1
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
2
|
Peštálová A, Gajdziok J. Modern trends in the formulation of microparticles for lung delivery using porogens: methods, principles and examples. Pharm Dev Technol 2024; 29:504-516. [PMID: 38712608 DOI: 10.1080/10837450.2024.2350530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Inhalation drug administration is increasingly used for local pharmacotherapy of lung disorders and as an alternative route for systemic drug delivery. Modern inhalation powder systems aim to target drug deposition in the required site of action. Large porous particles (LPP), characterized by an aerodynamic diameter over 5 μm, density below 0.4 g/cm3, and the ability to avoid protective lung mechanisms, come to the forefront of the research. They are mostly prepared by spray techniques such as spray drying or lyophilization using pore-forming substances (porogens). These substances could be gaseous, solid, or liquid, and their selection depends on their polarity, solubility, and mutual compatibility with the carrier material and the drug. According to the pores-forming mechanism, porogens can be divided into groups, such as osmogens, extractable porogens, and porogens developing gases during decomposition. This review characterizes modern trends in the formulation of solid microparticles for lung delivery; describes the mechanisms of action of the most often used porogens, discusses their applicability in various formulation methods, emphasizes spray techniques; and documents discussed topics by examples from experimental studies.
Collapse
Affiliation(s)
- Andrea Peštálová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Minootan Z, Wang H, Connaughton P, Lachacz K, Carrigy N, Ordoubadi M, Lechuga-Ballesteros D, Martin AR, Vehring R. On the Feasibility of Rugose Lipid Microparticles in Pressurized Metered Dose Inhalers with Established and New Propellants. AAPS PharmSciTech 2024; 25:82. [PMID: 38600288 DOI: 10.1208/s12249-024-02776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Pressurized metered dose inhalers (pMDIs) require optimized formulations to provide stable, consistent lung delivery. This study investigates the feasibility of novel rugose lipid particles (RLPs) as potential drug carriers in pMDI formulations. The physical stability of RLPs was assessed in three different propellants: the established HFA-134a and HFA-227ea and the new low global-warming-potential (GWP) propellant HFO-1234ze. A feedstock containing DSPC and calcium chloride was prepared without pore forming agent to spray dry two RLP batches at inlet temperatures of 55 °C (RLP55) and 75 °C (RLP75). RLPs performance in pMDI formulations was compared to two reference samples that exhibit significantly different performance when suspended in propellants: well-established engineered porous particles and particles containing 80% trehalose and 20% leucine (80T20L). An accelerated stability study at 40 °C and relative humidity of 7% ± 5% was conducted over 3 months. At different time points, a shadowgraphic imaging technique was used to evaluate the colloidal stability of particles in pMDIs. Field emission electron microscopy with energy dispersive X-ray spectroscopy was used to evaluate the morphology and elemental composition of particles extracted from the pMDIs. After 2 weeks, all 80T20L formulations rapidly aggregated upon agitation and exhibited significantly inferior colloidal stability compared to the other samples. In comparison, both the RLP55 and RLP75 formulations, regardless of the propellant used, retained their rugose structure and demonstrated excellent suspension stability comparable with the engineered porous particles. The studied RLPs demonstrate great potential for use in pMDI formulations with HFA propellants and the next-generation low-GWP propellant HFO-1234ze.
Collapse
Affiliation(s)
- Zahra Minootan
- Donadeo Innovation Centre for Engineering (DICE), 9211 116 Street NW, Edmonton, Alberta, T6G1H9, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada.
| | - Patrick Connaughton
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Kellisa Lachacz
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Nicholas Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada
| |
Collapse
|
4
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
5
|
Weers JG. Design of dry powder inhalers to improve patient outcomes: it's not just about the device. Expert Opin Drug Deliv 2024; 21:365-380. [PMID: 38630860 DOI: 10.1080/17425247.2024.2343894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Up to 50% of asthma/COPD patients make critical errors in dose preparation and dose inhalation with current marketed DPIs which negatively impact clinical outcomes. Others fail to adhere to their chronic treatment regimen. AREAS COVERED For this review, we describe how a human-factors approach to design of a dry powder inhaler can be used to improve usability, proficiency, and functionality of DPIs, while effectively mitigating critical errors associated with DPIs. The review highlights the critical importance of utilizing improved formulations with monomodal aerodynamic particle size distributions to reduce variability associated with oropharyngeal filtering of particles, flow rate dependence, and co-formulation effects. EXPERT OPINION Much of the variability in dose delivery with DPIs is associated with limitations of the bimodal APSDs inherent in current lactose blend formulations. Evidence supports that improved lung targeting and dose consistency can be achieved with drug-device combination products comprising spray-dried powders. Unfortunately, no data exists to assess whether these advances observed in in vitro and in vivo dose delivery studies will translate into improved clinical outcomes. Given the significant percentage of patients that receive suboptimal drug delivery with current DPIs it would behoove the industry to assess the efficacy of new approaches.
Collapse
|
6
|
Negi A, Nimbkar S, Moses JA. Engineering Inhalable Therapeutic Particles: Conventional and Emerging Approaches. Pharmaceutics 2023; 15:2706. [PMID: 38140047 PMCID: PMC10748168 DOI: 10.3390/pharmaceutics15122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Respirable particles are integral to effective inhalable therapeutic ingredient delivery, demanding precise engineering for optimal lung deposition and therapeutic efficacy. This review describes different physicochemical properties and their role in determining the aerodynamic performance and therapeutic efficacy of dry powder formulations. Furthermore, advances in top-down and bottom-up techniques in particle preparation, highlighting their roles in tailoring particle properties and optimizing therapeutic outcomes, are also presented. Practices adopted for particle engineering during the past 100 years indicate a significant transition in research and commercial interest in the strategies used, with several innovative concepts coming into play in the past decade. Accordingly, this article highlights futuristic particle engineering approaches such as electrospraying, inkjet printing, thin film freeze drying, and supercritical processes, including their prospects and associated challenges. With such technologies, it is possible to reshape inhaled therapeutic ingredient delivery, optimizing therapeutic benefits and improving the quality of life for patients with respiratory diseases and beyond.
Collapse
Affiliation(s)
- Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Shubham Nimbkar
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| |
Collapse
|
7
|
Banat H, Ambrus R, Csóka I. Drug combinations for inhalation: Current products and future development addressing disease control and patient compliance. Int J Pharm 2023; 643:123070. [PMID: 37230369 DOI: 10.1016/j.ijpharm.2023.123070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary delivery is an alternative route of administration with numerous advantages over conventional routes of administration. It provides low enzymatic exposure, fewer systemic side effects, no first-pass metabolism, and concentrated drug amounts at the site of the disease, making it an ideal route for the treatment of pulmonary diseases. Owing to the thin alveolar-capillary barrier, and large surface area that facilitates rapid absorption to the bloodstream in the lung, systemic delivery can be achieved as well. Administration of multiple drugs at one time became urgent to control chronic pulmonary diseases such as asthma and COPD, thus, development of drug combinations was proposed. Administration of medications with variable dosages from different inhalers leads to overburdening the patient and may cause low therapeutic intervention. Therefore, products that contain combined drugs to be delivered via a single inhaler have been developed to improve patient compliance, reduce different dose regimens, achieve higher disease control, and boost therapeutic effectiveness in some cases. This comprehensive review aimed to highlight the growth of drug combinations by inhalation over time, obstacles and challenges, and the possible progress to broaden the current options or to cover new indications in the future. Moreover, various pharmaceutical technologies in terms of formulation and device in correlation with inhaled combinations were discussed in this review. Hence, inhaled combination therapy is driven by the need to maintain and improve the quality of life for patients with chronic respiratory diseases; promoting drug combinations by inhalation to a higher level is a necessity.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary.
| |
Collapse
|
8
|
Suwabe S, Tagami T, Ogawa K, Ozeki T. Improved drug transfer into brain tissue via the "nose-to-brain" approach using suspension or powder formulations based on the amorphous solid dispersion technique. Eur J Pharm Biopharm 2023; 185:137-147. [PMID: 36842719 DOI: 10.1016/j.ejpb.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Intranasal administration has attracted increasing attention as a drug delivery approach based on nose-to-brain drug delivery from the nasal cavity to brain tissue directly, bypassing the blood-brain barrier. However, application of the method to poorly water-soluble drugs is potentially limited due to low aqueous solubility and dissolution, which can hinder drug transfer to brain tissue. In the present study, we focused on an amorphous solid dispersion (ASD) technique to improve drug dissolution. A carbamazepine-loaded ASD model drug was prepared using the solvent evaporation method (ASD-1). After screening six water-soluble polymer carriers, polyvinyl alcohol (PVA)-based ASD-1 formulation exhibited the most rapid and highest drug dissolution under experimental conditions in the nasal cavity (pH 6.0). A carbamazepine suspension dispersed with a PVA-ASD-1 formulation exhibited enhanced drug delivery into plasma and brain tissue of rats in vivo. A spray-dried powder formulation of PVA-ASD (PVA-ASD-2) exhibited improved drug dissolution and in vivo drug transfer. Our key finding is that the spray-dried PVA-ASD-2 formulation exhibited higher brain/plasma ratios than the PVA-ASD-1 suspension formulation. Our physical characterization data and demonstration of improved drug transfer suggest that ASD-based intranasal formulations hold promise for drug delivery to the brain.
Collapse
Affiliation(s)
- Susumu Suwabe
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Koki Ogawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
9
|
Drug Combination of Ciprofloxacin and Polymyxin B for the Treatment of Multidrug–Resistant Acinetobacter baumannii Infections: A Drug Pair Limiting the Development of Resistance. Pharmaceutics 2023; 15:pharmaceutics15030720. [PMID: 36986580 PMCID: PMC10056848 DOI: 10.3390/pharmaceutics15030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Polymyxins are considered as last–resort antibiotics to treat infections caused by Acinetobacter baumannii. However, there are increasing reports of resistance in A. baumannii to polymyxins. In this study, inhalable combinational dry powders consisting of ciprofloxacin (CIP) and polymyxin B (PMB) were prepared by spray–drying. The obtained powders were characterized with respect to the particle properties, solid state, in vitro dissolution and in vitro aerosol performance. The antibacterial effect of the combination dry powders against multidrug–resistant A. baumannii was assessed in a time–kill study. Mutants from the time–kill study were further investigated by population analysis profiling, minimum inhibitory concentration testing, and genomic comparisons. Inhalable dry powders consisting of CIP, PMB and their combination showed a fine particle fraction above 30%, an index of robust aerosol performance of inhaled dry powder formulations in the literature. The combination of CIP and PMB exhibited a synergistic antibacterial effect against A. baumannii and suppressed the development of CIP and PMB resistance. Genome analyses revealed only a few genetic differences of 3–6 SNPs between mutants and the progenitor isolate. This study suggests that inhalable spray–dried powders composed of the combination of CIP and PMB is promising for the treatment of respiratory infections caused by A. baumannii, and this combination can enhance the killing efficiency and suppress the development of drug resistance.
Collapse
|
10
|
Ke WR, Chang RYK, Chan HK. Engineering the right formulation for enhanced drug delivery. Adv Drug Deliv Rev 2022; 191:114561. [PMID: 36191861 DOI: 10.1016/j.addr.2022.114561] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Dry powder inhalers (DPIs) can be used with a wide range of drugs such as small molecules and biologics and offer several advantages for inhaled therapy. Early DPI products were intended to treat asthma and lung chronic inflammatory disease by administering low-dose, high-potency drugs blended with lactose carrier particles. The use of lactose blends is still the most common approach to aid powder flowability and dose metering in DPI products. However, this conventional approach may not meet the high demand for formulation physical stability, aerosolisation performance, and bioavailability. To overcome these issues, innovative techniques coupled with modification of the traditional methods have been explored to engineer particles for enhanced drug delivery. Different particle engineering techniques have been utilised depending on the types of the active pharmaceutical ingredient (e.g., small molecules, peptides, proteins, cells) and the inhaled dose. This review discusses the challenges of formulating DPI formulations of low-dose and high-dose small molecule drugs, and biologics, followed by recent and emerging particle engineering strategies utilised in developing the right inhalable powder formulations for enhanced drug delivery.
Collapse
Affiliation(s)
- Wei-Ren Ke
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Mohan AR, Wang Q, Dhapare S, Bielski E, Kaviratna A, Han L, Boc S, Newman B. Advancements in the Design and Development of Dry Powder Inhalers and Potential Implications for Generic Development. Pharmaceutics 2022; 14:pharmaceutics14112495. [PMID: 36432683 PMCID: PMC9695470 DOI: 10.3390/pharmaceutics14112495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Dry powder inhalers (DPIs) are drug-device combination products where the complexity of the formulation, its interaction with the device, and input from users play important roles in the drug delivery. As the landscape of DPI products advances with new powder formulations and novel device designs, understanding how these advancements impact performance can aid in developing generics that are therapeutically equivalent to the reference listed drug (RLD) products. This review details the current understanding of the formulation and device related principles driving DPI performance, past and present research efforts to characterize these performance factors, and the implications that advances in formulation and device design may present for evaluating bioequivalence (BE) for generic development.
Collapse
|
12
|
Wang H, Ordoubadi M, Connaughton P, Lachacz K, Carrigy N, Tavernini S, Martin AR, Finlay WH, Lechuga-Ballesteros D, Vehring R. Spray Dried Rugose Lipid Particle Platform for Respiratory Drug Delivery. Pharm Res 2022; 39:805-823. [PMID: 35364777 DOI: 10.1007/s11095-022-03242-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To develop a new lipid-based particle formulation platform for respiratory drug delivery applications. To find processing conditions for high surface rugosity and manufacturability. To assess the applicability of the new formulation method to different lipids. METHODS A new spray drying method with a simplified aqueous suspension feedstock preparation process was developed for the manufacture of rugose lipid particles of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). A study covering a wide range of feedstock temperatures and outlet temperatures was conducted to optimize the processing conditions. Aerosol performance was characterized in vitro and in silico to assess the feasibility of their use in respiratory drug delivery applications. The applicability of the new spray drying method to longer-chain phospholipids with adjusted spray drying temperatures was also evaluated. RESULTS Highly rugose DSPC lipid particles were produced via spray drying with good manufacturability. A feedstock temperature close to, and an outlet temperature lower than, the main phase transition were identified as critical in producing particles with highly rugose surface features. High emitted dose and total lung dose showed promising aerosol performance of the produced particles for use as a drug loading platform for respiratory drug delivery. Two types of longer-chain lipid particles with higher main phase transition temperatures, 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) and 1,2-dibehenoyl-sn-glycero-3-phosphocholine (22:0 PC), yielded similar rugose morphologies when spray dried at correspondingly higher processing temperatures. CONCLUSIONS Rugose lipid particles produced via spray drying from an aqueous suspension feedstock are promising as a formulation platform for respiratory drug delivery applications. The new technique can potentially produce rugose particles using various other lipids.
Collapse
Affiliation(s)
- Hui Wang
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Patrick Connaughton
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Kellisa Lachacz
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Nicholas Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada.
| |
Collapse
|
13
|
Lu P, Li J, Liu C, Yang J, Peng H, Xue Z, Liu Z. Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 2022; 17:447-461. [PMID: 35782322 PMCID: PMC9237582 DOI: 10.1016/j.ajps.2022.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious and fatal pulmonary inflammatory disease with an increasing incidence worldwide. The drugs nintedanib and pirfenidone, are listed as conditionally recommended drugs in the “Evidence-Based Guidelines for the Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis”. However, these two drugs have many adverse reactions in clinical application. Salvianolic acid B (Sal B), a water-soluble component of Salvia miltiorrhiza, could alleviate bleomycin-induced peroxidative stress damage, and prevent or delay the onset of IPF by regulating inflammatory factors and fibrotic cytokines during the disease's progression. However, Sal B is poorly absorbed orally, and patient compliance is poor when administered intravenously. Therefore, there is an urgent need to find a new non-injection route of drug delivery. In this study, Sal B was used as model drug and l-leucine (LL) as excipient to prepare Sal B dry powder inhaler (Sal B-DPI) by spray drying method. Modern preparation evaluation methods were used to assess the quality of Sal B-DPI. Sal B-DPI is promising for the treatment of IPF, according to studies on pulmonary irritation evaluation, in vivo and in vitro pharmacodynamics, metabolomics, pharmacokinetics, and lung tissue distribution.
Collapse
Affiliation(s)
- Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-center of National Clinical Research Center for Metabolic Diseases, Luoyang, Henan 471003, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
14
|
Anderson S, Atkins P, Bäckman P, Cipolla D, Clark A, Daviskas E, Disse B, Entcheva-Dimitrov P, Fuller R, Gonda I, Lundbäck H, Olsson B, Weers J. Inhaled Medicines: Past, Present, and Future. Pharmacol Rev 2022; 74:48-118. [PMID: 34987088 DOI: 10.1124/pharmrev.120.000108] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to summarize essential pharmacological, pharmaceutical, and clinical aspects in the field of orally inhaled therapies that may help scientists seeking to develop new products. After general comments on the rationale for inhaled therapies for respiratory disease, the focus is on products approved approximately over the last half a century. The organization of these sections reflects the key pharmacological categories. Products for asthma and chronic obstructive pulmonary disease include β -2 receptor agonists, muscarinic acetylcholine receptor antagonists, glucocorticosteroids, and cromones as well as their combinations. The antiviral and antibacterial inhaled products to treat respiratory tract infections are then presented. Two "mucoactive" products-dornase α and mannitol, which are both approved for patients with cystic fibrosis-are reviewed. These are followed by sections on inhaled prostacyclins for pulmonary arterial hypertension and the challenging field of aerosol surfactant inhalation delivery, especially for prematurely born infants on ventilation support. The approved products for systemic delivery via the lungs for diseases of the central nervous system and insulin for diabetes are also discussed. New technologies for drug delivery by inhalation are analyzed, with the emphasis on those that would likely yield significant improvements over the technologies in current use or would expand the range of drugs and diseases treatable by this route of administration. SIGNIFICANCE STATEMENT: This review of the key aspects of approved orally inhaled drug products for a variety of respiratory diseases and for systemic administration should be helpful in making judicious decisions about the development of new or improved inhaled drugs. These aspects include the choices of the active ingredients, formulations, delivery systems suitable for the target patient populations, and, to some extent, meaningful safety and efficacy endpoints in clinical trials.
Collapse
Affiliation(s)
- Sandra Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Paul Atkins
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Per Bäckman
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - David Cipolla
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Andrew Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Evangelia Daviskas
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bernd Disse
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Plamena Entcheva-Dimitrov
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Rick Fuller
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Igor Gonda
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Hans Lundbäck
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bo Olsson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Jeffry Weers
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| |
Collapse
|
15
|
Spray-Dried Powder Formulation of Capreomycin Designed for Inhaled Tuberculosis Therapy. Pharmaceutics 2021; 13:pharmaceutics13122044. [PMID: 34959328 PMCID: PMC8706516 DOI: 10.3390/pharmaceutics13122044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022] Open
Abstract
Multi-drug-resistant tuberculosis (MDR-TB) is a huge public health problem. The treatment regimen of MDR-TB requires prolonged chemotherapy with multiple drugs including second-line anti-TB agents associated with severe adverse effects. Capreomycin, a polypeptide antibiotic, is the first choice of second-line anti-TB drugs in MDR-TB therapy. It requires repeated intramuscular or intravenous administration five times per week. Pulmonary drug delivery is non-invasive with the advantages of local targeting and reduced risk of systemic toxicity. In this study, inhaled dry powder formulation of capreomycin targeting the lung was developed using spray drying technique. Among the 16 formulations designed, the one containing 25% capreomycin (w/w) and spray-dried at an inlet temperature of 90 °C showed the best overall performance with the mass median aerodynamic diameter (MMAD) of 3.38 μm and a fine particle fraction (FPF) of around 65%. In the pharmacokinetic study in mice, drug concentration in the lungs was approximately 8-fold higher than the minimum inhibitory concentration (MIC) (1.25 to 2.5 µg/mL) for at least 24 h following intratracheal administration (20 mg/kg). Compared to intravenous injection, inhaled capreomycin showed significantly higher area under the curve, slower clearance and longer mean residence time in both the lungs and plasma.
Collapse
|
16
|
Targeting of Inhaled Therapeutics to the Small Airways: Nanoleucine Carrier Formulations. Pharmaceutics 2021; 13:pharmaceutics13111855. [PMID: 34834270 PMCID: PMC8624185 DOI: 10.3390/pharmaceutics13111855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Current dry powder formulations for inhalation deposit a large fraction of their emitted dose in the upper respiratory tract where they contribute to off-target adverse effects and variability in lung delivery. The purpose of the current study is to design a new formulation concept that more effectively targets inhaled dry powders to the large and small airways. The formulations are based on adhesive mixtures of drug nanoparticles and nanoleucine carrier particles prepared by spray drying of a co-suspension of leucine and drug particles from a nonsolvent. The physicochemical and aerosol properties of the resulting formulations are presented. The formulations achieve 93% lung delivery in the Alberta Idealized Throat model that is independent of inspiratory flow rate and relative humidity. Largely eliminating URT deposition with a particle size larger than solution pMDIs is expected to improve delivery to the large and small airways, while minimizing alveolar deposition and particle exhalation.
Collapse
|
17
|
Son YJ, Miller DP, Weers JG. Optimizing Spray-Dried Porous Particles for High Dose Delivery with a Portable Dry Powder Inhaler. Pharmaceutics 2021; 13:pharmaceutics13091528. [PMID: 34575603 PMCID: PMC8470347 DOI: 10.3390/pharmaceutics13091528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This manuscript critically reviews the design and delivery of spray-dried particles for the achievement of high total lung doses (TLD) with a portable dry powder inhaler. We introduce a new metric termed the product density, which is simply the TLD of a drug divided by the volume of the receptacle it is contained within. The product density is given by the product of three terms: the packing density (the mass of powder divided by the volume of the receptacle), the drug loading (the mass of drug divided by the mass of powder), and the aerosol performance (the TLD divided by the mass of drug). This manuscript discusses strategies for maximizing each of these terms. Spray drying at low drying rates with small amounts of a shell-forming excipient (low Peclet number) leads to the formation of higher density particles with high packing densities. This enables ultrahigh TLD (>100 mg of drug) to be achieved from a single receptacle. The emptying of powder from capsules is directly proportional to the mass of powder in the receptacle, requiring an inhaled volume of about 1 L for fill masses between 40 and 50 mg and up to 3.2 L for a fill mass of 150 mg.
Collapse
Affiliation(s)
- Yoen-Ju Son
- Genentech, South San Francisco, CA 94080, USA;
| | | | - Jeffry G. Weers
- Cystetic Medicines, Inc., Burlingame, CA 94010, USA;
- Correspondence: ; Tel.: +1-650-339-3832
| |
Collapse
|
18
|
Kim JS, Din FU, Lee SM, Kim DS, Woo MR, Cheon S, Ji SH, Kim JO, Youn YS, Oh KT, Lim SJ, Jin SG, Choi HG. Comparison of Three Different Aqueous Microenvironments for Enhancing Oral Bioavailability of Sildenafil: Solid Self-Nanoemulsifying Drug Delivery System, Amorphous Microspheres and Crystalline Microspheres. Int J Nanomedicine 2021; 16:5797-5810. [PMID: 34465992 PMCID: PMC8402991 DOI: 10.2147/ijn.s324206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background The purpose of this study was to screen various drug delivery systems for improving the aqueous solubility and oral bioavailability of sildenafil. Three representative techniques, solid self-nanoemulsifying drug delivery systems (SNEDDS), amorphous microspheres and crystalline microspheres, were compared. Methods Both microspheres systems contained sildenafil:Labrasol:PVP at a weight ratio of 1:1:6. The amorphous microspheres were manufactured using ethanol, while crystalline microspheres were generated using distilled water. Liquid SNEDDS was composed of sildenafil:Labrasol:Transcutol HP:Captex 300 in the ratio of 1:70:15:15 (w:w:w:w). The solidification process in SNEDDS was performed using HDK N20 Pharma as a solid carrier. Results The amorphous microspheres appeared spherical with significantly decreased particle size compared to the drug powder. The crystalline microspheres exhibited a rough surface with no major particle-size difference compared with sildenafil powder, indicating that the hydrophilic excipients adhered to the sildenafil crystal. Solid SNEDDS presented a smooth surface, assuming that the oily liquid was adsorbed to the porous solid carrier. According to the physicochemical evaluation, the crystalline state maintained in crystalline microspheres, whereas the crystal state changed to amorphous state in other formulations. Amorphous microspheres, crystalline microspheres and solid SNEDDS produced about 79, 55, 82-fold increased solubility, compared to drug powder. Moreover, the prepared formulations provided a higher dissolution rate (%) and plasma concentration than did the drug powder (performance order; solid SNEDDS ≥ amorphous microspheres ≥ crystalline microspheres > drug powder). Among the formulations, solid SNEDDS demonstrated the highest improvement in oral bioavailability (AUC; 1508.78 ± 343.95 h·ng/mL). Conclusion Therefore, solid SNEDDS could be recommended as an oral dosage form for enhancing the oral bioavailability of sildenafil.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sang Min Lee
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | | | - Sang Hun Ji
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and biotechnology, Sejong University, Seoul, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, South Korea
| |
Collapse
|
19
|
Puccetti M, Gomes Dos Reis L, Pariano M, Costantini C, Renga G, Ricci M, Traini D, Giovagnoli S. Development and in vitro-in vivo performances of an inhalable indole-3-carboxaldehyde dry powder to target pulmonary inflammation and infection. Int J Pharm 2021; 607:121004. [PMID: 34391857 DOI: 10.1016/j.ijpharm.2021.121004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/17/2023]
Abstract
A tryptophan metabolite of microbial origin, indole-3-carboxaldehyde (3-IAld), has been recently identified as a Janus molecule that, acting at the host-pathogen interface and activating the aryl hydrocarbon receptor, can result as a potential candidate to treat infections as well as diseases with an inflammatory and/or immune component. In this work, an inhaled dry powder of 3-IAld was developed and evaluated for its efficacy, compared to oral and intranasal administration using an aspergillosis model of infection and inflammation. The obtained inhalable dry powder was shown to: i) be suitable to be delivered for pulmonary administration, ii) possess good toxicological safety, and iii) be superior to other administration modalities (oral and intranasal) in reducing disease scores by acting on infection and inflammation. This study supports the use of 3-IAld inhalable dry powders as a potential novel therapeutic tool to target inflammation and infection in pulmonary diseases.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Larissa Gomes Dos Reis
- Respiratory Technology Group, The Woolcock Institute of Medical Research, Glebe, Sydney, Australia
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132 Perugia, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132 Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Daniela Traini
- Respiratory Technology Group, The Woolcock Institute of Medical Research, Glebe, Sydney, Australia; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
20
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
21
|
Bahrainian S, Rouini M, Gilani K. Preparation and evaluation of vancomycin spray-dried powders for pulmonary delivery. Pharm Dev Technol 2021; 26:647-660. [PMID: 33896355 DOI: 10.1080/10837450.2021.1915331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to achieve a dry powder formulation of vancomycin by spray drying whilst evaluating the effect of pH and excipient type and percentage used in formulation on particle characteristics and aerosolization performance. A D-optimal design was applied to optimize the formulation comprising vancomycin and two main excipient groups; a carbohydrate bulking agent (lactose, mannitol or trehalose) and a second excipient (hydroxypropyl beta-cyclodextrin or L-leucine) at pH 4 and 7. The physicochemical properties of particles (size, morphology, crystallinity state, residual moisture content), stability, and aerosolization characteristics were investigated. Using the combination of two excipients increased the fine particle fraction of powder emitted from an Aerolizer® device at a flow rate of 60 L/min. Hydroxypropyl beta-cyclodextrin showed more potential than L-leucine in aerosolization capabilities. Stability studies over 3 months of storage in 40 °C and 75% relative humidity suggested a good physical stability of the optimized formulation containing 17.39% hydroxypropyl beta-cyclodextrin along with 29.61% trehalose relative to the amount of drug at pH 4. Use of two excipients including trehalose and hydroxypropyl beta-cyclodextrin with a total weight ratio of 47% relative to the amount of drug is appropriate for the preparation of vancomycin dry powder formulation for inhalation.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Duong T, López-Iglesias C, Szewczyk PK, Stachewicz U, Barros J, Alvarez-Lorenzo C, Alnaief M, García-González CA. A Pathway From Porous Particle Technology Toward Tailoring Aerogels for Pulmonary Drug Administration. Front Bioeng Biotechnol 2021; 9:671381. [PMID: 34017828 PMCID: PMC8129550 DOI: 10.3389/fbioe.2021.671381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Pulmonary drug delivery has recognized benefits for both local and systemic treatments. Dry powder inhalers (DPIs) are convenient, portable and environmentally friendly devices, becoming an optimal choice for patients. The tailoring of novel formulations for DPIs, namely in the form of porous particles, is stimulating in the pharmaceutical research area to improve delivery efficiency. Suitable powder technological approaches are being sought to design such formulations. Namely, aerogel powders are nanostructured porous particles with particularly attractive properties (large surface area, excellent aerodynamic properties and high fluid uptake capacity) for these purposes. In this review, the most recent development on powder technologies used for the processing of particulate porous carriers are described via updated examples and critically discussed. A special focus will be devoted to the most recent advances and uses of aerogel technology to obtain porous particles with advanced performance in pulmonary delivery.
Collapse
Affiliation(s)
- Thoa Duong
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Clara López-Iglesias
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Joana Barros
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto - Associação, INEB - Instituto de Engenharia Biomédica, FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mohammad Alnaief
- Department of Pharmaceutical and Chemical Engineering, Faculty of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
23
|
Yaqoubi S, Chan HK, Nokhodchi A, Dastmalchi S, Alizadeh AA, Barzegar-Jalali M, Adibkia K, Hamishehkar H. A quantitative approach to predicting lung deposition profiles of pharmaceutical powder aerosols. Int J Pharm 2021; 602:120568. [PMID: 33812969 DOI: 10.1016/j.ijpharm.2021.120568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Dry powder inhalers (DPI) are widely used systems for pulmonary delivery of therapeutics. The inhalation performance of DPIs is influenced by formulation features, inhaler device and inhalation pattern. The current review presents the affecting factors with great focus on powder characteristics which include particle size, shape, surface, density, hygroscopicity and crystallinity. The properties of a formulation are greatly influenced by a number of physicochemical factors of drug and added excipients. Since available particle engineering techniques result in particles with a set of modifications, it is difficult to distinguish the effect of an individual feature on powder deposition behavior. This necessitates developing a predictive model capable of describing all influential factors on dry powder inhaler delivery. Therefore, in the current study, a model was constructed to correlate the inhaler device properties, inhalation flow rate, particle characteristics and drug/excipient physicochemical properties with the resultant fine particle fraction. The r2 value of established correlation was 0.74 indicating 86% variability in FPF values is explained by the model with the mean absolute errors of 0.22 for the predicted values. The authors believe that this model is capable of predicting the lung deposition pattern of a formulation with an acceptable precision when the type of inhaler device, inhalation flow rate, physicochemical behavior of active and inactive ingredients and the particle characteristics of DPI formulations are considered.
Collapse
Affiliation(s)
- Shadi Yaqoubi
- Faculty of Pharmacy and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Prados Sánchez C, Máiz Carro L, Zamarrón de Lucas E, Álvarez-Sala Walther R. ¿Son importantes los dispositivos de inhalación en antibioterapia? Arch Bronconeumol 2020. [DOI: 10.1016/j.arbres.2019.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Prados Sánchez C, Máiz Carro L, Zamarrón de Lucas E, Álvarez-Sala Walther R. Are inhalation devices important in antibiotic treatment? Arch Bronconeumol 2020; 56:771-772. [PMID: 35373771 DOI: 10.1016/j.arbr.2019.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 06/14/2023]
Affiliation(s)
- Concepción Prados Sánchez
- Unidad de Fibrosis Quística y Bronquiectasias, Servicio de Neumología, Hospital Universitario La Paz, Madrid, Spain.
| | - Luis Máiz Carro
- Unidad de Fibrosis Quística, Servicio de Neumología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ester Zamarrón de Lucas
- Unidad de Fibrosis Quística y Bronquiectasias, Servicio de Neumología, Hospital Universitario La Paz, Madrid, Spain
| | - Rodolfo Álvarez-Sala Walther
- Unidad de Fibrosis Quística y Bronquiectasias, Servicio de Neumología, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
26
|
Hassan A, Farkas D, Longest W, Hindle M. Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations. Int J Pharm 2020; 591:120027. [PMID: 33130220 DOI: 10.1016/j.ijpharm.2020.120027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Spray drying can be utilized to produce highly dispersible powder aerosol formulations. However, these formulations are known to be hygroscopic, leading to potential solid-state stability and aerosol performance issues. This study aims to investigate if control of the spray drying particle formation conditions could be employed to improve the solid-state stability and alter the aerosol performance of tobramycin EEG formulations. Eight formulations were prepared, each had the same drug:excipient ratio of 60%w/w tobramycin, 20% w/w l-leucine, 18% w/w mannitol, and 2% w/w poloxamer 188. An experimental design matrix was performed with drying air water content of 1 or 10 g/m3 and spray drying solution l-leucine concentrations of 4.6, 7.6, 15.2 or 23.0 mmol/L. The particle size, morphology and crystallinity of spray dried formulations were characterized together with their dynamic moisture vapor sorption and aerosol performance. Higher crystallization and glass transition %RH were observed for the formulations spray dried using drying air with higher water content indicating more stable characteristics. Initial screening using a handheld dry powder inhaler of the realistic aerosol performance revealed that neither changing l-leucine concentration nor the drying gas water content affect the in-vitro expected lung dose. However, using a novel positive pressure inhaler, formulations produced using spray drying solutions with lower l-leucine concentrations showed better aerosol performance with MMAD around 2 µm and FPF < 5 µm around 80%.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Khadka P, Hill PC, Zhang B, Katare R, Dummer J, Das SC. A study on polymorphic forms of rifampicin for inhaled high dose delivery in tuberculosis treatment. Int J Pharm 2020; 587:119602. [PMID: 32663580 DOI: 10.1016/j.ijpharm.2020.119602] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022]
Abstract
Rifampicin is a first-line, highly effective drug currently used orally as a part of a lengthy multi-drug regimen against tuberculosis (TB). Despite the potential of inhaled therapy as an effective approach for TB treatment, an inhalable formulation of rifampicin has not yet been developed for clinical use. In order to do so, it is necessary to evaluate its solid-state properties, which regulate important characteristics like solubility, dissolution, aerosolization, stability and bioavailability. In this study, a crystallization technique and spray drying were used to prepare inhalable rifampicin formulations. Spray drying yielded amorphous formulation of rifampicin while crystalline dihydrate and pentahydrate formulations were obtained by crystallization. The powders were evaluated for their solid-state properties, in vitro aerosolization and aerosolization stability for three months when stored at different relative humidity conditions. All formulations had a mean particle size smaller than 3.8 µm and had a fine particle fraction (FPF) higher than 58.0%. Amorphous and crystalline dihydrate formulations showed no change in aerosolization parameters (emitted dose and FPF) upon storage for three months. The amorphous and pentahydrate formulations were found to undergo oxidative degradation upon storage, and a decrease in their drug content was observed. Among the formulations prepared, rifampicin dihydrate formulation showed the least degradation over the three months period. The inhalable rifampicin formulations prepared in this study, being excipient free, have the potential to be delivered as inhaled dry powder high-dose rifampicin to the lungs for effective treatment of TB.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Boya Zhang
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
28
|
Chang RYK, Chen L, Chen D, Chan HK. Overcoming challenges for development of amorphous powders for inhalation. Expert Opin Drug Deliv 2020; 17:1583-1595. [DOI: 10.1080/17425247.2020.1813105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Lan Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Donghao Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
Ceschan NE, Rosas MD, Olivera ME, Dugour AV, Figueroa JM, Bucalá V, Ramírez-Rigo MV. Development of a Carrier-Free Dry Powder Ofloxacin Formulation With Enhanced Aerosolization Properties. J Pharm Sci 2020; 109:2787-2797. [PMID: 32505450 DOI: 10.1016/j.xphs.2020.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a serious infectious disease that affects more than new 10 million patients each year. Many of these cases are resistant to first-line drugs so second-line ones, like fluoroquinolones, need to be incorporated into the therapeutic. Ofloxacin (OF) is a fluoroquinolone which demonstrates high antibiotic activity against the bacteria that causes TB (M. tuberculosis). In this work, ionic complexes, composed by hyaluronic acid (HA) and OF, with different neutralization degrees, were prepared and processed by spray drying (SD) to obtain powders for inhalatory administration. Combining a formulation with high neutralization degree, high SD atomization air flowrate and the use of a high-performance collection cyclone, very good process yields were obtained. Carrier-free formulations with a loading of 0.39-0.46 gOF/gpowder showed excellent emitted, fine particle, and respirable fractions for capsule loadings of 25 and 100 mg. The ionic complexes demonstrated higher mucoadhesion than pure OF and HA. The best formulation did not affect CALU-3 cell viability up to a dose 6.5 times higher than the MIC90 reported to treat multi-drug resistant TB.
Collapse
Affiliation(s)
- Nazareth Eliana Ceschan
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina.
| | - Melany Denise Rosas
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - María Eugenia Olivera
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA-CONICET), Córdoba, Argentina
| | - Andrea Vanesa Dugour
- Centro de Biología Respiratoria (CEBIR), Fundación Pablo Cassará, Saladillo 2452, C1440FFX Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Manuel Figueroa
- Centro de Biología Respiratoria (CEBIR), Fundación Pablo Cassará, Saladillo 2452, C1440FFX Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica Bucalá
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - María Verónica Ramírez-Rigo
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| |
Collapse
|
30
|
Sahakijpijarn S, Smyth HD, Miller DP, Weers JG. Post-inhalation cough with therapeutic aerosols: Formulation considerations. Adv Drug Deliv Rev 2020; 165-166:127-141. [PMID: 32417367 DOI: 10.1016/j.addr.2020.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/20/2023]
Abstract
This review provides an assessment of post-inhalation cough with therapeutic aerosols. Factors that increase cough may be mitigated through design of the drug, formulation, and device. The incidence of cough is typically less than 5% for drugs with a nominal dose less than 1 mg, including asthma and COPD therapeutics. Cough increases markedly as the dose approaches 100 mg. This is due to changes in the composition of epithelial lining fluid (e.g., increases in osmolality, proton concentration). Whether an individual exhibits cough depends on their degree of sensitization to mechanical and chemical stimuli. Hypersensitivity is increased when the drug, formulation or disease result in increases in lung inflammation. Cough related to changes in epithelial lining fluid composition can be limited by using insoluble neutral forms of drugs and excipients.
Collapse
|
31
|
Dubashynskaya NV, Skorik YA. Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals (Basel) 2020; 13:E83. [PMID: 32365637 PMCID: PMC7281078 DOI: 10.3390/ph13050083] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Polymyxins are vital antibiotics for the treatment of multiresistant Gram-negative ESKAPE pathogen infections. However, their clinical value is limited by their high nephrotoxicity and neurotoxicity, as well as their poor permeability and absorption in the gastrointestinal tract. This review focuses on various polymyxin delivery systems that improve polymyxin bioavailability and reduce drug toxicity through targeted and controlled release. Currently, the most suitable systems for improving oral, inhalation, and parenteral polymyxin delivery are polymer particles, liposomes, and conjugates, while gels, polymer fibers, and membranes are attractive materials for topical administration of polymyxin for the treatment of infected wounds and burns. In general, the application of these systems protects polymyxin molecules from the negative effects of both physiological and pathological factors while achieving higher concentrations at the target site and reducing dosage and toxicity. Improving the properties of polymyxin will be of great interest to researchers who are focused on developing antimicrobial drugs that show increased efficacy and safety.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia;
| |
Collapse
|
32
|
Excipient-free pulmonary insulin dry powder: Pharmacokinetic and pharmacodynamics profiles in rats. J Control Release 2020; 323:412-420. [PMID: 32325175 DOI: 10.1016/j.jconrel.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022]
Abstract
A novel pure insulin spray-dried powder for DPI product (Ins_SD) was studied with respect to physico-chemical stability, in vitro respirability, bioavailability, activity and tolerability. Ins_SD powder exhibited a very high in vitro respirability, independently of the DPI product preparation (manual or semi-automatic). Physico-chemical characteristics of Ins_SD powder remained within the pharmacopoeia limits during 6 months of storage at room temperature. PK/PD profiles were measured in rats that received the pulmonary powders by intratracheal insufflation and compared with Afrezza inhalation insulin. Due to the low drug powder mass to deliver, both insulin powders were diluted with mannitol. Insulin from Ins_SD was promptly absorbed (tmax 15 min and Cmaxx4.9 ± 1.5 mU/ml). Afrezza had a slower absorption (tmax 30 min and Cmax of 1.8 ± 0.37 mU/ml). After glucose injection, Ins_SD determined a rapid reduction of glucose level, similar to Afrezza. As reference, insulin subcutaneous injection showed a long-lasting hypoglycemic effect due to the slow absorption that prolonged insulin plasma level. In summary, Ins_SD product is suitable for post-prandial glucose control, providing a convenient and compliant product, in particular in the event of using a disposable device. Albeit the product has to be stored in fridge, its stability at room temperature allows the diabetic individual to carry the daily dose in normal conditions.
Collapse
|
33
|
Liu H, Shan X, Yu J, Li X, Hu L. Recent Advances in Inhaled Formulations and Pulmonary Insulin Delivery Systems. Curr Pharm Biotechnol 2020; 21:180-193. [PMID: 31612824 DOI: 10.2174/1389201020666191011152248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023]
Abstract
Insulin (INS) therapy played a great role in patients with type 1 and type 2 diabetes to regulate
blood glucose levels. Although hypodermic injection was commonly used for insulin delivery, it
had some disadvantages such as pain, needle phobia and the risk of infection. Therefore, pulmonary
insulin delivery had been developed as an alternative method to overcome the therapeutic challenges in
recent years since pulmonary insulin administration showed great improvements in rapid action and
circumvention of first-pass hepatic metabolism. This review described the most recent developments in
pulmonary insulin administration. Firstly, the structure and physiology of the lung cavity were introduced.
Next, the advantages and disadvantages of pulmonary administration were discussed. Then
some new dosage forms for pulmonary insulin were investigated including carriers based on surfactants
and carriers based on polymers. Finally, innovate insulin inhalers and formulations were also described.
Collapse
Affiliation(s)
- Haofan Liu
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiaosong Shan
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jiaojiao Yu
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| | - Xin Li
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Liandong Hu
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
34
|
Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv 2020; 17:77-96. [PMID: 31815554 PMCID: PMC6981243 DOI: 10.1080/17425247.2020.1702643] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Dry powder inhalers (DPIs) are popular for pulmonary drug delivery. Various techniques have been employed to produce inhalation drug particles and improve the delivery efficiency of DPI formulations. Physical stability of these DPI formulations is critical to ensure the delivery of a reproducible dose to the airways over the shelf-life.Areas covered: This review focuses on the impact of solid-state stability on aerosolization performance of DPI drug particles manufactured by powder production approaches and particle-engineering techniques. It also highlights the different analytical tools that can be used to characterize the physical instability originating from production and storage.Expert opinion: A majority of the DPI literature focuses on the effects of physico-chemical properties such as size, morphology, and density on aerosolization. While little has been reported on the physical stability, particularly the stability of engineered drug particles for use in DPIs. Literature data have shown that different particle-engineering methods and storage conditions may cause physical instability of dry powders for inhalation and can significantly change the aerosol performance. A systematic examination of physical instability mechanisms in DPI formulations is necessary during formulation development in order to select the optimum formulation with satisfactory stability. In addition, the use of appropriate characterization tools is critical to detect and understand physical instability during the development of DPI formulations.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - David Cipolla
- Insmed Incorporated, Bridgewater, NJ 08807-3365, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Spray Dried Formulations for Inhalation-Meaningful Characterisation of Powder Properties. Pharmaceutics 2019; 12:pharmaceutics12010014. [PMID: 31877805 PMCID: PMC7023205 DOI: 10.3390/pharmaceutics12010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022] Open
Abstract
Spray drying as a particle engineering technique is of increasing interest in the field of inhalation and is already being utilised e.g., for the PulmoSphereTM products. As spray dried particles tend to agglomerate and are mechanically instable, low dose filling processes can be difficult. This study correlates powder flowability tests of spray dried formulations with filling processes with drum and dosator systems. Four pulmonary and four nasal powders with different characteristics in terms of shape, composition, and surface polarity were prepared and characterised for powder flowability according to Ph. Eur. and by powder rheometry. All formulations were filled with a manual drum TT and a dosator system. The classical flowability tests according to the Ph. Eur. showed a bad flow behaviour for hydrophilic pulmonary powders (x50 ~ 3 µm), whereas hydrophobic pulmonary particles and nasal particles (x50 ~ 25 µm) showed a better flowing behaviour. Powder rheometry supports this finding but can better differentiate flow behaviours.
Collapse
|
36
|
Weers J. Comparison of Phospholipid-Based Particles for Sustained Release of Ciprofloxacin Following Pulmonary Administration to Bronchiectasis Patients. Pulm Ther 2019; 5:127-150. [PMID: 32026415 PMCID: PMC6967322 DOI: 10.1007/s41030-019-00104-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
The rapid clearance of ciprofloxacin hydrochloride from the lungs following administration as an aerosol leads to poor efficacy in the treatment of pulmonary infections. The development of formulations capable of sustaining ciprofloxacin concentrations in the lungs has the potential to significantly improve antibacterial activity. The present review compares two approaches for sustaining levels of ciprofloxacin in the lungs, a liposomal formulation where ciprofloxacin is encapsulated in small unilamellar vesicles, and a dry powder formulation of the practically insoluble zwitterionic form of the drug. These two formulations recently completed large multicenter, phase 3 clinical studies in bronchiectasis patients. As such, they present a unique opportunity to examine the chemistry, manufacturing, and control of the dosage forms in addition to their tolerability and efficacy in more than 1000 bronchiectasis patients. Both formulations were generally well tolerated with most adverse events found to be mild to moderate in intensity. While the formulations were effective in reducing and/or eradicating infections, this did not lead to reductions in pulmonary exacerbations, the primary endpoint. The failures speak more to the heterogeneous nature of the disease and the difficulty in identifying bronchiectasis patients likely to exacerbate, rather than an inherent limitation of the formulations. While the formulations are similar in many respects, they also present some interesting differences. This review explores the implications of these differences on the treatment of respiratory infections.
Collapse
Affiliation(s)
- Jeffry Weers
- Respira Therapeutics, Inc., Burlingame, CA, USA.
| |
Collapse
|
37
|
Das T, Choong HJ, Kwang YC, Chan HK, Manos J, Kwok PCL, Duong HTT. Spray-Dried Particles of Nitric Oxide-Modified Glutathione for the Treatment of Chronic Lung Infection. Mol Pharm 2019; 16:1723-1731. [PMID: 30763098 DOI: 10.1021/acs.molpharmaceut.9b00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance in pathogenic bacteria has emerged as a big challenge to human and animal health and significant economy loss worldwide. Development of novel strategies to tackle antibiotic resistance is of the utmost priority. In this study, we combined glutathione (GSH), a master antioxidant in all mammalian cells, and nitric oxide, a proven biofilm-dispersing agent, to produce GSNO. The resazurin biofilm viability assay, crystal violet biofilm assay, and confocal microscopy techniques showed that GSNO disrupted biofilms of both P. aeruginosa PAO1 and multidrug resistant A. baumaunii (MRAB 015069) more efficiently than GSH alone. In addition, GSNO showed a higher reduction in biofilm viability and biomass when combined with antibiotics. This combination treatment also inhibited A. baumaunii (MRAB 015069) growth and facilitated human foreskin fibroblast (HFF-1) confluence and growth simultaneously. A potentially inhalable GSNO powder with reasonable aerosol performance and antibiofilm activity was produced by spray drying. This combination shows promise as a novel formulation for treating pulmonary bacterial infections.
Collapse
Affiliation(s)
- Theerthankar Das
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Huai-Jin Choong
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Yee Chin Kwang
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Hak-Kim Chan
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Jim Manos
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Philip Chi Lip Kwok
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Hien T T Duong
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| |
Collapse
|