1
|
Das AC, Nichols JM, Crelli CV, Liu L, Vichare R, Pham HV, Gaffney CM, Cherry FR, Grace PM, Shepherd AJ, Janjic JM. Injectable, reversibly thermoresponsive captopril-laden hydrogel for the local treatment of sensory loss in diabetic neuropathy. Sci Rep 2024; 14:18978. [PMID: 39152212 PMCID: PMC11329637 DOI: 10.1038/s41598-024-69437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
A major and irreversible complication of diabetes is diabetic peripheral neuropathy (DPN), which can lead to significant disability and decreased quality of life. Prior work demonstrates the peptide hormone Angiotensin II (Ang II) is released locally in neuropathy and drives inflammation and impaired endoneurial blood flow. Therefore, we proposed that by utilizing a local thermoresponsive hydrogel injection, we could deliver inhibitors of angiotensin-converting enzyme (ACE) to suppress Ang II production and reduce nerve dysfunction in DPN through local drug release. The ACE inhibitor captopril was encapsulated into a micelle, which was then embedded into a reversibly thermoresponsive pluronics-based hydrogel matrix. Drug-free and captopril-loaded hydrogels demonstrated excellent product stability and sterility. Rheology testing confirmed sol properties with low viscosity at ambient temperature and increased viscosity and gelation at 37 °C. Captopril-loaded hydrogels significantly inhibited Ang II production in comparison to drug-free hydrogels. DPN mice treated with captopril-loaded hydrogels displayed normalized mechanical sensitivity and reduced inflammation, without side-effects associated with systemic exposure. Our data demonstrate the feasibility of repurposing ACE inhibitors as locally delivered anti-inflammatories for the treatment of sensory deficits in DPN. To the best of our knowledge, this is the first example of a locally delivered ACE inhibitor for the treatment of DPN.
Collapse
Affiliation(s)
- Amit Chandra Das
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - James M Nichols
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlin V Crelli
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Lu Liu
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Riddhi Vichare
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Hoang Vu Pham
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlyn M Gaffney
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Fisher R Cherry
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Peter M Grace
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Andrew J Shepherd
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA.
| | - Jelena M Janjic
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA.
| |
Collapse
|
2
|
Özdemir S, Üner B, Karaküçük A, Çelik B, Sümer E, Taş Ç. Nanoemulsions as a Promising Carrier for Topical Delivery of Etodolac: Formulation Development and Characterization. Pharmaceutics 2023; 15:2510. [PMID: 37896270 PMCID: PMC10610052 DOI: 10.3390/pharmaceutics15102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
This research primarily focuses on the development of innovative topical nanoemulsions for etodolac, aimed at surmounting its inherent limitations. The preparation of etodolac nanoemulsions is accomplished through a combination of high shear homogenization and ultrasonication methods. The optimization of the formulation components is systematically conducted using the design of experiments methodology. The droplet size (DS), polydispersity index (PDI), and zeta potential (ZP) of the optimized formulation were assessed using the differential light scattering (DLS) technique. Surface morphology examinations were conducted using electron microscopy, while interactions between excipients and the drug were analyzed through FTIR analysis. Additionally, in vitro release and ex vivo permeability studies were carried out. Furthermore, anti-inflammatory activity was evaluated in the context of a carrageenan-induced paw edema model in rats. The DS, PDI, and ZP of the optimal formulation were 163.5 nm, 0.141, and -33.1 mV, respectively. The in vitro release profile was assessed as a sustained release by following a non-Fickian drug transport. The flux of etodolac nanoemulsions and coarse dispersions were 165.7 ± 11.7 µg/cm2 h and 59.7 ± 15.2 µg/cm2 h, respectively. Enhanced edema inhibition was observed at 13.4%, 36.5%, and 50.65% for the 6th, 8th, and 24th hours, respectively. Taken together, these results confirmed that nanoemulsions are promising carriers for the topical delivery of etodolac.
Collapse
Affiliation(s)
- Samet Özdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, 34445 Istanbul, Turkey
| | - Burcu Üner
- Department of Administrative and Pharmaceutical Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO 63110, USA;
| | - Alptuğ Karaküçük
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, 06050 Ankara, Turkey;
| | - Burak Çelik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey;
| | - Engin Sümer
- Experimental Research Center (YUDETAM), Faculty of Medicine, Yeditepe University, 34755 Istanbul, Turkey;
| | - Çetin Taş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey;
| |
Collapse
|
3
|
Janjic JM, McCallin R, Liu L, Crelli C, Das AC, Troidle A. In vitro Quality Assessments of Perfluorocarbon Nanoemulsions for Near-infrared Fluorescence Imaging of Inflammation in Preclinical Models. Bio Protoc 2023; 13:e4842. [PMID: 37817906 PMCID: PMC10560689 DOI: 10.21769/bioprotoc.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 10/12/2023] Open
Abstract
Tracking macrophages by non-invasive molecular imaging can provide useful insights into the immunobiology of inflammatory disorders in preclinical disease models. Perfluorocarbon nanoemulsions (PFC-NEs) have been well documented in their ability to be taken up by macrophages through phagocytosis and serve as 19F magnetic resonance imaging (MRI) tracers of inflammation in vivo and ex vivo. Incorporation of near-infrared fluorescent (NIRF) dyes in PFC-NEs can help monitor the spatiotemporal distribution of macrophages in vivo during inflammatory processes, using NIRF imaging as a complementary methodology to MRI. Here, we discuss in depth how both colloidal and fluorescence stabilities of the PFC-NEs are essential for successful and reliable macrophage tracking in vivo and for their detection in excised tissues ex vivo by NIRF imaging. Furthermore, PFC-NE quality assures NIRF imaging reproducibility and reliability across preclinical studies, providing insights into inflammation progression and therapeutic response. Previous studies focused on assessments of colloidal property changes in response to stress and during storage as a means of quality control. We recently focused on the joint evaluation of both colloidal and fluorescence properties and their relationship to NIRF imaging outcomes. In this protocol, we summarize the key assessments of the fluorescent dye-labeled nanoemulsions, which include long-term particle size distribution monitoring as the measure of colloidal stability and monitoring of the fluorescence signal. Due to its simplicity and reproducibility, our protocols are easy to adopt for researchers to assess the quality of PFC-NEs for in vivo NIRF imaging applications.
Collapse
Affiliation(s)
- Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Rebecca McCallin
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Lu Liu
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Caitlin Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Amit Chandra Das
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Anneliese Troidle
- School of Science and Engineering, Department of Biomedical Engineering, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Vichare R, Crelli C, Liu L, Das AC, McCallin R, Zor F, Kulahci Y, Gorantla VS, Janjic JM. A Reversibly Thermoresponsive, Theranostic Nanoemulgel for Tacrolimus Delivery to Activated Macrophages: Formulation and In Vitro Validation. Pharmaceutics 2023; 15:2372. [PMID: 37896130 PMCID: PMC10610217 DOI: 10.3390/pharmaceutics15102372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Despite long-term immunosuppression, organ transplant recipients face the risk of immune rejection and graft loss. Tacrolimus (TAC, FK506, Prograf®) is an FDA-approved keystone immunosuppressant for preventing transplant rejection. However, it undergoes extensive first-pass metabolism and has a narrow therapeutic window, which leads to erratic bioavailability and toxicity. Local delivery of TAC directly into the graft, instead of systemic delivery, can improve safety, efficacy, and tolerability. Macrophages have emerged as promising therapeutic targets as their increased levels correlate with an increased risk of organ rejection and a poor prognosis post-transplantation. Here, we present a locally injectable drug delivery platform for macrophages, where TAC is incorporated into a colloidally stable nanoemulsion and then formulated as a reversibly thermoresponsive, pluronic-based nanoemulgel (NEG). This novel formulation is designed to undergo a sol-to-gel transition at physiological temperature to sustain TAC release in situ at the site of local application. We also show that TAC-NEG mitigates the release of proinflammatory cytokines and nitric oxide from lipopolysaccharide (LPS)-activated macrophages. To the best of our knowledge, this is the first TAC-loaded nanoemulgel with demonstrated anti-inflammatory effects on macrophages in vitro.
Collapse
Affiliation(s)
- Riddhi Vichare
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Caitlin Crelli
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Lu Liu
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Amit Chandra Das
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Rebecca McCallin
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Fatih Zor
- Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC 27101, USA; (F.Z.); (Y.K.); (V.S.G.)
| | - Yalcin Kulahci
- Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC 27101, USA; (F.Z.); (Y.K.); (V.S.G.)
| | - Vijay S. Gorantla
- Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC 27101, USA; (F.Z.); (Y.K.); (V.S.G.)
| | - Jelena M. Janjic
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| |
Collapse
|
5
|
Vichare R, Crelli C, Liu L, McCallin R, Cowan A, Stratimirovic S, Herneisey M, Pollock JA, Janjic JM. Folate-conjugated near-infrared fluorescent perfluorocarbon nanoemulsions as theranostics for activated macrophage COX-2 inhibition. Sci Rep 2023; 13:15229. [PMID: 37709807 PMCID: PMC10502124 DOI: 10.1038/s41598-023-41959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Activated macrophages play a critical role in the orchestration of inflammation and inflammatory pain in several chronic diseases. We present here the first perfluorocarbon nanoemulsion (PFC NE) that is designed to preferentially target activated macrophages and can deliver up to three payloads (two fluorescent dyes and a COX-2 inhibitor). Folate receptors are overexpressed on activated macrophages. Therefore, we introduced a folate-PEG-cholesterol conjugate into the formulation. The incorporation of folate conjugate did not require changes in processing parameters and did not change the droplet size or fluorescent properties of the PFC NE. The uptake of folate-conjugated PFC NE was higher in activated macrophages than in resting macrophages. Flow cytometry showed that the uptake of folate-conjugated PFC NE occurred by both phagocytosis and receptor-mediated endocytosis. Furthermore, folate-conjugated PFC NE inhibited the release of proinflammatory cytokines (TNF-α and IL-6) more effectively than nonmodified PFC NE, while drug loading and COX-2 inhibition were comparable. The PFC NEs reported here were successfully produced on multiple scales, from 25 to 200 mL, and by using two distinct processors (microfluidizers: M110S and LM20). Therefore, folate-conjugated PFC NEs are viable anti-inflammatory theranostic nanosystems for macrophage drug delivery and imaging.
Collapse
Affiliation(s)
- Riddhi Vichare
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Caitlin Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Lu Liu
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Rebecca McCallin
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Abree Cowan
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Stefan Stratimirovic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Michele Herneisey
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - John A Pollock
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
6
|
van Heeswijk RB, Bauer WR, Bönner F, Janjic JM, Mulder WJM, Schreiber LM, Schwitter J, Flögel U. Cardiovascular Molecular Imaging With Fluorine-19 MRI: The Road to the Clinic. Circ Cardiovasc Imaging 2023; 16:e014742. [PMID: 37725674 DOI: 10.1161/circimaging.123.014742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fluorine-19 (19F) magnetic resonance imaging is a unique quantitative molecular imaging modality that makes use of an injectable fluorine-containing tracer that generates the only visible 19F signal in the body. This hot spot imaging technique has recently been used to characterize a wide array of cardiovascular diseases and seen a broad range of technical improvements. Concurrently, its potential to be translated to the clinical setting is being explored. This review provides an overview of this emerging field and demonstrates its diagnostic potential, which shows promise for clinical translation. We will describe 19F magnetic resonance imaging hardware, pulse sequences, and tracers, followed by an overview of cardiovascular applications. Finally, the challenges on the road to clinical translation are discussed.
Collapse
Affiliation(s)
- Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland (R.B.v.H.)
| | - Wolfgang R Bauer
- Department of Internal Medicine I, Universitätsklinikum Würzburg, Germany (W.R.B.)
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Germany (F.B.)
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA (J.M.J.)
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, the Netherlands (W.J.M.M.)
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (W.J.M.M.)
| | - Laura M Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Wuerzburg University Hospitals, Germany (L.M.S.)
| | - Juerg Schwitter
- Division of Cardiology, Cardiovascular Department (J.S.), Lausanne University Hospital (CHUV), Switzerland
- CMR Center (J.S.), Lausanne University Hospital (CHUV), Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Switzerland (J.S.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging (U.F.), Heinrich Heine University, Germany
- Cardiovascular Research Institute Düsseldorf (CARID) (U.F.), Heinrich Heine University, Germany
| |
Collapse
|
7
|
Dias Assis BR, Gomes IP, de Castro JT, Rivelli GG, de Castro NS, Gomez-Mendoza DP, Bagno FF, Hojo-Souza NS, Chaves Maia AL, Lages EB, da Fonseca FG, Ribeiro Teixeira SM, Fernandes AP, Gazzinelli RT, Castro Goulart GA. Quality attributes of CTVad1, a nanoemulsified adjuvant for phase I clinical trial of SpiN COVID-19 vaccine. Nanomedicine (Lond) 2023; 18:1175-1194. [PMID: 37712604 DOI: 10.2217/nnm-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: To develop, characterize and evaluate an oil/water nanoemulsion with squalene (CTVad1) to be approved as an adjuvant for the SpiN COVID-19 vaccine clinical trials. Materials & methods: Critical process parameters (CPPs) of CTVad1 were standardized to meet the critical quality attributes (CQAs) of an adjuvant for human use. CTVad1 and the SpiN-CTVad1 vaccine were submitted to physicochemical, stability, in vitro and in vivo studies. Results & conclusion: All CQAs were met in the CTVad1 production process. SpiN- CTVad1 met CQAs and induced high levels of antibodies and specific cellular responses in in vivo studies. These results represented a critical step in the process developed to meet regulatory requirements for the SpiN COVID-19 vaccine clinical trial.
Collapse
Affiliation(s)
- Bruna Rodrigues Dias Assis
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Isabela Pereira Gomes
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Júlia Teixeira de Castro
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Graziella Gomes Rivelli
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Natália Salazar de Castro
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Diana Paola Gomez-Mendoza
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Flávia Fonseca Bagno
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Natália Satchiko Hojo-Souza
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
| | - Ana Luiza Chaves Maia
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Eduardo Burgarelli Lages
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Flávio Guimaraes da Fonseca
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| |
Collapse
|
8
|
Deal B, Phillips K, Crelli C, Janjic JM, Pollock JA. RNA-Seq Reveals Sex Differences in Gene Expression during Peripheral Neuropathic Inflammation and in Pain Relief from a COX-2 Inhibiting Theranostic Nanoemulsion. Int J Mol Sci 2023; 24:ijms24119163. [PMID: 37298117 DOI: 10.3390/ijms24119163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Given decades of neuroinflammatory pain research focused only on males, there is an urgent need to better understand neuroinflammatory pain in females. This, paired with the fact that currently there is no long-term effective treatment for neuropathic pain furthers the need to evaluate how neuropathic pain develops in both sexes and how it can be relieved. Here we show that chronic constriction injury of the sciatic nerve caused comparable levels of mechanical allodynia in both sexes. Using a COX-2 inhibiting theranostic nanoemulsion with increased drug loading, both sexes achieved similar reduction in mechanical hypersensitivity. Given that both sexes have improved pain behavior, we specifically explored differential gene expression between sexes in the dorsal root ganglia (DRG) during pain and relief. Total RNA from the DRG revealed a sexually dimorphic expression for injury and relief caused by COX-2 inhibition. Of note, both males and females experience increased expression of activating transcription factor 3 (Atf3), however, only the female DRG shows decreased expression following drug treatment. Alternatively, S100A8 and S100A9 expression appear to play a sex specific role in relief in males. The sex differences in RNA expression reveal that comparable behavior does not necessitate the same gene expression.
Collapse
Affiliation(s)
- Brooke Deal
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Katherine Phillips
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caitlin Crelli
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jelena M Janjic
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John A Pollock
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
9
|
Herneisey M, Janjic JM. Multiple Linear Regression Predictive Modeling of Colloidal and Fluorescence Stability of Theranostic Perfluorocarbon Nanoemulsions. Pharmaceutics 2023; 15:1103. [PMID: 37111589 PMCID: PMC10146561 DOI: 10.3390/pharmaceutics15041103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Perfluorocarbon nanoemulsions (PFC-NEs) are widely used as theranostic nanoformulations with fluorescent dyes commonly incorporated for tracking PFC-NEs in tissues and in cells. Here, we demonstrate that PFC-NE fluorescence can be fully stabilized by controlling their composition and colloidal properties. A quality-by-design (QbD) approach was implemented to evaluate the impact of nanoemulsion composition on colloidal and fluorescence stability. A full factorial, 12-run design of experiments was used to study the impact of hydrocarbon concentration and perfluorocarbon type on nanoemulsion colloidal and fluorescence stability. PFC-NEs were produced with four unique PFCs: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD), perfluoro(polyethylene glycol dimethyl ether) oxide (PFPE), and perfluoro-15-crown-5-ether (PCE). Multiple linear regression modeling (MLR) was used to predict nanoemulsion percent diameter change, polydispersity index (PDI), and percent fluorescence signal loss as a function of PFC type and hydrocarbon content. The optimized PFC-NE was loaded with curcumin, a known natural product with wide therapeutic potential. Through MLR-supported optimization, we identified a fluorescent PFC-NE with stable fluorescence that is unaffected by curcumin, which is known to interfere with fluorescent dyes. The presented work demonstrates the utility of MLR in the development and optimization of fluorescent and theranostic PFC nanoemulsions.
Collapse
Affiliation(s)
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
10
|
Balogh M, Janjic JM, Shepherd AJ. Targeting Neuroimmune Interactions in Diabetic Neuropathy with Nanomedicine. Antioxid Redox Signal 2022; 36:122-143. [PMID: 34416821 PMCID: PMC8823248 DOI: 10.1089/ars.2021.0123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Diabetes is a major source of neuropathy and neuropathic pain that is set to continue growing in prevalence. Diabetic peripheral neuropathy (DPN) and pain associated with diabetes are not adequately managed by current treatment regimens. Perhaps the greatest difficulty in treating DPN is the complex pathophysiology, which involves aspects of metabolic disruption and neurotrophic deficits, along with neuroimmune interactions. There is, therefore, an urgent need to pursue novel therapeutic options targeting the key cellular and molecular players. Recent Advances: To that end, cellular targeting becomes an increasingly compelling drug delivery option as our knowledge of neuroimmune interactions continues to mount. These nanomedicine-based approaches afford a potentially unparalleled specificity and longevity of drug targeting, using novel or established compounds, all while minimizing off-target effects. Critical Issues: The DPN therapeutics directly targeted at the nervous system make up the bulk of currently available treatment options. However, there are significant opportunities based on the targeting of non-neuronal cells and neuroimmune interactions in DPN. Future Directions: Nanomedicine-based agents represent an exciting opportunity for the treatment of DPN with the goals of improving the efficacy and safety profile of analgesia, as well as restoring peripheral neuroregenerative capacity. Antioxid. Redox Signal. 36, 122-143.
Collapse
Affiliation(s)
- Mihály Balogh
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Shepherd
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Optical sensor arrays designed for guided manufacture of perfluorocarbon nanoemulsions with a non-synthetic stabilizer. Acta Biomater 2021; 136:558-569. [PMID: 34563723 DOI: 10.1016/j.actbio.2021.09.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Hydrophobic drugs are incorporated into oil-in-water nanoemulsions (OIW) either as new formulations or repurposed for intravenous delivery. Typically, these are manufactured through stepwise processes of sonication or high-pressure homogenization (HPH). The guiding criteria for most nanoemulsion manufacture are the size and homogeneity/polydispersity of the drug-laden particles with strict requirements for clinical injectables. To date, most formulation optimization is done through trial and error with stepwise sampling during processing utilizing dynamic light scattering (DLS), light obscuration sensing (LOS) or laser particle tracking (LPT) to assess manufacturing progress. The objective of this work was to develop and implement an in-line optical turbidity/nephelometry sensor array for the longitudinal in-process monitoring of nanoemulsion manufacture. A further objective was the use of this sensor array to rapidly optimize the manufacture of a sub-120 nm oxygen carrying perfluorocarbon nanoemulsion with a non-synthetic stabilizer. During processing, samples were taken for particle size measurement and further characterization. There was a significant correlation and agreement between particle size and sensor signal as well as improved process reproducibility through sensor-guided manufacture. Given the cost associated with nanoemulsion development and scale-up manufacture, our sensor arrays could be an invaluable tool for efficient and cost-effective drug development. Sensor-guided manufacturing was used to optimize oxygen-carrying nanoemulsions. These were tested, in vitro, for their ability to improve the viability of encapsulated endocrine clusters (mouse insulinoma, Min6) and to eliminate hypoxia due to oxygen mass transfer limitations. The nanomulsions significantly improved encapsulated cluster viability and reduced hypoxia within the microcapsule environment. STATEMENT OF SIGNIFICANCE: Nanoemulsions are rapidly becoming vehicles for the controlled release delivery of both hydrophilic and hydrophobic drugs given their large surface area for exchange. As work shifts from bench to large scale manufacturing, there is a critical need for technologies that can monitor and accumulate data during processing, particularly regarding the endpoint criteria of particle size and stability. To date, no such technology has been implemented in nanoemulsion manufacture. In this paper we develop and implement an optical sensor array for in-line nanoemulsion process monitoring and then use the array to optimize the development and manufacture of novel reproducible oxygen carrying nanoemulsions lacking synthetic surfactants.
Collapse
|
12
|
Adena SKR, Herneisey M, Pierce E, Hartmeier PR, Adlakha S, Hosfeld MAI, Drennen JK, Janjic JM. Quality by Design Methodology Applied to Process Optimization and Scale up of Curcumin Nanoemulsions Produced by Catastrophic Phase Inversion. Pharmaceutics 2021; 13:880. [PMID: 34203672 PMCID: PMC8232217 DOI: 10.3390/pharmaceutics13060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023] Open
Abstract
In the presented study, we report development of a stable, scalable, and high-quality curcumin-loaded oil/water (o/w) nanoemulsion manufactured by concentration-mediated catastrophic phase inversion as a low energy nanoemulsification strategy. A design of experiments (DoE) was constructed to determine the effects of process parameters on the mechanical input required to facilitate the transition from the gel phase to the final o/w nanoemulsion and the long-term effects of the process parameters on product quality. A multiple linear regression (MLR) model was constructed to predict nanoemulsion diameter as a function of nanoemulsion processing parameters. The DoE and subsequent MLR model results showed that the manufacturing process with the lowest temperature (25 °C), highest titration rate (9 g/minute), and lowest stir rate (100 rpm) produced the highest quality nanoemulsion. Both scales of CUR-loaded nanoemulsions (100 g and 500 g) were comparable to the drug-free optimal formulation with 148.7 nm and 155.1 nm diameter, 0.22 and 0.25 PDI, and 96.29 ± 0.76% and 95.60 ± 0.88% drug loading for the 100 g and 500 g scales, respectively. Photostability assessments indicated modest loss of drug (<10%) upon UV exposure of 24 h, which is appropriate for intended transdermal applications, with expected reapplication of every 6-8 h.
Collapse
Affiliation(s)
- Sandeep Kumar Reddy Adena
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Michele Herneisey
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Eric Pierce
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Paul R. Hartmeier
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Suneera Adlakha
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Marco A. I. Hosfeld
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - James K. Drennen
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA; (S.K.R.A.); (M.H.); (E.P.); (P.R.H.); (S.A.); (M.A.I.H.); (J.K.D.)
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15228, USA
| |
Collapse
|
13
|
Lambert E, Janjic JM. Quality by design approach identifies critical parameters driving oxygen delivery performance in vitro for perfluorocarbon based artificial oxygen carriers. Sci Rep 2021; 11:5569. [PMID: 33692373 PMCID: PMC7946885 DOI: 10.1038/s41598-021-84076-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 01/15/2023] Open
Abstract
Perfluorocarbons (PFCs) exhibiting high solubility for oxygen are attractive materials as artificial oxygen carriers (AOC), an alternative to whole blood or Haemoglobin-based oxygen carriers (HBOCs). PFC-based AOCs, however, met clinical translation roadblocks due to product quality control challenges. To overcome these issues, we present an adaptation of Quality by Design (QbD) practices to optimization of PFC nanoemulsions (PFC-NEs) as AOCs. QbD elements including quality risk management, design of experiments (DoE), and multivariate data analysis facilitated the identification of composition and process parameters that strongly impacted PFC colloidal stability and oxygen transport function. Resulting quantitative relationships indicated a composition-driven tradeoff between stability and oxygen transport. It was found that PFC content was most predictive of in vitro oxygen release, but the PFC type (perfluoro-15-crown-5-ether, PCE or perfluorooctyl bromide, PFOB) had no effect on oxygen release. Furthermore, we found, under constant processing conditions, all PFC-NEs, comprised of varied PFC and hydrocarbon content, exhibited narrow droplet size range (100–150 nm) and narrow size distribution. Representative PFOB-NE maintained colloidal attributes upon manufacturing on larger scale (100 mL). QbD approach offers unique insights into PFC AOC performance, which will overcome current product development challenges and accelerate clinical translation.
Collapse
Affiliation(s)
- Eric Lambert
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
14
|
An analytical "quality by design" approach in RP-HPLC method development and validation for reliable and rapid estimation of irinotecan in an injectable formulation. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:57-79. [PMID: 32697749 DOI: 10.2478/acph-2021-0008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 01/19/2023]
Abstract
The objective of the present study was to develop a robust, simple, economical and sensitive HPLC-UV method using the "quality-by-design" approach for the estimation of irinotecan (IRI) in marketed formulations. RP-HPLC method was developed by applying Box-Behnken design with Hyper-Clone (Phenomenex®) C18 column (250 × 4.6 mm id, particle size 5 µm, ODS 130 Å) as a stationary phase. Acetonitrile and 20 mmol L-1 potassium phosphate buffer (pH 2.5) containing 0.1 % triethylamine in a ratio of 45:55 % (V/V) was used as a mobile phase. The sample was injected in a volume of 20 µL into the HPLC system. UV detector at 254 nm was used to estimate and quantify IRI. Isocratic elution was opted while the flow rate was maintained at 0.75 mL min-1. The retention time of IRI was found to be 4.09 min. The responses were found to be linear for concentration range of 0.5 to 18.0 µg mL-1 and the coefficient of determination value was found to be 0.9993. Percent relative standard deviation for intra- and inter-day precisions was found in the range of 0.1 to 0.4 %. LOD and LOQ values were found to be 4.87 and 14.75 ng mL-1, resp. Robustness studies confirmed that the developed method is robust with RSD of a maximum 0.1 %. The method is simple, precise, sensitive, robust and economical making it applicable to the estimation of IRI in an injectable formulation.
Collapse
|
15
|
Khurana B, Arora D, Narang RK. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: In vitro, ex vivo and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
17
|
Lambert E, Gorantla VS, Janjic JM. Pharmaceutical design and development of perfluorocarbon nanocolloids for oxygen delivery in regenerative medicine. Nanomedicine (Lond) 2019; 14:2697-2712. [PMID: 31657273 DOI: 10.2217/nnm-2019-0260] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorocarbons (PFCs) have been investigated as oxygen carriers for several decades in varied biomedical applications. PFCs are chemically and biologically inert, temperature and storage stable, pose low to no infectious risk, can be commercially manufactured, and have well established gas transport properties. In this review, we highlight design and development strategies for their successful application in regenerative medicine, transplantation and organ preservation. Effective tissue preservation strategies are key to improving outcomes of extremity salvage and organ transplantation. Maintaining tissue integrity requires adequate oxygenation to support aerobic metabolism. The use of whole blood for oxygen delivery is fraught with limitations of poor shelf stability, infectious risk, religious exclusions and product shortages. Other agents also face clinical challenges in their implementation. As a solution, we discuss new ways of designing and developing PFC-based artificial oxygen carriers by implementing modern pharmaceutical quality by design and scale up manufacturing methodologies.
Collapse
Affiliation(s)
- Eric Lambert
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA.,AIRMED Program, 59th Medical Wing, United States Air Force, United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA.,AIRMED Program, 59th Medical Wing, United States Air Force, United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| |
Collapse
|
18
|
Son GH, Na YG, Huh HW, Wang M, Kim MK, Han MG, Byeon JJ, Lee HK, Cho CW. Systemic Design and Evaluation of Ticagrelor-Loaded Nanostructured Lipid Carriers for Enhancing Bioavailability and Antiplatelet Activity. Pharmaceutics 2019; 11:E222. [PMID: 31071977 PMCID: PMC6572397 DOI: 10.3390/pharmaceutics11050222] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Ticagrelor (TGL), a P2Y12 receptor antagonist, is classified as biopharmaceutics classification system (BCS) class IV drug due to its poor solubility and permeability, resulting in low oral bioavailability. Nanostructured lipid carriers (NLC) are an efficient delivery system for the improvement of bioavailability of BCS class IV drugs. Hence, we prepared TGL-loaded NLC (TGL-NLC) to enhance the oral bioavailability and antiplatelet activity of TGL with a systemic design approach. The optimized TGL-NLC with Box-Behnken design showed a small particle size of 87.6 nm and high encapsulation efficiency of 92.1%. Scanning electron microscope (SEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) were performed to investigate the characteristics of TGL-NLC. Furthermore, TGL-NLC exhibited biocompatible cytotoxicity against Caco-2 cells. Cellular uptake of TGL-NLC was 1.56-fold higher than that of raw TGL on Caco-2 cells. In pharmacokinetic study, the oral bioavailability of TGL-NLC was 254.99% higher than that of raw TGL. In addition, pharmacodynamic study demonstrated that the antiplatelet activity of TGL-NLC was superior to that of raw TGL, based on enhanced bioavailability of TGL-NLC. These results suggest that TGL-NLC can be applied for efficient oral absorption and antiplatelet activity of TGL.
Collapse
Affiliation(s)
- Gi-Ho Son
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
- Present affiliation: Korea United Pharmaceutical Co. Ltd., 25-23, Nojangongdan-gil. Jeondong-myeon, Sejong 30011, Korea.
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hyun Wook Huh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Miao Wang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Min-Ki Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Min-Gu Han
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ju Byeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hong-Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|