1
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03538-1. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
2
|
Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. Int J Biol Macromol 2024; 280:135838. [PMID: 39317293 DOI: 10.1016/j.ijbiomac.2024.135838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Hydrogels can imitate the extracellular matrix, therefore facilitating the creation of an ideal healing environment for wounds. Consequently, they are popular as a material choice for wound dressings. Polysaccharides have been widely used in wound dressings due to their good biocompatibility and degradability. In this study, we first discuss skin and wound physiology before summarizing the methods for producing hydrogels from polysaccharides and their derivatized. These include not just normal polysaccharides like chitosan, cellulose, and alginate, but also Chinese medicinal polysaccharides with therapeutic properties. Then, strategies for causing hydrogel production from polysaccharides or their derivatives are briefly explained. Finally, the functions of hydrogel dressings are reviewed, including antibacterial, antioxidant, and adhesive properties, as well as the methods for achieving these properties. Furthermore, current issues and concerns are discussed, with the goal of providing fresh paths for the development of future wound dressings.
Collapse
Affiliation(s)
- Chao Ma
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lianxin Du
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China.
| | - Xin Yang
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd, Weihai 264499, China.
| |
Collapse
|
3
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
5
|
Fu Z, Ju H, Xu GS, Wu YC, Chen X, Li HJ. Recent development of carrier materials in anthocyanins encapsulation applications: A comprehensive literature review. Food Chem 2024; 439:138104. [PMID: 38043284 DOI: 10.1016/j.foodchem.2023.138104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Anthocyanins are natural polyphenols belonging to the flavonoid family that possess a variety of putative health benefits when consumed in a balanced diet. However, applications of anthocyanins in, for example, functional foods are limited due to poor stability, degradation, and low transmembrane efficiency. To maintain bioactivities of anthocyanins and optimize their use, various carrier materials have been developed. Here, we reviewed the uses of the different carrier materials (organic/inorganic, micro/nano) for anthocyanin encapsulation and delivery over the past five years. The performance of different materials and interactions between anthocyanins and these materials are described. Lastly, we give our perspective on the future development trend of anthocyanin encapsulation strategies.
Collapse
Affiliation(s)
- Ze Fu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Hao Ju
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Guang-Sen Xu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China.
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China.
| |
Collapse
|
6
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
8
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
9
|
Ratha J, Yongram C, Panyatip P, Powijitkul P, Siriparu P, Datham S, Priprem A, Srisongkram T, Puthongking P. Polyphenol and Tryptophan Contents of Purple Corn ( Zea mays L.) Variety KND and Butterfly Pea ( Clitoria ternatea) Aqueous Extracts: Insights into Phytochemical Profiles with Antioxidant Activities and PCA Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030603. [PMID: 36771687 PMCID: PMC9921721 DOI: 10.3390/plants12030603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 05/13/2023]
Abstract
Plants are a rich source of phytochemical compounds with antioxidant activity. Several studies have revealed that the consumption of plant polyphenols reduces the risk of diseases. Purple corn (Zea mays L. variety KND) and butterfly pea (Clitoria ternatea; CT) were selected to be investigated as alternative natural polyphenol sources to increase the value of these plants. Phytochemical profiles and antioxidant activities of KND cob, silk, husk and CT extracts alone and in combination were investigated in this study. The results revealed that purple corn cob (C) extract had the highest tryptophan, melatonin, total anthocyanin (TAC) and delphinidin content, while the purple corn silk (S) extract showed the highest total phenolic content (TPC) and antioxidant activities. Serotonin was found only in purple corn husk (H) extract and C extract. High contents of tryptophan and sinapic acid were found in CT extract. Principal component analysis (PCA) revealed that strong antioxidant activities were strongly correlated with protocatechuic acid and p-hydroxybenzoic acid contents, moderate antioxidant activities were strongly correlated with melatonin, and low antioxidant activities were strongly correlated with sinapic acid content. Therefore, the purple corn variety KND waste cobs, silk and husks are a potentially rich source of health-promoting phytochemical compounds.
Collapse
Affiliation(s)
- Juthamat Ratha
- Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Yongram
- Division of Cannabis Health Science, College of Allied Health Sciences, Suansunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Panyada Panyatip
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Patcharapol Powijitkul
- Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pimolwan Siriparu
- Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suthida Datham
- Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonsri Priprem
- Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ploenthip Puthongking
- Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
10
|
Gonçalves AC, Falcão A, Alves G, Lopes JA, Silva LR. Employ of Anthocyanins in Nanocarriers for Nano Delivery: In Vitro and In Vivo Experimental Approaches for Chronic Diseases. Pharmaceutics 2022; 14:2272. [PMID: 36365091 PMCID: PMC9695229 DOI: 10.3390/pharmaceutics14112272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/18/2023] Open
Abstract
Anthocyanins are among the best-known phenolic compounds and possess remarkable biological activities, including antioxidant, anti-inflammatory, anticancer, and antidiabetic effects. Despite their therapeutic benefits, they are not widely used as health-promoting agents due to their instability, low absorption, and, thus, low bioavailability and rapid metabolism in the human body. Recent research suggests that the application of nanotechnology could increase their solubility and/or bioavailability, and thus their biological potential. Therefore, in this review, we have provided, for the first time, a comprehensive overview of in vitro and in vivo studies on nanocarriers used as delivery systems of anthocyanins, and their aglycones, i.e., anthocyanidins alone or combined with conventional drugs in the treatment or management of chronic diseases.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - João A. Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
11
|
Safta DA, Bogdan C, Moldovan ML. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics 2022; 14:pharmaceutics14050991. [PMID: 35631577 PMCID: PMC9147886 DOI: 10.3390/pharmaceutics14050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
The need to develop wound healing preparations is a pressing challenge given the limitations of the current treatment and the rising prevalence of impaired healing wounds. Although herbal extracts have been used for many years to treat skin disorders, due to their wound healing, anti-inflammatory, antimicrobial, and antioxidant effects, their efficacy can be questionable because of their poor bioavailability and stability issues. Nanotechnology offers an opportunity to revolutionize wound healing therapies by including herbal compounds in nanosystems. Particularly, vesicular nanosystems exhibit beneficial properties, such as biocompatibility, targeted and sustained delivery capacity, and increased phytocompounds’ bioavailability and protection, conferring them a great potential for future applications in wound care. This review summarizes the beneficial effects of phytocompounds in wound healing and emphasizes the advantages of their entrapment in vesicular nanosystems. Different types of lipid nanocarriers are presented (liposomes, niosomes, transferosomes, ethosomes, cubosomes, and their derivates’ systems), highlighting their applications as carriers for phytocompounds in wound care, with the presentation of the state-of-art in this field. The methods of preparation, characterization, and evaluation are also described, underlining the properties that ensure good in vitro and in vivo performance. Finally, future directions of topical systems in which vesicle-bearing herbal extracts or phytocompounds can be incorporated are pointed out, as their development is emerging as a promising strategy.
Collapse
|
12
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
13
|
Morris JB. Multivariate Analysis of Butterfly Pea ( Clitoria ternatea L.) Genotypes With Potentially Healthy Nutraceuticals and Uses. J Diet Suppl 2022; 20:475-484. [PMID: 34996311 DOI: 10.1080/19390211.2021.2022821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Butterfly pea (Clitoria ternatea L.) is a legume used as tea, forage, ornamental, salad, and medicinal plant. The flowers range from white to dark purple with little known about the variation for seed and flower color in the United States Department of Agriculture, Agricultural Research Service, Plant Genetic Resources Conservation Unit germplasm collection. Therefore, 26 butterfly pea accessions were analyzed using a principal component analysis (PCA) and average linkage cluster analysis (ALCA). These butterfly pea genotypes ranged from 56% to 99% for viabilities, 2.57 to 5.88 g for 100 seed weight, 34.07 to 226.26 g for total seed weight, and 1,326 to 3,874 for total seed numbers. PCA accounted for 40%, 57%, 70%, 79%, and 86% of the variation using principal components (PCs) 1 through 5, respectively. PC1 was most correlated with 100 and total seed weight, while PC2 correlated with blue, white, and purple flowers. PC3 correlated mostly with germination, purple flowers, and total seed weight. PCs 4 and 5 primarily correlated with blue and purple flowers, respectively. Several significant correlations were also observed. ALCA grouped the 26 butterfly pea genotypes into four distinct seed number-producing clusters. Clusters 1 to 4 represent the lowest to highest seed numbers produced by the butterfly pea genotypes. Several potential health benefits from butterfly pea flowers, leaves, seeds, and roots for human use were identified from the literature.
Collapse
|
14
|
Wal A, Vig H, Mishra M, Singh R, Rathore S, Tyagi S, Kalita J, Wal P. Phytoniosomes: A Phytoplankton-Derived System for Targeted Drug Delivery. PHARMACOPHORE 2022. [DOI: 10.51847/da4mxlsbjr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Shen Y, Zhang N, Tian J, Xin G, Liu L, Sun X, Li B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J Control Release 2021; 341:285-299. [PMID: 34822910 DOI: 10.1016/j.jconrel.2021.11.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are a group of phytochemicals responsible for the purple or red color of plants. Additionally, they are recognized to have health promoting functions including anti-cardiovascular, anti-thrombotic, anti-diabetic, antimicrobial, neuroprotective, and visual protective effect as well as anti-cancer activities. Thus, consumption of anthocyanin supplement or anthocyanin-rich foods has been recommended to prevent the risk of development of chronic diseases. However, the low stability and bioavailability of anthocyanins limit the efficacy and distribution of anthocyanins in human body. Thus, strategies to achieve target site-local delivery with good bioavailability and controlled release rate are necessary. This review introduced and discussed the latest advanced techniques of designing lipid-based, polysaccharide-based and protein-based complexes, nano-encapsulation and exosome to overcome the limitation of anthocyanins. The improved bioavailability and controlled release of anthocyanins have great significance for gastrointestinal tract absorption, transepithelial transportation and cellular uptake. The techniques of applying different biocompatible materials and modifying the solubility of anthocyanins complex could achieve target site-local delivery with negligible degradation and good bioavailability in human body.
Collapse
Affiliation(s)
- Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ning Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Horticulture Germplasm Excavation and Innovative Utilization Qinhuangdao, Hebei, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China.
| |
Collapse
|
16
|
Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021; 236:17-34. [PMID: 34161876 PMCID: PMC8380729 DOI: 10.1016/j.trsl.2021.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Julia M Fuller
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Nick J Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Otolaryngology, Emory University, Atlanta, GA, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
17
|
Multilayer Films Based on Chitosan/Pectin Polyelectrolyte Complexes as Novel Platforms for Buccal Administration of Clotrimazole. Pharmaceutics 2021; 13:pharmaceutics13101588. [PMID: 34683881 PMCID: PMC8538955 DOI: 10.3390/pharmaceutics13101588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Buccal films are recognized as easily applicable, microbiologically stable drug dosage forms with good retentivity at the mucosa intended for the therapy of oromucosal conditions, especially infectious diseases. Multilayer films composed of layers of oppositely charged polymers separated by ionically interacting polymeric chains creating polyelectrolyte complexes represent very interesting and relatively poorly explored area. We aimed to develop the antifungal multilayer systems composed of cationic chitosan and anionic pectin as potential platforms for controlled delivery of clotrimazole. The systems were pharmaceutically characterized with regard to inter alia their release kinetics under different pH conditions, physicomechanical, or mucoadhesion properties with using an animal model of the buccal mucosa. The antifungal activity against selected Candida sp. and potential cytotoxicity with regard to human gingival fibroblasts were also evaluated. Interactions between polyions were characterized with Fourier transform infrared spectroscopy. Different clotrimazole distribution in the films layers highly affected their in vitro dissolution profile. The designed films were recognized as intelligent pH-responsive systems with strong antifungal effect and satisfactory safety profile. As addition of chitosan resulted in the improved antifungal behavior of the drug, the potential utilization of the films in resistant cases of oral candidiasis might be worth of further exploration.
Collapse
|
18
|
Abstract
Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Uthaiwat P, Priprem A, Chio-Srichan S, Settasatian C, Lee YC, Mahakunakorn P, Boonsiri P, Leelayuwat C, Tippayawat P, Puthongking P, Daduang J. Oral Administration of Melatonin or Succinyl Melatonin Niosome Gel Benefits 5-FU-Induced Small Intestinal Mucositis Treatment in Mice. AAPS PharmSciTech 2021; 22:200. [PMID: 34212283 DOI: 10.1208/s12249-021-01941-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Mucositis is one of the most adverse effects of 5-fluorouracil (5-FU) and had no standard drug for treatment. Melatonin is a neurohormone, and can ameliorate radiotherapy-induced small intestinal mucositis. Melatonin encapsulated in niosomes improved its poor bioavailability. Succinyl melatonin, a melatonin derivative, showed prolonged release compared with melatonin. This study investigated the efficacy of melatonin niosome gel (MNG) and succinyl melatonin niosome gel (SNG) in 5-FU-induced small intestinal mucositis treatment in mice. MNG and SNG with particle sizes of 293 and 270 nm were shown to have mucoadhesive potentials. The effect of a daily oral application of MNG, SNG, or fluocinolone acetonide gel (FAG, positive control) was compared to that of the normal group. The body weight, food consumption, histology, Fourier transform infrared (FTIR) spectroscopy, inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β), and malondialdehyde (MDA) in the small intestine were monitored. The results showed decreased %body weight and food consumption in all 5-FU-injected groups compared with the normal group. The MNG and SNG treatments maintained the food consumption and the normal integrity of the small intestines, as evidenced by villus length and crypt depth, similar to the observations in the normal groups. The FTIR spectra showed no change in lipids of the MNG and SNG groups compared with the normal group. Moreover, SNG could reduce IL-1β content to a level that was not different from the level in the normal groups. Therefore, the oral application of MNG and SNG could protect against 5-FU-induced small intestinal mucositis in mice.
Collapse
|
20
|
Anthocyanin complex niosome gel accelerates oral wound healing: In vitro and clinical studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102423. [PMID: 34214683 DOI: 10.1016/j.nano.2021.102423] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
An anthocyanin complex (AC), composed of extracts of purple waxy corn and blue butterfly pea petals, and AC niosomes, bilayered vesicles of non-ionic surfactants, were compared in in vitro and clinical studies. Cultured fibroblasts subjected to a scratch wound were monitored for cell viability, cell migration, nuclear morphology and protein expression. Scratched cells showed accelerated wound healing activity, returning to normal 24 h after treatment with AC niosomes (0.002 mg/mL). Western blots and immunocytochemistry indicated upregulation of type I, III and IV collagens, fibronectin and laminins in AC niosome-treated scratched cells. A randomized block placebo-controlled double-blind clinical trial in 60 volunteers (18-60 years old) with oral wounds indicated that AC niosome gel accelerated wound closure, reduced pain due to the oral wounds and improved participants' quality of life more than AC gel, triamcinolone gel and placebo gel. These data are consistent with enhanced delivery of AC to fibroblasts by use of niosomes. AC niosomes activated fibroblasts within wounded regions and accelerated wound healing, indicating that AC niosomes have therapeutic potential.
Collapse
|
21
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
22
|
Calis Z, Mogulkoc R, Baltaci AK. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev Med Chem 2021; 20:1475-1488. [PMID: 31288717 DOI: 10.2174/1389557519666190617150051] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 05/25/2019] [Indexed: 12/27/2022]
Abstract
The inflammatory process in the human body is a physiological response involving many cellular types and mediators. It results in scar formation to separate the damaged area from the surrounding healthy tissue. Because of increased blood-brain barrier permeability following inflammation, leukocytes infiltrate the CNS and are also supplemented by proinflammatory mediators. However, an acute inflammatory process after cerebral trauma or stroke may also result in a prolonged lesion formation, leading to a severe neuronal loss. The prolonged inflammatory process in the CNS may cause serious damage to the neuronal system. It may lead to CNS damage in such a way that endangers functional integration and proinflammatory system balance. Effects of different flavonoid species on ischemia-reperfusion injury and cognition and function have also been shown in experimental studies. Flavonoids are presented broadly in plants and diets. They are believed to have various bioactive effects including anti-viral, anti-inflammatory, cardioprotective, anti-diabetic, anti-cancer, anti-aging, etc. Quercetine is the predominant dietary flavonoid. Main sources are tea, onion, and apple. It is demonstrated that the frequently consumed food like soybean, peanut, mustard, rice, sesame, olive, potatoes, onion, and oats contain flavonoids. Catechin and its derivates which are isolated from tea leaves have antioxidant activity but in low doses, their prooxidant effects are also reported. Ipriflavone which is a synthetic flavonoid may increase total calcium in bone. In this review, the effects of flavonoids species on the inflammatory process in the neurodegenerative process were examined as general.
Collapse
Affiliation(s)
- Zehra Calis
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
23
|
Colored Corn: An Up-Date on Metabolites Extraction, Health Implication, and Potential Use. Molecules 2021; 26:molecules26010199. [PMID: 33401767 PMCID: PMC7796034 DOI: 10.3390/molecules26010199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Colored (orange, pink, red, purple, and blue) corn strongly attracted attention on its healthy properties mainly due to its anthocyanin and carotenoid composition which is also responsible for its pigmentation. The present review summarized the recent updates on the extraction and chemical characterization of the main plant secondary metabolites present in colored seeds, kernel, cob, husk, and silk. The main approaches used to stabilize the extracts have been discussed as well as their food and non-food uses. Both in vitro and in vivo (animal models) studies on the different effects (antibacterial, antimutagenic, antioxidant, and anti-inflammatory activities, effects on metabolic syndrome, diabetes, glucose and lipidic metabolism, and neuroprotection) of pigmented extracts on animal and human health have been summarized.
Collapse
|
24
|
Damrongrungruang T, Panpitakkul P, Somudorn J, Sangchart P, Mahakunakorn P, Uthaiwat P, Daduang J, Panyatip P, Puthongking P, Priprem A. Glutaryl Melatonin Niosome Gel for Topical Oral Mucositis: Anti- Inflammatory and Anticandidiasis. Curr Drug Deliv 2021; 17:195-206. [PMID: 31969103 DOI: 10.2174/1567201817666200122162545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/24/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Glutaryl melatonin, which is synthesized from melatonin and is a pineal glandderived neurohormone with anti-inflammatory and anti-oxidant properties, was comparatively investigated for its potential use as a topical anti-inflammatory agent. OBJECTIVE Glutaryl melatonin, synthesized and screened for in vitro anti-candidiasis and in vitro and in vivo anti-inflammatory activities, was formulated as a niosome gel for topical oral evaluation in 5- fluorouracil-induced oral mucositis in mice. METHODS In vitro anti-fungal activity in Candida albicans, in vitro anti-inflammatory activity in Escherichia coli liposaccharide-induced RAW cells and in vivo anti-inflammatory activity using a croton oilinduced ear edema model in ICR mice were investigated. Mucositis in mice (n= 6/group, 10-week-old mice) was induced by intraperitoneal injections of 5-fluorouracil, and the mice were subjected to a topical oral application of niosome gel containing melatonin (2% w/w) or glutaryl melatonin (2% w/w) and were compared with mice subjected to blank, fluocinolone acetonide (0.5% w/w) and control conditions. RESULTS Glutaryl melatonin, at a 14.2 mM concentration, showed the highest fungicidal effect on C. albicans using the broth dilution method, indicating a nonsignificant difference from 1 μM of nystatin (p = 0.05). Nitric oxide, interleukin-6 and tumor necrosis factors were analyzed by ELISA. Liposaccharide-induced RAW cells were significantly reduced by glutaryl melatonin (p < 0.01). Ear edema inhibition of glutaryl melatonin was significant 1 h after application compared with that of melatonin (p = 0.03). Food consumption and body weight of the 5-fluorouracil-treated mice were significantly lower than those of the normal mice before all treatments (p < 0.05). Differences in the amount of licking behavior, which were observed in the control group for 5 min, were noticeable in the 5- fluorouracil-treated mice but not in the mice treated with the glutaryl melatonin niosome gel. CONCLUSION Glutaryl melatonin exhibited mild anti-candidiasis and anti-inflammatory properties. The incorporation of glutaryl melatonin in a niosome gel formulation, demonstrated the potential for topical oral applications to reduce oral discomfort caused by 5-fluorouracil treatment in mice.
Collapse
Affiliation(s)
- Teerasak Damrongrungruang
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand.,Melatonin Research Group, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Panjaree Panpitakkul
- Faculty of Dentistry, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Jirachaya Somudorn
- Faculty of Dentistry, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Pimpitchaya Sangchart
- Melatonin Research Group, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand.,Graduate School, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Pramote Mahakunakorn
- Melatonin Research Group, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand.,Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Prangtip Uthaiwat
- Melatonin Research Group, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand.,Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Panyada Panyatip
- Melatonin Research Group, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand.,Graduate School, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Ploenthip Puthongking
- Melatonin Research Group, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand.,Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| | - Aroonsri Priprem
- Melatonin Research Group, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand.,Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittraphap Road, Amphur Muang, Khon Kaen, 40002, Thailand
| |
Collapse
|
25
|
Nigro F, Cerqueira Pinto CDS, dos Santos EP, Mansur CRE. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fiammetta Nigro
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Iqubal MK, Saleem S, Iqubal A, Chaudhuri A, Pottoo FH, Ali J, Baboota S. Natural, Synthetic and their Combinatorial Nanocarriers Based Drug Delivery System in the Treatment Paradigm for Wound Healing Via Dermal Targeting. Curr Pharm Des 2020; 26:4551-4568. [DOI: 10.2174/1381612826666200612164511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022]
Abstract
A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone
instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering
the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth
factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic
therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management
of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and
growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement
of nanotechnology can ameliorate the performance of these protective coverings. In recent years,
nano-based formulations have gained immense popularity among researchers for the wound healing process due
to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the
entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic
and herbal agents, and combination therapy available for the treatment and the current nano-based systems
available for delivery through the topical route for wound healing.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sadaf Saleem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam- 31441, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
27
|
Oliveira H, Correia P, Pereira AR, Araújo P, Mateus N, de Freitas V, Oliveira J, Fernandes I. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int J Mol Sci 2020; 21:E7464. [PMID: 33050431 PMCID: PMC7589295 DOI: 10.3390/ijms21207464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their physical and chemical characteristics, anthocyanins are amongst the most versatile groups of natural compounds. Such unique signature makes these compounds a focus in several different areas of research. Anthocyanins have well been reported as bioactive compounds in a myriad of health disorders such as cardiovascular diseases, cancer, and obesity, among others, due to their anti-inflammatory, antioxidant, anti-diabetic, anti-bacterial, and anti-proliferative capacities. Such a vast number of action mechanisms may be also due to the number of structurally different anthocyanins plus their related derivatives. In this review, we highlight the recent advances on the potential use of anthocyanins in biological systems with particular focus on their photoprotective properties. Topics such as skin aging and eye degenerative diseases, highly influenced by light, and the action of anthocyanins against such damages will be discussed. Photodynamic Therapy and the potential role of anthocyanins as novel photosensitizers will be also a central theme of this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joana Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| |
Collapse
|
28
|
Aghajani A, Kazemi T, Enayatifard R, Amiri FT, Narenji M. Investigating the skin penetration and wound healing properties of niosomal pentoxifylline cream. Eur J Pharm Sci 2020; 151:105434. [PMID: 32590122 DOI: 10.1016/j.ejps.2020.105434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Wounds are defined as any injuries to the skin. Wounds can cause great inconvenience and health problems for the patients depending on the healing time and severity. This makes wound healing and the strategies to treat a wound or reduce their treatment time, an important concern in health care systems. Pentoxifylline (PTX) has been reported to facilitate the wound healing in systemic administration. Different cellular and immunological mechanisms have been reported and suggested regarding the promising effects of PTX. On the other hand, the topical application of PTX seems to improve its therapeutic efficiency by localizing the drug on the wound site. In this study, PTX-niosomes were prepared and characterized. Niosomes with Zavg of 150, 200, and 300 nm were incorporated into the base cold cream. In-vitro release of PTX from these formulations was obtained between 70 -100%. Ex-vivo penetration/retention studies showed that niosomal formulations (F6 and F7) increased penetration of PTX by 1.8 and 1.2 times, respectively in comparison with the PTX-conventional cream. Retention of PTX from both niosomal creams was about 2 times higher than the PTX-conventional cream. In -vivo studies on the full-thickness wound in BALB/c mice showed that PTX-niosomal creams shortened the duration of wound healing by two days compared to control groups (PTX-conventional cream, base cream, and no treatment). The final wound size in the niosomal cream-treated group was also significantly smaller than the control groups. Histological analysis of the wounds confirmed the results of in-vivo studies.
Collapse
Affiliation(s)
- Ali Aghajani
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Tabassom Kazemi
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Reza Enayatifard
- Department of pharmaceutics, Faculty of pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Narenji
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran; Department of pharmaceutics, Faculty of pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
29
|
Colorado D, Fernandez M, Orozco J, Lopera Y, Muñoz DL, Acín S, Balcazar N. Metabolic Activity of Anthocyanin Extracts Loaded into Non-ionic Niosomes in Diet-Induced Obese Mice. Pharm Res 2020; 37:152. [PMID: 32700034 DOI: 10.1007/s11095-020-02883-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Anthocyanins (ACNs) are polyphenols that might reduce pathological processes associated with type 2 diabetes mellitus and other chronic diseases, but their bioavailability is still controversial. In this study, the metabolic activity of oral delivery of ACN-loaded niosomes was investigated and evaluated in a diet-induced obesity (DIO) mice model. METHODS ACNs extracted from Vaccinium Meridionale by the supercritical fluid extraction method were loaded in niosomes. The niosomal formulation was physically characterized and further administrated in drinking water to obese, insulin resistant mouse. We evaluated the effect of ACN loaded niosomes on hyperglycemia, glucose and insulin intolerance and insulin blood levels in C57BL/6 J mice fed with a high-fat diet. RESULTS The ACN-loaded particles were moderately monodisperse, showed a negative surface charge and 57% encapsulation efficiency. The ACN-loaded niosomes ameliorated the insulin resistance and glucose intolerance in the DIO mice model. Additionally, they reduced animal weight and plasma insulin, glucose, leptin and total cholesterol levels in obese mice. CONCLUSION ACN-loaded niosomes administration, as a functional drink, had a beneficial effect on the reversal of metabolic abnormalities associated with obesity.
Collapse
Affiliation(s)
- Diana Colorado
- GENMOL Group, Universidad de Antioquia, Calle 62 # 52-59, Medellin, Colombia
| | - Maritza Fernandez
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | | | - Diana Lorena Muñoz
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Carrera 51D N° 62-29, Medellin, Colombia
| | - Sergio Acín
- GENMOL Group, Universidad de Antioquia, Calle 62 # 52-59, Medellin, Colombia.,Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Carrera 51D N° 62-29, Medellin, Colombia
| | - Norman Balcazar
- GENMOL Group, Universidad de Antioquia, Calle 62 # 52-59, Medellin, Colombia. .,Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Carrera 51D N° 62-29, Medellin, Colombia.
| |
Collapse
|
30
|
Sakurai H, Ikeuchi-Takahashi Y, Kobayashi A, Yoshimura N, Ishihara C, Aomori T, Onishi H. Formulation Development of Mucoadhesive Microparticle-Laden Gels for Oral Mucositis: An In Vitro and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12070603. [PMID: 32610442 PMCID: PMC7408005 DOI: 10.3390/pharmaceutics12070603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
In order to relieve pain due to oral mucositis, we attempted to develop mucoadhesive microparticles containing indomethacin (IM) and gel preparations with IM microparticles that can be applied to the oral cavity. The mucoadhesive microparticles were prepared with a simple composition consisting of IM and polyvinyl alcohol (PVA). Two kinds of PVA with different block properties were used, and microparticles were prepared by heating-filtration and mixing-drying. From the X-ray powder diffraction patterns, differential scanning calorimetry thermograms, and morphological features of the IM microparticles, IM should exist as polymorphic forms in the microparticles. Rapid drug release properties were observed in the IM microparticles. Increased drug retention was observed in IM microparticles containing PVA, and the IM-NK(50) gel, using a common block character PVA and heating-filtration, showed good long-term drug retention properties. In vivo experiments showing significantly higher drug concentrations in the oral mucosa were observed with IM microparticles prepared by heating-filtration, and the IM-NK(50) gel maintained significantly higher drug concentrations in the oral mucosa. From these results, the IM-NK(50) gel may be useful as a preparation for relieving oral mucositis pain.
Collapse
Affiliation(s)
- Hiroomi Sakurai
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
- Department of Drug Delivery Research, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan; (Y.I.-T.); (H.O.)
- Correspondence: ; Tel.: +81-3-5363-1211
| | - Yuri Ikeuchi-Takahashi
- Department of Drug Delivery Research, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan; (Y.I.-T.); (H.O.)
| | - Ayaka Kobayashi
- Osaka R&D Center, Mitsubishi Chemical Corporation, 2-13-1 Muroyama, Ibaraki, Osaka 567-0052, Japan; (A.K.); (N.Y.); (C.I.)
| | - Nobuyoshi Yoshimura
- Osaka R&D Center, Mitsubishi Chemical Corporation, 2-13-1 Muroyama, Ibaraki, Osaka 567-0052, Japan; (A.K.); (N.Y.); (C.I.)
| | - Chizuko Ishihara
- Osaka R&D Center, Mitsubishi Chemical Corporation, 2-13-1 Muroyama, Ibaraki, Osaka 567-0052, Japan; (A.K.); (N.Y.); (C.I.)
| | - Tohru Aomori
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
- Hospital Pharmacy Science, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan; (Y.I.-T.); (H.O.)
| |
Collapse
|
31
|
Saleem S, Iqubal MK, Garg S, Ali J, Baboota S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: an enticing approach to offset psoriasis. Expert Opin Drug Deliv 2020; 17:817-838. [PMID: 32315216 DOI: 10.1080/17425247.2020.1758665] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Psoriasis is identified as an inflammatory, chronic, auto-immune disease requiring long-term treatment, imposing an unnecessary burden on the patient. A significant impediment for the treatment of dermatological disorders via transdermal route is the inability of drug molecules to cross the stratum corneum (SC), as the larger size of drug molecules inhibits them to pervade into the skin, thus hampering their absorption. Some drugs exhibit systemic side-effects, which curbs patient compliance, resulting in treatment discontinuation. AREAS COVERED This review aims to describe the detailed study such as demographic status, molecular factors of psoriasis, treatment with emerging combination therapy and role of nanotechnology tools in the treatment of psoriasis. EXPERT OPINION To overcome problems related to the conventional drug delivery system, several nanotechnology-based formulations have been devised to enhance bioavailability, drug permeation and accumulation in the skin. Nano-formulations provide better permeation, targeted delivery and enhanced efficacy, thus gaining enormous popularity for cutaneous disorders. This pervasive review provides an overview of the pathophysiology of the disease, its molecular targets and the available herbal, synthetic and combination treatment modalities. The review also systematizes recent works utilizing nano-carriers to improve the treatment denouement of psoriasis.
Collapse
Affiliation(s)
- Sadaf Saleem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia (UniSA) , Adelaide, SA, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
Evaluation of L929 cell morphology on anthocyanin-containing gelatin-based hydrogel for early detection of infection. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Antioxidant and Anti-Inflammatory Properties of Anthocyanins Extracted from Oryza sativa L. in Primary Dermal Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2089817. [PMID: 31467631 PMCID: PMC6701313 DOI: 10.1155/2019/2089817] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/07/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Flavonoids are naturally active substances that form a large class of phenolic compounds abundant in certain foods. Black rice (Oryza sativa L.) contains high levels of anthocyanin polyphenols, which have beneficial effects on health owing to their antioxidant properties. The breakdown of collagenous networks with aging or skin deterioration results in the impairment of wound healing in the skin. Accordingly, reviving stagnant collagen synthesis can help maintain dermal homeostasis during wound healing. This study presents an assessment of the cellular activity of anthocyanins (ANT) extracted from Oryza sativa L., providing information necessary for the development of new products that support natural healing processes. The relative composition of ANT from Oryza sativa L. was determined by high-performance liquid chromatography/diode array detection. ANT promoted the migration of rat dermal fibroblasts (RDFs) and demonstrated antioxidant properties. ANT increased the mRNA expression of collagen type I alpha 2 (COL1A2) and upregulated type I collagen protein levels in H2O2-stimulated RDFs without cytotoxicity. Compared with the untreated group, treatment of RDFs with ANT in the presence of H2O2 led to the activation of signaling pathways, including the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Akt, whereas it significantly (p < 0.001) inhibited the phosphorylation of IκBα and suppressed the activation of the nuclear factor-kappa B (NF-κB) subunits, p50 and p65, which are transcription factors responsible for inflammation. Taken together, our findings suggest that ANT from Oryza sativa L. have anti-inflammatory properties and antiaging potential by modulating type I collagen gene expression and suppressing H2O2-induced NF-κB activation in skin fibroblasts.
Collapse
|
34
|
Rimdusit T, Thapphasaraphong S, Puthongking P, Priprem A. Effects of Anthocyanins and Melatonin From Purple Waxy Corn By-Products on Collagen Production by Cultured Human Fibroblasts. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19863510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cob and silk of purple waxy corn ( Zea mays L. Ceratina Kulesh) are underutilized sources of anthocyanins, which could be extracted by various solvents: water, ethanol, methanol, 50% ethanol, and 50% methanol. Anthocyanin and melatonin levels were investigated. The quantifications of anthocyanins as cyanidin-3-glucoside, pelargonidin-3-glucoside, and peonidin-3-glucoside were determined by high-performance liquid chromatography combined with mass spectrometry (HPLC-MS/MS), and melatonin by HPLC-fluorescence. The ability of collagen production upon exposure to human skin fibroblasts from the different macerates of the cob and silk was also studied. All cob extracts showed higher level of anthocyanins than silk extracts. The 50% ethanol extract of cob showed the highest cyanidin-3-glucoside level at 2.42 ± 0.03 mg/g dried weight, whereas that of silk showed the highest content of cyanidin-3-glucoside at 1.95 ± 0.04 mg/g dried weight. Although cob extracts contained more anthocyanins than silk extracts, silk extracts could stimulate collagen production more than cob extracts. Therefore, the collagen production was likely due to the amount of melatonin in the silk extracts, which contained greater quantities than those of the cob, and the lipophilicity of melatonin or the hydrophilicity of anthocyanins also affected the ability of cell permeation. Thus, anthocyanins and melatonin levels should be considered for the biological activity study.
Collapse
Affiliation(s)
- Thithima Rimdusit
- Faculty of Pharmaceutical Sciences, Graduate School, Khon Kaen University, Thailand
- Melatonin Research Group, Khon Kaen University, Thailand
| | - Suthasinee Thapphasaraphong
- Melatonin Research Group, Khon Kaen University, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
| | - Ploenthip Puthongking
- Melatonin Research Group, Khon Kaen University, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
| | - Aroonsri Priprem
- Melatonin Research Group, Khon Kaen University, Thailand
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
| |
Collapse
|
35
|
Davarpanah F, Khalili Yazdi A, Barani M, Mirzaei M, Torkzadeh-Mahani M. Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. Daru 2018; 26:10.1007/s40199-018-0215-3. [PMID: 30209759 PMCID: PMC6154485 DOI: 10.1007/s40199-018-0215-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/25/2022] Open
Abstract
To improve the efficiency of niosomal drug delivery, here we employed two tactics. First, niosomes were magnetized using Fe3O4@SiO2 mangnetic nanoparticles, and second, their surface was modified by PEGylation. PEGylation was intended for increasing the bioavailability of niosomes, and magnetization was used for rendering them capable of targeting specific tissues. These PEGylated magnetic niosomes were also loaded with Carboplatin, an antitumor drug. Next, these niosomes were studied in terms of size, morphology, zeta potential, and drug entrapment efficiency. Then, the in vitro drug release from these modified niosomes was compared to that of both naked and nonmagnetized niosomes. Interestingly, although loading of naked-niosomes with magnetic particles lead to an increase in the rate of drug release, PEGylation of these magnetized niosomes caused a more sustained drug release. Thus, PEGylation of magnetic niosomes, besides improving their bioavailability, caused a slower and sustained release of the drug over time. Finally, studying the in vitro effectives of niosomal formulations towards MCF-7, a breast cancer cell line, showed that PEGylated magnetic niosomes had a satisfactory toxicity towards these cells in the presence of an external magnetic field. In conclusion, PEGylated magnetic niosomes showed enhanced qualities regarding the controlled release and delivery of drug. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Fereshteh Davarpanah
- Department of Nanochemistry, Faculty of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Aliakbar Khalili Yazdi
- Department of Biotechnology, Institute of Science, High Technology & Environmental Sciences, Graduate University of Advanced Technology, Haft-Bagh Highway, Kerman, 7631133131, Iran
| | - Mahmood Barani
- Department of Nanochemistry, Faculty of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Mirzaei
- Department of Analytical Chemistry, Faculty of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology & Environmental Sciences, Graduate University of Advanced Technology, Haft-Bagh Highway, Kerman, 7631133131, Iran.
| |
Collapse
|