1
|
Salama A, Hamed Salama A, Hasanein Asfour M. Tannic acid coated nanosuspension for oral delivery of chrysin intended for anti-schizophrenic effect in mice. Int J Pharm 2024; 656:124085. [PMID: 38580073 DOI: 10.1016/j.ijpharm.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-β expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Alaa Hamed Salama
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
2
|
Wassif RK, Elkheshen SA, Shamma RN, Amer MS, Elhelw R, El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res 2024; 14:80-102. [PMID: 37542190 PMCID: PMC10746766 DOI: 10.1007/s13346-023-01384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 08/06/2023]
Abstract
The objective of the current study was to create an efficient, minimally invasive combined system comprising in situ forming hydrogel loaded with both spray-dried polymeric nanoparticles encapsulating linezolid and nanohydroxyapatite for local injection to bones or their close vicinity. The developed system was designed for a dual function namely releasing the drug in a sustained manner for long-term treatment of bone infections and supporting bone proliferation and new tissues generation. To achieve these objectives, two release sustainment systems for linezolid were optimized namely a composite in situ forming chitosan hydrogel and spray-dried PLGA/PLA solid nanoparticles. The composite, in situ forming hydrogel of chitosan was prepared using two different gelling agents namely glycerophosphate (GP) and sodium bicarbonate (NaHCO3) at 3 different concentrations each. The spray-dried linezolid-loaded PLGA/PLA nanoparticles were developed using a water-soluble carrier (PVP K30) and a lipid soluble one (cetyl alcohol) along with 3 types of DL-lactide and/or DL-lactide-co-glycolide copolymer using nano-spray-drying technique. Finally, the optimized spray-dried linezolid nanoparticles were incorporated into the optimized composite hydrogel containing nanohydroxy apatite (nHA). The combined hydrogel/nanoparticle systems displayed reasonable injectability with excellent gelation time at 37 °C. The optimum formulae sustained the release of linezolid for 7-10 days, which reveals its ability to reduce the frequency of injection during the course of treatment of bones infections and increase the patients' compliance. They succeeded to alleviate the bone infections and the associated clinical, biochemical, radiological, and histopathological changes within 2-4 weeks of injection. As to the state of art in this study and to the best of our knowledge, no such complete and systematic study on this type of combined in situ forming hydrogel loaded with spray-dried nanoparticles of linezolid is available yet in literatures.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt.
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt
| | - Mohammed S Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rehab Elhelw
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
3
|
AbouSamra MM, Farouk F, Abdelhamed FM, Emam KAF, Abdeltawab NF, Salama AH. Synergistic approach for acne vulgaris treatment using glycerosomes loaded with lincomycin and lauric acid: Formulation, in silico, in vitro, LC-MS/MS skin deposition assay and in vivo evaluation. Int J Pharm 2023; 646:123487. [PMID: 37805147 DOI: 10.1016/j.ijpharm.2023.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
This study aims to develop a pharmaceutical formulation that combines the potent antibacterial effect of lincomycin and lauric acid against Cutibacterium acnes (C. acnes), a bacterium implicated in acne. The selection of lauric acid was based on an in silico study, which suggested that its interaction with specific protein targets of C. acnes may contribute to its synergistic antibacterial and anti-inflammatory effects. To achieve our aim, glycerosomes were fabricated with the incorporation of lauric acid as a main constituent of glycerosomes vesicular membrane along with cholesterol and phospholipon 90H, while lincomycin was entrapped within the aqueous cavities. Glycerol is expected to enhance the cutaneous absorption of the active moieties via hydrating the skin. Optimization of lincomycin-loaded glycerosomes (LM-GSs) was conducted using a mixed factorial experimental design. The optimized formulation; LM-GS4 composed of equal ratios of cholesterol:phospholipon90H:Lauric acid, demonstrated a size of 490 ± 17.5 nm, entrapment efficiency-values of 90 ± 1.4 % for lincomycin, and97 ± 0.2 % for lauric acid, and a surface charge of -30.2 ± 0.5mV. To facilitate its application on the skin, the optimized formulation was incorporated into a carbopol hydrogel. The formed hydrogel exhibited a pH value of 5.95 ± 0.03 characteristic of pH-balanced skincare and a shear-thinning non-Newtonian pseudoplastic flow. Skin deposition of lincomycin was assessed using an in-house developed and validated LC-MS/MS method employing gradient elution and electrospray ionization detection. Results revealed that LM-GS4 hydrogel exhibited a two-fold increase in skin deposition of lincomycin compared to lincomycin hydrogel, indicating improved skin penetration and sustained release. The synergistic healing effect of LM-GS4 was evidenced by a reduction in inflammation, bacterial load, and improved histopathological changes in an acne mouse model. In conclusion, the proposed formulation demonstrated promising potential as a topical treatment for acne. It effectively enhanced the cutaneous absorption of lincomycin, exhibited favorable physical properties, and synergistic antibacterial and healing effects. This study provides valuable insights for the development of an effective therapeutic approach for acne management.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Faten Farouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Farah M Abdelhamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khloud A F Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa H Salama
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| |
Collapse
|
4
|
Awais S, Farooq N, Muhammad SA, El-Serehy HA, Ishtiaq F, Afridi M, Ahsan H, Ullah A, Nadeem T, Sultana K. Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine. Molecules 2023; 28:molecules28093860. [PMID: 37175270 PMCID: PMC10179852 DOI: 10.3390/molecules28093860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The low water solubility of an active pharmaceutical ingredient (aripiprazole) is one of the most critical challenges in pharmaceutical research and development. This antipsychotic drug has an inadequate therapeutic impact because of its minimal and idiosyncratic oral bioavailability to treat schizophrenia. The main objective of this study was to improve the solubility and stability of the antipsychotic drug aripiprazole (ARP) via forming binary as well as ternary inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβCD) and L-Arginine (LA) as solubility enhancers. Physical mixing and lyophilization were used in different molar ratios. The developed formulations were analyzed by saturation solubility analysis, and dissolution studies were performed using the pedal method. The formulations were characterized by FTIR, XRD, DSC, SEM, and TGA. The results showcased that the addition of HPβCD and LA inclusion complexes enhanced the stability, in contrast to the binary formulations and ternary formulations prepared by physical mixing and solvent evaporation. Ternary formulation HLY47 improved dissolution rates by six times in simulated gastric fluid (SGF). However, the effect of LA on the solubility enhancement was concentration-dependent and showed optimal enhancement at the ratio of 1:1:0.27. FTIR spectra showed the bond shifting, which confirmed the formation of new complexes. The surface morphology of complexes in SEM studies showed the rough surface of lyophilization and solvent evaporation products, while physical mixing revealed a comparatively crystalline surface. The exothermic peaks in DSC diffractograms showed diminished peaks previously observed in the diffractogram of pure drug and LA. Lyophilized ternary complexes displayed significantly enhanced thermal stability, as observed from the thermograms of TGA. In conclusion, it was observed that the preparation method and a specific drug-to-polymer and amino acid ratio are critical for achieving high drug solubility and stability. These complexes seem to be promising candidates for novel drug delivery systems development.
Collapse
Affiliation(s)
- Sophia Awais
- Department of Pharmacy, Faculty of Pharmacy, University of Lahore, Lahore 54590, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, IBADAT International University, Islamabad 44000, Pakistan
| | - Nouman Farooq
- Department of Medicine, Nishtar Medical University, Multan 66000, Pakistan
| | | | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farrah Ishtiaq
- Cardiac Renal Institute (CaRe Institute), Chubbuck, ID 83202, USA
| | - Mehwish Afridi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, IBADAT International University, Islamabad 44000, Pakistan
| | - Hina Ahsan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Amin Ullah
- Department of Health and Biological Science, Abasyn University Peshawar, Peshawar 25000, Pakistan
- Institute of Pathology Lab, University of Cologne, 50923 Koln, Germany
| | - Tariq Nadeem
- National Center of Excellence in Molecular Biology, University of The Punjab, Lahore 54000, Pakistan
| | - Kishwar Sultana
- Department of Pharmacy, Iqra University, Islamabad 75500, Pakistan
| |
Collapse
|
5
|
Salem HF, Moubarak GA, Ali AA, Salama AAA, Salama AH. Budesonide-Loaded Bilosomes as a Targeted Delivery Therapeutic Approach Against Acute Lung Injury in Rats. J Pharm Sci 2023; 112:760-770. [PMID: 36228754 PMCID: PMC9549718 DOI: 10.1016/j.xphs.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
Budesonide (BUD), a glucocorticoids drug, inhibits all steps in the inflammatory response. It can reduce and treat inflammation and other symptoms associated with acute lung injury such as COVID-19. Loading BUD into bilosomes could boost its therapeutic activity, and lessen its frequent administration and side effects. Different bilosomal formulations were prepared where the independent variables were lipid type (Cholesterol, Phospholipon 80H, L-alpha phosphatidylcholine, and Lipoid S45), bile salt type (Na cholate and Na deoxycholate), and drug concentration (10, 20 mg). The measured responses were: vesicle size, entrapment efficiency, and release efficiency. One optimum formulation (composed of cholesterol, Na cholate, and 10 mg of BUD) was selected and investigated for its anti-inflammatory efficacy in vivo using Wistar albino male rats. Randomly allocated rats were distributed into four groups: The first: normal control group and received intranasal saline, the second one acted as the acute lung injury model received intranasal single dose of 2 mg/kg potassium dichromate (PD). Whereas the third and fourth groups received the market product (Pulmicort® nebulising suspension 0.5 mg/ml) and the optimized formulation (0.5 mg/kg; intranasal) for 7 days after PD instillation, respectively. Results showed that the optimized formulation decreased the pro-inflammatory cytokines TNF-α, and TGF-β contents as well as reduced PKC content in lung. These findings suggest the potentiality of BUD-loaded bilosomes for the treatment of acute lung injury with the ability of inhibiting the pro-inflammatory cytokines induced COVID-19.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ghada Abdelsabour Moubarak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
6
|
Elhabak M, Salama AAA, Salama AH. Nose-to-brain delivery of galantamine loaded nanospray dried polyacrylic acid/taurodeoxycholate mixed matrix as a protective therapy in lipopolysaccharide-induced Alzheimer's in mice model. Int J Pharm 2023; 632:122588. [PMID: 36623740 DOI: 10.1016/j.ijpharm.2023.122588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
One of the promising drug delivery approaches is performed by nanosizing the administered drug product using the nanospray drying technique. In this study, a combination of several formulation factors was integrated and exploited to augment the bioavailability of galantamine hydrobromide (GAL) via the intranasal route. Nanosized polymeric particles were fabricated using the mucoadhesive polymer, polyacrylic acid (PAA), and the permeability booster, sodium taurodeoxycholate (TDC). First, a preliminary study was conducted to adjust the nanospray drying conditions. Then, formulations were prepared on the basis of a mixed factorial experimental design and further analyzed using Design Expert® software. Different responses were investigated: particle size, polydispersity index, spray rate, drying efficiency, and percent yield. The optimized formulation was further assessed for physical morphology using the scanning electron microscope, flowability, in vitro drug release, and in vivo brain cell uptake using confocal laser scanning microscopy. The promising formulation (F6), composed of equal ratio of PAA and TDC and 20 mg GAL, exhibited a particle size of 185.55 ± 4.3 nm, polydispersity index of 0.413 ± 0.02, and yield-value of 69.58 ± 5.82 %. It also displayed good flowability, complete drug release within 2 h, and enhanced in vivo fluorescent dye uptake and penetration in brain cells. The efficacy of the optimized formulation was examined using lipopolysaccharide-induced Alzheimer's in mice. Results revealed the advantageous influence of the optimized formulation (F6) through downregulation of NF-κβ, IL-1β and GFAP as well as upregulating TGF-1β in adult mice.
Collapse
Affiliation(s)
- Mona Elhabak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
7
|
Elkasabgy NA, Salama A, Salama AH. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Zaghloul N, El Hoffy NM, Mahmoud AA, Elkasabgy NA. Cyclodextrin Stabilized Freeze-Dried Silica/Chitosan Nanoparticles for Improved Terconazole Ocular Bioavailability. Pharmaceutics 2022; 14:pharmaceutics14030470. [PMID: 35335847 PMCID: PMC8955295 DOI: 10.3390/pharmaceutics14030470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/03/2023] Open
Abstract
This research assesses the beneficial effects of loading terconazole, a poorly water-soluble antifungal drug in silica/chitosan nanoparticles (SCNs) for ocular delivery. Nanoparticles were fabricated by the simple mixing of tetraethyl ortho silicate (TEOS) and chitosan HCl as sources of silica and nitrogen, respectively, along with alcoholic drug solution in different concentrations. Freeze-dried nanoparticles were fabricated using cyclodextrins as cryoprotectants. SCNs were assessed for their particle size, PDI, yield, drug loading and in vitro release studies. A 23.31 full factorial experimental design was constructed to optimize the prepared SCNs. DSC, XRD, FTIR, in addition to morphological scanning were performed on the optimized nanoparticles followed by an investigation of their pharmacokinetic parameters after topical ocular application in male Albino rabbits. The results reveal that increasing the water content in the preparations causes an increase in the yield and size of nanoparticles. On the other hand, increasing the TEOS content in the preparations, caused a decrease in the yield and size of nanoparticles. The optimized formulation possessed excellent mucoadhesive properties with potential safety concerning the investigated rabbit eye tissues. The higher Cmax and AUC0–24 values coupled with a longer tmax value compared to the drug suspension in the rabbits’ eyes indicated the potential of SCNs as promising ocular carriers for poorly water-soluble drugs, such as terconazole.
Collapse
Affiliation(s)
- Nada Zaghloul
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt; (N.Z.); (N.M.E.H.); (A.A.M.)
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt; (N.Z.); (N.M.E.H.); (A.A.M.)
| | - Azza A. Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt; (N.Z.); (N.M.E.H.); (A.A.M.)
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence: or ; Tel.: +20-1141404144
| |
Collapse
|
9
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
10
|
Single step nanospray drying preparation technique of gabapentin-loaded nanoparticles-mediated brain delivery for effective treatment of PTZ-induced seizures. Int J Pharm 2021; 602:120604. [PMID: 33862132 DOI: 10.1016/j.ijpharm.2021.120604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
In the present study, gabapentin (GBP)-loaded chitosan nanosized particles were fabricated applying the nanospray drying technique. Different preparation parameters (spray mesh diameter, chitosan concentration and presence of D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) were studied while fixing other parameters (spraying rate, inlet temperature and gas flow rate). An optimized formulation with a particle size 107 ± 13 nm was obtained upon spraying 0.1% (w/v) chitosan solution containing 0.05% (w/v) of TPGS utilizing the small nozzle (4 μm spray mesh hole size). Drug entrapment efficiency and yield were as high as 95% and 83%, respectively. A 98.1 ± 6.1% (w/w) cumulative drug release was recorded after 2 h. Confocal laser scanning microscopy showed higher fluorescent dye penetration into brain tissue following intranasal administration of Rhodamine B labeled spray dried chitosan nanoparticles (NPs) as compared to Rhodamine B solution. Pentylenetetrazole (PTZ) was used to induce convulsions in rats through elevating seizure stages, releasing neuroinflammatory mediators and reducing excitatory amino acid transporter 2 (EAAT 2) and γ-aminobutyric acid (GABA) brain contents. Nanospray dried GBP-loaded chitosan NPs reduced seizure score, neuroinflammation; TNF-α and TGF-β, elevated EAAT 2 and GABA as well as decreased degeneration in pyramidal neurons compared to marketed product Conventin® capsules. Thus, it can be concluded from the aforementioned data that nanospray dried GBP-loaded chitosan NPs could comprise an appropriate treatment of epilepsy.
Collapse
|
11
|
Promising bioadhesive ofloxacin-loaded polymeric nanoparticles for the treatment of ocular inflammation: formulation and in vivo evaluation. Drug Deliv Transl Res 2020; 11:1943-1957. [DOI: 10.1007/s13346-020-00856-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
12
|
Salama AH, Elmotasem H, Salama AAA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm 2020; 584:119411. [PMID: 32423876 DOI: 10.1016/j.ijpharm.2020.119411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to formulate an easily-administered, safe and effective dosage form loaded with meclizine for treatment of chemotherapy-induced nausea and vomiting (CINV) through the buccal route. CINV comprises bothersome side effects accompanying cytotoxic drugs administration in cancer patients. Meclizine was loaded in chitosan-pectin nanoparticles which were further incorporated within a buccal film. Different formulations were prepared based on a 21.31 full factorial study using Design Expert®8. The optimum formulation possessed favorable characters regarding its particle size (129 nm), entrapment efficiency (90%) and release profile. Moreover, its permeation efficiency through sheep buccal mucosa was assessed via Franz cell diffusion and confocal laser microscopy methods. Enhanced permeation was achieved compared with the free drug form. In-vivo performance was assessed using cyclophosphamide induced emesis. The proposed formulation exerted significant relief of the measured responses (reduced body weight and motor coordination, elevated emesis, anorexia, proinflammatory mediators and neurotransmitters that were also associated with scattered degenerated neurons and glial cells). The developed formulation ameliorated all behavioral, biochemical and histopathological changes induced by cyclophosphamide. The obtained data were promising suggesting that our bioadhesive formulation can offer an auspicious medication for treating distressing symptoms associated with chemotherapy for cancer patients.
Collapse
Affiliation(s)
- Alaa H Salama
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abeer A A Salama
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
13
|
Piazzini V, Landucci E, Urru M, Chiarugi A, Pellegrini-Giampietro DE, Bilia AR, Bergonzi MC. Enhanced dissolution, permeation and oral bioavailability of aripiprazole mixed micelles: In vitro and in vivo evaluation. Int J Pharm 2020; 583:119361. [PMID: 32334067 DOI: 10.1016/j.ijpharm.2020.119361] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Aripiprazole (ARP) is an antipsychotic drug approved for the treatment of schizophrenia. It is poorly water-soluble and undergoes extensive hepatic metabolism and P-gp efflux, which lead to poor bioavailability and increased dose-related side effects. This study focuses on the preparation of mixed micelles (MM) to enhance the aqueous solubility, oral bioavailability, and blood-brain barrier permeation of ARP. For this purpose, Soluplus and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected for micelle preparation (ARP-MM). Micelles with borneol as penetration enhancer were also considered (ARP-B-MM). The optimized formulations have sizes of ca 50 nm, defined in distilled water, narrow size distribution (polydispersity index ≤0.1), and high encapsulation efficiency (greater than98%). Both formulations can be freeze-dried without losing their chemical-physical characteristics and are stable during storage for three months. The mixed micelles resulted stable in enzyme free-simulated gastric fluid (SGF, pH 1.2), simulated intestinal fluid (SIF, pH 6.8), and in serum. The in vitro ARP release was evaluated in the same biorelevant media, (SGF and SIF), and it disclosed that both micelles can give prolonged drug release. Furthermore, ARP solubility is greatly increased when loaded into mixed micelles. The absorption and efflux of ARP-loaded micelles were studied in vitro, employing two artificial membranes (Parallel Artificial Membrane Permeability Assay for the intestinal, PAMPA-GI, and the blood-brain barrier, PAMPA-BBB), to simulate the intestinal and brain epithelium, and the brain microvascular endothelial cell line hCMEC/D3. ARP-MM and ARP-B-MM increase the effective permeability of ARP by a factor of about three in the case of PAMPA-GI and about two for PAMPA-BBB. Furthermore, the P-gp mediated efflux was decreased by about six times in the case of ARP-MM and by about four times in the case of ARP-B-MM, compared to unformulated ARP. Finally, both ARP-loaded mixed micelles ameliorate the bioavailability of ARP, as demonstrated by the increase of the pharmacokinetic parameters, such as Cmax, AUC0-24h, and t1/2.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Matteo Urru
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
14
|
Salama AH, Abdelkhalek AA, Elkasabgy NA. Etoricoxib-loaded bio-adhesive hybridized polylactic acid-based nanoparticles as an intra-articular injection for the treatment of osteoarthritis. Int J Pharm 2020; 578:119081. [PMID: 32006623 DOI: 10.1016/j.ijpharm.2020.119081] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis is a major problem in elder people. Etoricoxib-loaded bio-adhesive hybridized nanoparticles were prepared using polylactic acid (PLA) and chitosan hydrochloride (CS-HCl) in presence of Captex®200 as a liquid oil, polyvinyl alcohol (PVA) and Tween®80 as surfactants. The study aimed to present a new intra-articular treatment of osteoarthritis with anti-inflammatory as well as bone rebuilding effects. Hybridized nanoparticles were fabricated applying the emulsion solvent evaporation technique then assessed for particle size, zeta potential, entrapment efficiency and in-vitro drug release. Furthermore, FT-IR and DSC in addition to morphological examination were done. Results revealed that the formulation composed of PLA:Captex®200 in ratio 1:2 (w/w), 1%w/v Tween®80, 0.3% w/v CS-HCl and 3%w/v PVA possessed the smallest particle size and the most sustained drug release, thus was sorted for further analyses. The selected formulation ability to interact with the negatively charged sodium fluroscein was evaluated to predict its binding with the naturally occurring hyaluronic acid in the knee joint where promising results were obtained. Results showed the cytocompatibility of the formulation when tested using MC3T3-E1 normal bone cell line, enhanced ALP activity and increased calcium ion deposition and binding. Results suggested that the presented formulation can be considered as an innovative approach for osteoarthritis.
Collapse
Affiliation(s)
- Alaa H Salama
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Abdelfattah A Abdelkhalek
- Department of Microbiology of Supplementry General Science, Faculty of Oral & Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.
| |
Collapse
|