilizers. A lipid Compritol 888 ATO (CPT) and a poorly water-soluble drug ketoprofen (KP) were used as a model lipid and drug, respectively. Gelucire 50/13 (GEL), poloxamer 407 (POL), and Pluronic F-127 (PLU) were used as the stabilizers. The effect of the stabilizers on the physico-chemical properties of SLNs was thoroughly studied in this work. The particle size and stability in water at different temperatures were measured using a dynamic light scattering method. The spherical shape (below 250 nm) and core-shell morphology were confirmed by field-emission scanning electron microscopy and transmission electron microscopy. The chemical, crystal, and thermal properties of SLNs were studied by FTIR, XRD analysis, and DSC, respectively. SLNs prepared using different stabilizers showed an encapsulation efficiency of nearly 90% and a drug loading efficiency of 12%. SLNs showed more than 90% of drug released in 72 h and increased with pH was confirmed using in vitro drug release studies. SLNs were nontoxic to raw 264.7 cells. All stabilizers were found suitable for acoustic cavitation-assisted SLN formulation with high encapsulation efficiency and drug loading and good biocompatibility.
Collapse
Affiliation(s)
- Raj Kumar
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Ashutosh Singh
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Neha Garg
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
27
|
Kumar M, Shanthi N, Mahato AK, Soni S, Rajnikanth PS. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon 2019; 5:e01688. [PMID: 31193099 PMCID: PMC6517330 DOI: 10.1016/j.heliyon.2019.e01688] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Superficial fungal infection in immunocompromised patients can lead to many disorders and complications. Currently, new topical treatment options are critically needed to treat these fungal infections. Luliconazole (LZL) is a topical antifungal medicine used for fungal infection treatment. The purpose of this paper was to develop a new topical luliconazole nanocrystal (LNC) incorporated hydrogel. This study suggested the potential benefits of LNC embedded in a gel as a drug delivery system for topical antifungal treatments. Preliminary experiments were therefore carried out to characterize the LNC in comparison with raw drug. Prepared gel was homogeneous for human use with about 88 percent trapping, non-irritant and safe. Nano-systems showed an overall 5 fold enhancement in solubility, 4 fold increase in dissolution velocity, higher skin retention and better antifungal activity. Drugs retained from LNC hydrogel (N-GEL) in different skin layers within 8 h were the highest, i.e. 62.17% compared to coarse suspension (41.87%), nanosuspension (49.77%), D-GEL (55.76%). In addition, LNC and N-GEL had higher ZOI (41.20 ± 0.61mm and 44.25 ± 0.57mm respectively) than LZL and D-GEL (35.98 ± 0.81mm and 36.83 ± 0.83mm respectively). Therefore, it was observed that LNC loaded hydrogel was more effective in killing the fungus. Consequently, hydrogel incorporated with LNC could be a new approach with improved activity and increased dermal delivery for drugs with poor aqueous solubility rather than coarse drug containing gel.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India.,Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Nithya Shanthi
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - Arun Kumar Mahato
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - Shashank Soni
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - P S Rajnikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Kumar R, Soni P, Siril PF. Engineering the Morphology and Particle Size of High Energetic Compounds Using Drop-by-Drop and Drop-to-Drop Solvent-Antisolvent Interaction Methods. ACS OMEGA 2019; 4:5424-5433. [PMID: 31459707 DOI: 10.1021/acsomega.8b0321410.1021/acsomega.8b03214.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/06/2019] [Indexed: 05/27/2023]
Abstract
Morphology-controlled precipitation of three powerful organic high energetic compounds (HECs) viz. cyclotrimethylenetrinitramine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2-methyl-1,3,5-trinitrobenzene (TNT) was achieved by two different processes, namely, drop-by-drop (DBD) and drop-to-drop (DTD) solvent-antisolvent interaction methods. Effect of different experimental parameters on the mean size and morphology of the prepared submicron-sized particles of HECs was investigated thoroughly. The DBD method favors the formation of nanosized particles of RDX and TNT at lower concentrations (5 mM). However, a significant increase in the mean particle size occurred at higher concentrations (25 and 50 mM). Formation of facetted crystals of RDX, HMX, and nanorods of TNT was observed at higher concentrations because of the interaction of crystal facets with the antisolvent. Relatively, smaller sized, spherical particles of RDX and HMX could be prepared through the DTD method even at higher concentrations (25 mM). The DTD method is a continuous process and hence is a facile method for industrial applications. X-ray diffraction and Fourier transform infrared spectroscopy studies revealed that RDX, HMX and TNT were precipitated in their most stable polymorphic forms α, β, and monoclinic, respectively. Differential scanning calorimetry showed that the thermal response of the nano-HECs was similar to the respective raw-HECs. A slight decrease in crystallinity and the melting point was observed because of the decrease in the mean particle size.
Collapse
Affiliation(s)
- Raj Kumar
- School of Basic Sciences and Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
- School of Basic Sciences and Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Pramod Soni
- Terminal Ballistics Research Laboratory, Sector-30, Chandigarh 160030, India
| | - Prem Felix Siril
- School of Basic Sciences and Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
- School of Basic Sciences and Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
29
|
Kumar R, Soni P, Siril PF. Engineering the Morphology and Particle Size of High Energetic Compounds Using Drop-by-Drop and Drop-to-Drop Solvent-Antisolvent Interaction Methods. ACS OMEGA 2019; 4:5424-5433. [PMID: 31459707 PMCID: PMC6648681 DOI: 10.1021/acsomega.8b03214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/06/2019] [Indexed: 05/09/2023]
Abstract
Morphology-controlled precipitation of three powerful organic high energetic compounds (HECs) viz. cyclotrimethylenetrinitramine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2-methyl-1,3,5-trinitrobenzene (TNT) was achieved by two different processes, namely, drop-by-drop (DBD) and drop-to-drop (DTD) solvent-antisolvent interaction methods. Effect of different experimental parameters on the mean size and morphology of the prepared submicron-sized particles of HECs was investigated thoroughly. The DBD method favors the formation of nanosized particles of RDX and TNT at lower concentrations (5 mM). However, a significant increase in the mean particle size occurred at higher concentrations (25 and 50 mM). Formation of facetted crystals of RDX, HMX, and nanorods of TNT was observed at higher concentrations because of the interaction of crystal facets with the antisolvent. Relatively, smaller sized, spherical particles of RDX and HMX could be prepared through the DTD method even at higher concentrations (25 mM). The DTD method is a continuous process and hence is a facile method for industrial applications. X-ray diffraction and Fourier transform infrared spectroscopy studies revealed that RDX, HMX and TNT were precipitated in their most stable polymorphic forms α, β, and monoclinic, respectively. Differential scanning calorimetry showed that the thermal response of the nano-HECs was similar to the respective raw-HECs. A slight decrease in crystallinity and the melting point was observed because of the decrease in the mean particle size.
Collapse
Affiliation(s)
- Raj Kumar
- School
of Basic Sciences and Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Pramod Soni
- Terminal
Ballistics Research Laboratory, Sector-30, Chandigarh 160030, India
| | - Prem Felix Siril
- School
of Basic Sciences and Advanced Material Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
30
|
Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562:187-202. [PMID: 30851386 DOI: 10.1016/j.ijpharm.2019.02.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
The drug nanocrystals (NCs) with unique physicochemical properties are now considered as a promising drug delivery system for poorly water-soluble drugs. So far >20 formulations of NCs have been approved in the market. In this review, we summarized recent advances of NCs with emphasis on their therapeutic applications based on administration route and disease states. At the end, we present a brief description of the future perspectives of NCs and their potential role as a promising drug delivery system. As a strategy for solubilization and bioavailability enhancement, the NCs have gained significant success. Besides this, the function of NCs is still far from developed. The emerging NC-based drug delivery approach would widen the applications of NCs in drug delivery and bio-medical field. Their in vitro and in vivo fate is extremely unclear; and the development of hybrid NCs with environment-sensitive fluorophores may assist to extend the scope of bio-imaging and provide better insight to their intracellular uptake kinetics, in vitro and in vivo.
Collapse
Affiliation(s)
- Imran Shair Mohammad
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Wei He
- Shanghai Dermatology Hospital, Shanghai 200443, PR China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
31
|
Preparation of Fenofibrate loaded Eudragit L100 nanoparticles by nanoprecipitation method. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.03.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|