1
|
Dorsey PJ, Lau CL, Chang TC, Doerschuk PC, D'Addio SM. Review of machine learning for lipid nanoparticle formulation and process development. J Pharm Sci 2024:S0022-3549(24)00422-2. [PMID: 39341497 DOI: 10.1016/j.xphs.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes of vaccines, and alternate modes of intracellular delivery for therapeutic proteins. In the pharmaceutical industry, establishing a robust formulation and process to achieve target product performance is a critical component of drug development. Fundamental understanding of the processes for making LNPs and their interactions with biological systems have advanced considerably in the wake of the COVID-19 pandemic. Nevertheless, LNP formulation research remains largely empirical and resource intensive due to the multitude of input parameters and the complex physical phenomena that govern the processes of nanoparticle precipitation, self-assembly, structure evolution, and stability. Increasingly, artificial intelligence and machine learning (AI/ML) are being applied to improve the efficiency of research activities through in silico models and predictions, and to drive deeper fundamental understanding of experimental inputs to functional outputs. This review will identify current challenges and opportunities in the development of robust LNP formulations of nucleic acids, review studies that apply machine learning methods to experimental datasets, and provide discussion on associated data science challenges to facilitate collaboration between formulation and data scientists, aiming to accelerate the advancement of AI/ML applied to LNP formulation and process optimization.
Collapse
Affiliation(s)
- Phillip J Dorsey
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Christina L Lau
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Ti-Chiun Chang
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter C Doerschuk
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Suzanne M D'Addio
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
2
|
Khan HU, Ali Y, Khan F, Al-antari MA. A comprehensive study on unraveling the advances of immersive technologies (VR/AR/MR/XR) in the healthcare sector during the COVID-19: Challenges and solutions. Heliyon 2024; 10:e35037. [PMID: 39157361 PMCID: PMC11328097 DOI: 10.1016/j.heliyon.2024.e35037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The current COVID-19 pandemic has affected almost every aspect of life but its impact on the healthcare landscape is conspicuously adverse. However, digital technologies played a significant contribution in coping with the challenges spawned by this pandemic. In this list of applied digital technologies, the role of immersive technologies in battling COVID-19 is notice-worthy. Immersive technologies consisting of virtual reality (VR), augmented reality (AR), mixed reality (MR), extended reality (XR), metaverse, gamification, etc. have shown enormous market growth within the healthcare system, particularly with the emergence of pandemics. These technologies supplemented interactivity, immersive experience, 3D modeling, touching sensory elements, simulation, and feedback mechanisms to tackle the COVID-19 disease in healthcare systems. Keeping in view the applicability and significance of immersive technological advancement, the major aim of this study is to identify and highlight the role of immersive technologies concerning handling COVID-19 in the healthcare setup. The contribution of immersive technologies in the healthcare domain for the different purposes such as medical education, medical training, proctoring, online surgeries, stress management, social distancing, physical fitness, drug manufacturing and designing, and cognitive rehabilitation is highlighted. A comprehensive and in-depth analysis of the collected studies has been performed to understand the current research work and future research directions. A state-of-the-artwork is presented to identify and discuss the various issues involving the adoption of immersive technologies in the healthcare area. Furthermore, the solutions to these emerging challenges and issues have been provided based on an extensive literature study. The results of this study show that immersive technologies have the considerable potential to provide massive support to stakeholders in the healthcare system during current COVID-19 situation and future pandemics.
Collapse
Affiliation(s)
- Habib Ullah Khan
- Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha Qatar
| | - Yasir Ali
- Shahzeb Shaheed Govt Degree College Razzar, Swabi, Higher Education Department, KP, Pakistan
| | - Faheem Khan
- Department of Computer Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul, 05006, Republic of Korea
| |
Collapse
|
3
|
Bălăceanu-Gurău B, Dumitrascu A, Giurcăneanu C, Tatar R, Gurău CD, Orzan OA. A Comprehensive Review on the Intricate Interplay between COVID-19 Immunization and the New Onset of Pemphigus Foliaceus. Vaccines (Basel) 2024; 12:857. [PMID: 39203983 PMCID: PMC11360219 DOI: 10.3390/vaccines12080857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Autoimmune bullous diseases (AIBDs) are characterized by the formation of vesicles, bullous lesions, and mucosal erosions. The autoantibodies target the cellular anchoring structures from the surface of epidermal keratinocyte named desmosomes, leading to a loss of cellular cohesion named acantholysis. AIBDs are classified into intraepidermal or subepidermal types based on clinical features, histological characteristics, and immunofluorescence patterns. Pemphigus foliaceus (PF) is an acquired, rare, autoimmune skin condition associated with autoantibodies that specifically target desmoglein-1, leading to a clinical presentation characterized by delicate cutaneous blisters, typically sparing the mucous membranes. Several factors, including genetic predisposition, environmental triggers, malignancies, medication use, and vaccination (for influenza, hepatitis B, rabies, tetanus, and more recently, severe acute respiratory syndrome Coronavirus 2 known as SARS-CoV-2), can potentially trigger the onset of pemphigus. With the advent of vaccines playing a pivotal role in combatting the 2019 coronavirus disease (COVID-19), extensive research has been conducted globally to ascertain their efficacy and potential cutaneous adverse effects. While reports of AIBDs post-COVID-19 vaccination exist in the medical literature, instances of PF following vaccination have been less commonly reported worldwide. The disease's pathophysiology is likely attributed to the resemblance between the ribonucleic acid (RNA) antigen present in these vaccines and cellular nuclear matter. The protein produced by the BNT-162b2 messenger ribonucleic acid (mRNA) vaccine includes immunogenic epitopes that could potentially trigger autoimmune phenomena in predisposed individuals through several mechanisms, including molecular mimicry, the activation of pattern recognition receptors, the polyclonal stimulation of B cells, type I interferon production, and autoinflammation. In this review, we present a comprehensive examination of the existing literature regarding the relationship between COVID-19 and PF, delving into their intricate interactions. This exploration improves the understanding of both pemphigus and mRNA vaccine mechanisms, highlighting the importance of close monitoring for PF post-immunization.
Collapse
Affiliation(s)
- Beatrice Bălăceanu-Gurău
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (O.A.O.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Adrian Dumitrascu
- Division of Hospital Internal Medicine, Department of Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Călin Giurcăneanu
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (O.A.O.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Raluca Tatar
- Department of Plastic Reconstructive Surgery and Burns, “Grigore Alexandrescu” Clinical Emergency Hospital for Children, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Plastic Reconstructive Surgery and Burns, “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 010621 Bucharest, Romania
| | - Cristian-Dorin Gurău
- Orthopedics and Traumatology Clinic, Clinical Emergency Hospital, 014451 Bucharest, Romania;
| | - Olguța Anca Orzan
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (O.A.O.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|
4
|
Das S, Nath S, Shahjahan, Dey SK. Plausible mechanism of drug resistance and side-effects of COVID-19 therapeutics: a bottleneck for its eradication. Daru 2024:10.1007/s40199-024-00524-z. [PMID: 39026019 DOI: 10.1007/s40199-024-00524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND COVID-19 pandemic has turned our world upside down by meddling with our normal lives. While there is no definitive drug against SARS-CoV-2, antiviral drugs that are already in the market, are being repurposed against it, could now complete long-term as well as all age-specific investigations, and they are successful in saving millions of lives. Nevertheless, side-effects are emergingly seen in the patients undergoing treatment, and ineffectiveness is increasingly found due to the emerging notorious variants of the virus. Many of them are also facing serious co-infections including black fungus, Zika, and H1N1 virus to name a few. OBJECTIVES Therefore, this review highlights both drug resistance, their side-effects, and the significance for proper and long-term clinical trials of all age groups including children. METHODS We have explored and proposed the mechanisms of drug resistance that may arise due to the misuse or overuse of drugs based on available experimental reports. RESULTS The review provides solutions to the aforesaid issues of drug-resistance and side-effects by providing combination therapies, ancillary treatments, and other preventive strategies that can be useful in preventing drawbacks thereby curbing COVID-19 or similar future infections to maintain our normal lives. CONCLUSION COVID-19 and its long-term effects, if any, can be eradicated with strategic and mindful use of related therapeutics in a controlled manner.
Collapse
Affiliation(s)
- Swarnali Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Sreyashi Nath
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Zhao H, Jiang G, Li C, Che Y, Long R, Pu J, Zhang Y, Li D, Liao Y, Yu L, Zhao Y, Yuan M, Li Y, Fan S, Liu L, Li Q. Evaluation of Binding and Neutralizing Antibodies for Inactivated SARS-CoV-2 Vaccine Immunization. Diseases 2024; 12:67. [PMID: 38667525 PMCID: PMC11048931 DOI: 10.3390/diseases12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variant presents an ongoing challenge for surveillance and detection. It is important to establish an assay for SARS-CoV-2 antibodies in vaccinated individuals. Numerous studies have demonstrated that binding antibodies (such as S-IgG and N-IgG) and neutralizing antibodies (Nabs) can be detected in vaccinated individuals. However, it is still unclear how to evaluate the consistency and correlation between binding antibodies and Nabs induced by inactivated SARS-CoV-2 vaccines. In this study, serum samples from humans, rhesus macaques, and hamsters immunized with inactivated SARS-CoV-2 vaccines were analyzed for S-IgG, N-IgG, and Nabs. The results showed that the titer and seroconversion rate of S-IgG were significantly higher than those of N-IgG. The correlation between S-IgG and Nabs was higher compared to that of N-IgG. Based on this analysis, we further investigated the titer thresholds of S-IgG and N-IgG in predicting the seroconversion of Nabs. According to the threshold, we can quickly determine the positive and negative effects of the SARS-CoV-2 variant neutralizing antibody in individuals. These findings suggest that the S-IgG antibody is a better supplement to and confirmation of SARS-CoV-2 vaccine immunization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Shengtao Fan
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (H.Z.); (G.J.); (C.L.); (Y.C.); (R.L.); (J.P.); (Y.Z.); (D.L.); (Y.L.); (L.Y.); (Y.Z.); (M.Y.); (Y.L.); (L.L.)
| | | | - Qihan Li
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (H.Z.); (G.J.); (C.L.); (Y.C.); (R.L.); (J.P.); (Y.Z.); (D.L.); (Y.L.); (L.Y.); (Y.Z.); (M.Y.); (Y.L.); (L.L.)
| |
Collapse
|
8
|
Zhang H, Meng C, Yi X, Han J, Wang J, Liu F, Ling Q, Li H, Gu Z. Fluorinated Lipid Nanoparticles for Enhancing mRNA Delivery Efficiency. ACS NANO 2024; 18:7825-7836. [PMID: 38452271 DOI: 10.1021/acsnano.3c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Lipid nanoparticles (LNPs), a nonviral nucleic acid delivery system, have shown vast potential for vaccine development and disease treatment. LNPs assist mRNA to cross physiological barriers such as cell membranes and endosomes/lysosomes, promoting the intracellular presentation of mRNA. However, the endosome escape efficiency and biosafety of currently commercialized LNPs are still unsatisfactory, resulting in underutilization of mRNA. Herein, we report that fluorinated modification of the 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-2000 (PEG-DSPE), termed as FPD, in the LNPs can improve the delivery efficiency of mRNA. FPD accounts for only 1.5% of lipids in LNPs but could mediate a 5-fold and nearly 2-fold enhancement of mRNA expression efficiency in B16F10 tumor cells and primary dendritic cells, respectively. Mechanism studies reveal that FPD promotes the cellular internalization of LNPs as well as endosome escape. In vivo studies substantiate that FPD can augment overall mRNA expression at least 3-fold, either by intravenous or intraperitoneal injection, compared to LNPs prepared with nonfluorinated PEG-lipids at a relatively low mRNA dose. Besides, with the introduction of FPD, mRNA expression in the spleen augmented compared to that of the DMG-PEG commercial formulations. Benefiting from a prudent dosage of fluorine, the fluorinated LNPs display favorable biosafety profiles at cellular and zoological levels.
Collapse
Affiliation(s)
- Huipeng Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyang Meng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xuewen Yi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jinpeng Han
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junxia Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Ling
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299 China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299 China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Pourkarim F, Khani E, Ghadakchi L, Ebrahimian S. New-onset systemic lupus erythematosus after BBIBP-CorV vaccination. Clin Case Rep 2024; 12:e8547. [PMID: 38389962 PMCID: PMC10883342 DOI: 10.1002/ccr3.8547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
While reports of new-onset systemic lupus erythematosus (SLE) after mRNA-based COVID-19 vaccines exist, no such reports have been documented following inactivated vaccines. We describe a case of SLE after receiving the BBIBP-CorV vaccine. The patient exhibited characteristic SLE criteria, indicating a possible association between the inactivated vaccine and new-onset SLE.
Collapse
Affiliation(s)
- Fariba Pourkarim
- Student Research Committee, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Department of Clinical Pharmacy, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Elnaz Khani
- Student Research Committee, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Department of Clinical Pharmacy, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Leila Ghadakchi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Sanaz Ebrahimian
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
10
|
Mohapatra S, Kumar S, Kumar S, Singh AK, Nayak B. Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines. Virusdisease 2023; 34:456-482. [PMID: 38046066 PMCID: PMC10686954 DOI: 10.1007/s13337-023-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The outbreak of novel SARS-CoV-2 virion has wreaked havoc with a high prevalence of respiratory illness and high transmission due to a vague understanding of the viral antigenicity, augmenting the dire challenge to public health globally. This viral member necessitates the expansion of diagnostic and therapeutic tools to track its transmission and confront it through vaccine development. Therefore, prophylactic strategies are mandatory. Virulent spike proteins can be the most desirable candidate for the computational design of vaccines targeting SARS-CoV-2, followed by the meteoric development of immune epitopes. Spike protein was characterized using existing bioinformatics tools with a unique roadmap related to the immunological profile of SARS-CoV-2 to predict immunogenic virulence epitopes based on antigenicity, allergenicity, toxicity, immunogenicity, and population coverage. Applying in silico approaches, a set of twenty-four B lymphocyte-based epitopes and forty-six T lymphocyte-based epitopes were selected. The predicted epitopes were evaluated for their intrinsic properties. The physico-chemical characterization of epitopes qualifies them for further in vitro and in vivo analysis and pre-requisite vaccine development. This study presents a set of screened epitopes that bind to HLA-specific allelic proteins and can be employed for designing a peptide vaccine construct against SARS-CoV-2 that will confer vaccine-induced protective immunity due to its structural stability. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00852-9.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Santosh Kumar
- RNA Biology Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Shashank Kumar
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Atul Kumar Singh
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
11
|
Baghani M, Fathalizade F, Loghman AH, Samieefar N, Ghobadinezhad F, Rashedi R, Baghsheikhi H, Sodeifian F, Rahimzadegan M, Akhlaghdoust M. COVID-19 vaccine hesitancy worldwide and its associated factors: a systematic review and meta-analysis. SCIENCE IN ONE HEALTH 2023; 2:100048. [PMID: 39077035 PMCID: PMC11262288 DOI: 10.1016/j.soh.2023.100048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 07/31/2024]
Abstract
Introduction The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has taken a toll on humans, and the development of effective vaccines has been a promising tool to end the pandemic. However, for a vaccination program to be successful, a considerable proportion of the community must be vaccinated. Hence, public acceptance of coronavirus disease 2019 (COVID-19) vaccines has become the key to controlling the pandemic. Recent studies have shown vaccine hesitancy increasing over time. This systematic review aims to evaluate the COVID-19 vaccine hesitancy rate and related factors in different communities. Method A comprehensive search was performed in MEDLINE (via PubMed), Scopus, and Web of Science from January 1, 2019 to January 31, 2022. All relevant descriptive and observational studies (cross-sectional and longitudinal) on vaccine hesitancy and acceptance were included in this systematic review. In the meta-analysis, odds ratio (OR) was used to assess the effects of population characteristics on vaccine hesitancy, and event rate (acceptance rate) was the effect measure for overall acceptance. Publication bias was assessed using the funnel plot, Egger's test, and trim-and-fill methods. Result A total of 135 out of 6,417 studies were included after screening. A meta-analysis of 114 studies, including 849,911 participants, showed an overall acceptance rate of 63.1%. In addition, men, married individuals, educated people, those with a history of flu vaccination, those with higher income levels, those with comorbidities, and people living in urban areas were less hesitant. Conclusion Increasing public awareness of the importance of COVID-19 vaccines in overcoming the pandemic is crucial. Being men, living in an urban region, being married or educated, having a history of influenza vaccination, having a higher level of income status, and having a history of comorbidities are associated with higher COVID-19 vaccine acceptance.
Collapse
Affiliation(s)
- Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzan Fathalizade
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Loghman
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Noosha Samieefar
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Ghobadinezhad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ronak Rashedi
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hediyeh Baghsheikhi
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Sodeifian
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Acharya AK, Bryson Clark J, Behera SS. COVID-19 pandemic and transgender migrant women in India: Socio-economic vulnerability and vaccine hesitancy. J Migr Health 2023; 8:100204. [PMID: 38028887 PMCID: PMC10654218 DOI: 10.1016/j.jmh.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/02/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
In India, transgender women, often referred to as hijra or kinnar, remain a marginalized group and encounter interpersonal and structural barriers that subject them to social exclusion, discrimination, lack of access to education and health care, and fewer job opportunities compared with the general population. During the COVID-19 pandemic these disparities were heightened and the livelihood of transgender migrant women were severely hit and disrupted, causing further financial and physical hardship. The present study aims to explore the socio-economic vulnerability faced by these women during the pandemic and the factors that contribute to vaccine hesitancy in order to assist government officials and policy makers in the formulation of more inclusive policies for transgender people. Results indicate that the pandemic has adversely impacted their livelihood as most of them depend on sex work and begging. In order to fulfil their daily needs during the lockdown, they have borrowed loans from multiple sources with a higher interest rates and remain in debt. On vaccination status, only seven out of 43 transgender migrant women have taken one vaccine dose, and the rest are not willing to visit vaccine centres because of societal stigma and discrimination including from healthcare personnel. The study reported that these migrant women suffered intensified social stigma, verbal hostility and transphobia attitudes from healthcare professionals whihc caused panic, fear, anxiety and depression among them, and thus they evade these spaces for further consultation or to obtain any other services. Many of them have decided not to take the COVID-19 vaccine in order to stay away from hostility. Further, the lack of trust in medical professionals is also one of the principal concerns leading to vaccine hesitancy among transgender migrant women. Thus a systemic inclusive healthcare services policy is required to address the factors that may influence the vaccine acceptance among transgender women in India.
Collapse
|
13
|
Han L, Zhang B. Can prophylactic HPV vaccination reduce the recurrence of cervical lesions after surgery? Review and prospect. Infect Agent Cancer 2023; 18:66. [PMID: 37898754 PMCID: PMC10613367 DOI: 10.1186/s13027-023-00547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Women with HSIL typically undergo conization/LEEP to remove cervical lesions, but the risk of HSIL lesions returning after surgical treatment remains higher than in the general population. HPV vaccination is essential to prevent cervical cancer. However, the effect of prophylactic HPV vaccination on reducing the risk of recurrent cervical lesions after surgical treatment remains unclear. This review aims to analyze and summarize the latest literature on the role of prophylactic HPV vaccine in reducing the recurrence of cervical lesions after surgery in patients with HSIL, and to review and update the history, efficacy, effectiveness and safety of HPV vaccine, focusing on the current status of global HPV vaccine implementation and obstacles.
Collapse
Affiliation(s)
- Ling Han
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, People's Republic of China
- Department of Obstetrics and Gynecology, Yichang Central People's Hospital, Yichang City, Hubei Province, People's Republic of China
| | - Bingyi Zhang
- Department of Ultrasound Imaging, The First College of Clinical Medical Science,, China Three Gorges University, Jiefang Road 2, Yichang City, 443003, Hubei Province, People's Republic of China.
- Department of Ultrasound Imaging, Yichang Central People's Hospital, Jiefang Road 2, Yichang City, 443003, Hubei Province, People's Republic of China.
| |
Collapse
|
14
|
Ali Y, Khan HU. IoT platforms assessment methodology for COVID-19 vaccine logistics and transportation: a multi-methods decision making model. Sci Rep 2023; 13:17575. [PMID: 37845382 PMCID: PMC10579304 DOI: 10.1038/s41598-023-44966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023] Open
Abstract
The supply chain management (SCM) of COVID-19 vaccine is the most daunting task for logistics and supply managers due to temperature sensitivity and complex logistics process. Therefore, several technologies have been applied but the complexity of COVID-19 vaccine makes the Internet of Things (IoT) a strong use case due to its multiple features support like excursion notification, data sharing, connectivity management, secure shipping, real-time tracking and monitoring etc. All these features can only feasible through choosing and deploying the right IoT platform. However, selection of right IoT platform is also a major concern due to lack of experience and technical knowledge of supply chain managers and diversified landscape of IoT platforms. Therefore, we introduce a decision making model for evaluation and decision making of IoT platforms that fits for logistics and transportation (L&T) process of COVID-19 vaccine. This study initially identifies the major challenges addressed during the SCM of COVID-19 vaccine and then provides reasonable solution by presenting the assessment model for selection of rational IoT platform. The proposed model applies hybrid Multi Criteria Decision Making (MCDM) approach for evaluation. It also adopts Estimation-Talk-Estimation (ETE) approach for response collection during the survey. As, this is first kind of model so the proposed model is validated and tested by conducting a survey with experts. The results of the proposed decision making model are also verified by Simple Additive Weighting (SAW) technique which indicates higher results accuracy and reliability of the proposed model. Similarly, the proposed model yields the best possible results and it can be judged by the precision, accuracy and recall values i.e. 93%, 93% and 94% respectively. The survey-based testing also suggests that this model can be adopted in practical scenarios to deal with complexities which may arise during the decision making of IoT platform for COVID-19 SCM process.
Collapse
Affiliation(s)
- Yasir Ali
- Shahzeb Shaheed Government Degree College Razzar, Swabi, Higher Education Department, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Habib Ullah Khan
- Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar.
| |
Collapse
|
15
|
Nune A, Durkowski V, Pillay SS, Barman B, Elwell H, Bora K, Bilgrami S, Mahmood S, Babajan N, Venkatachalam S, Ottewell L, Manzo C. New-Onset Rheumatic Immune-Mediated Inflammatory Diseases Following SARS-CoV-2 Vaccinations until May 2023: A Systematic Review. Vaccines (Basel) 2023; 11:1571. [PMID: 37896974 PMCID: PMC10610967 DOI: 10.3390/vaccines11101571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
A comprehensive, up-to-date systematic review (SR) of the new-onset rheumatic immune-mediated inflammatory diseases (R-IMIDs) following COVID-19 vaccinations is lacking. Therefore, we investigated the demographics, management, and prognosis of new R-IMIDs in adults following SARS-CoV-2 vaccinations. A systematic literature search of Medline, Embase, Google Scholar, LitCovid, and Cochrane was conducted. We included any English-language study that reported new-onset R-IMID in adults following the post-COVID-19 vaccination. A total of 271 cases were reported from 39 countries between January 2021 and May 2023. The mean age of patients was 56 (range 18-90), and most were females (170, 62.5%). Most (153, 56.5%) received the Pfizer BioNTech COVID-19 vaccine. Nearly 50% of patients developed R-IMID after the second dose of the vaccine. Vasculitis was the most prevalent clinical presentation (86, 31.7%), followed by connective tissue disease (66, 24.3%). The mean duration between the vaccine's 'trigger' dose and R-IMID was 11 days. Most (220, 81.2%) received corticosteroids; however, 42% (115) received DMARDs such as methotrexate, cyclophosphamide, tocilizumab, anakinra, IV immunoglobulins, plasma exchange, or rituximab. Complete remission was achieved in 75 patients (27.7%), and 137 (50.6%) improved following the treatment. Two patients died due to myositis. This SR highlights that SARS-CoV-2 vaccines may trigger R-IMID; however, further epidemiology studies are required.
Collapse
Affiliation(s)
- Arvind Nune
- Department of Rheumatology, Southport and Ormskirk NHS Trust, Southport PR8 6PN, UK
| | - Victor Durkowski
- Liverpool University Hospitals NHS Foundation Trust, Prescot Street, Liverpool L9 7AL, UK
| | | | - Bhupen Barman
- Department of General Medicine, All India Institute of Medical Sciences (AIIMS), Guwahati 781101, India
| | - Helen Elwell
- BMA Library, BMA House, Tavistock Square, British Medical Association, London WC1H 9JP, UK
| | - Kaustubh Bora
- Haematology Division, ICMR-Regional Medical Research Centre, Dibrugarh 786001, India
| | - Syed Bilgrami
- Department of Rheumatology, Royal Lancaster Infirmary, Lancaster LA1 4RP, UK
| | - Sajid Mahmood
- Department of Medicine, Southport and Ormskirk Hospital NHS Trust, Southport PR8 6PN, UK
| | - Nasarulla Babajan
- Department of Medicine, Southport and Ormskirk Hospital NHS Trust, Southport PR8 6PN, UK
| | | | - Lesley Ottewell
- Department of Rheumatology, Royal Lancaster Infirmary, Lancaster LA1 4RP, UK
| | - Ciro Manzo
- Rheumatologic Outpatient Clinic, Azienda Sanitaria Locale Napoli 3, 80065 Sant'Agnello, Italy
| |
Collapse
|
16
|
Prado NDR, Brilhante-Da-Silva N, Sousa RMO, Morais MSDS, Roberto SA, Luiz MB, Assis LCD, Marinho ACM, Araujo LFLD, Pontes RDS, Stabeli RG, Fernandes CFC, Pereira SDS. Single-domain antibodies applied as antiviral immunotherapeutics. J Virol Methods 2023; 320:114787. [PMID: 37516366 DOI: 10.1016/j.jviromet.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.
Collapse
Affiliation(s)
- Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | - Nairo Brilhante-Da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil
| | - Rosa Maria Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Rondônia Campus Guajará-Mirim, IFRO, Guajará-Mirim, RO, Brazil
| | - Livia Coelho de Assis
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil
| | - Anna Carolina M Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Luiz Felipe Lemes de Araujo
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rafael de Souza Pontes
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
17
|
Barreto MDS, da Silva BS, Santos RS, Silva DMRR, Silva EED, Moura PHM, de Souza JB, Santana LADM, Fonseca DLM, Filgueiras IS, Guimarães AG, Cabral-Marques O, Schimke LF, Borges LP. COVID-19 Vaccination and Serological Profile of a Brazilian University Population. Life (Basel) 2023; 13:1925. [PMID: 37763328 PMCID: PMC10532467 DOI: 10.3390/life13091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND COVID-19 led to the suspension academic activities worldwide, affecting millions of students and staff. METHODS In this study, we evaluated the presence of IgM and IgG anti-SARS-CoV-2 antibodies in an academic population during the return to classes after a one-year suspension. The study took place over five months at a Brazilian university and included 942 participants. RESULTS We found that most participants had reactive IgG and non-reactive IgM. All received at least one dose, and 940 received two or more doses, of different COVID-19 vaccines. We obtained a higher average of memory antibodies (IgG) in participants who received the CoronaVac/ChAdOx1 combination. IgG was consistently distributed for each vaccine group, but individuals who completed the vaccination schedule had higher levels. There were no differences between antibodies and gender, presence of symptoms, and previous COVID-19 infection, but older participants (>53 years) and contacts of infected individuals had higher IgM levels. CONCLUSION This study makes significant contributions to the assessment of antibodies in the academic environment, allowing us to infer that most participants had memory immunity and low indications of recent infection when returning to face-to-face classes, as well as demonstrating the need to monitor immunity and update vaccinations.
Collapse
Affiliation(s)
- Marina dos Santos Barreto
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Beatriz Soares da Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Ronaldy Santana Santos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Deise Maria Rego Rodrigues Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Eloia Emanuelly Dias Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Pedro Henrique Macedo Moura
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Jessiane Bispo de Souza
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | | | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo 05508-090, SP, Brazil;
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Adriana Gibara Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Otavio Cabral-Marques
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo 05508-090, SP, Brazil;
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Medicine, Division of Molecular Medicine, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo 01246-903, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, SP, Brazil
| | - Lena F. Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Medicine, Division of Molecular Medicine, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| |
Collapse
|
18
|
Hirschberg S, Ghazaani F, Ben Amor G, Pydde M, Nagel A, Germani S, Monica L, Schlör A, Bauer H, Hornung J, Voetz M, Dwai Y, Scheer B, Ringel F, Kamal-Eddin O, Harms C, Füner J, Adrian L, Pruß A, Schulze-Forster K, Hanack K, Kamhieh-Milz J. An Efficient and Scalable Method for the Production of Immunogenic SARS-CoV-2 Virus-like Particles (VLP) from a Mammalian Suspension Cell Line. Vaccines (Basel) 2023; 11:1469. [PMID: 37766145 PMCID: PMC10535180 DOI: 10.3390/vaccines11091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The rapid evolution of new SARS-CoV-2 variants poses a continuing threat to human health. Vaccination has become the primary therapeutic intervention. The goal of the current work was the construction of immunogenic virus-like particles (VLPs). Here, we describe a human cell line for cost-efficient and scalable production of immunogenic SARS-CoV-2 VLPs. The modular design of the VLP-production platform facilitates rapid adaptation to new variants. Methods: The N, M-, and E-protein genes were integrated into the genome of Expi293 cells (ExpiVLP_MEN). Subsequently, this cell line was further modified for the constitutive expression of the SARS-CoV-2 spike protein. The resulting cell line (ExpiVLP_SMEN) released SARS-CoV-2 VLP upon exposure to doxycycline. ExpiVLP_SMEN cells were readily adapted for VLP production in a 5 L bioreactor. Purified VLPs were quantified by Western blot, ELISA, and nanoparticle tracking analysis and visualized by electron microscopy. Immunogenicity was tested in mice. Results: The generated VLPs contained all four structural proteins, are within the size range of authentic SARS-CoV-2 virus particles, and reacted strongly and specifically with immunoserum from naturally infected individuals. The VLPs were stable in suspension at 4 °C for at least 10 weeks. Mice immunized with VLPs developed neutralizing antibodies against lentiviruses pseudotyped with the SARS-CoV-2 spike protein. The flexibility of the VLP-production platform was demonstrated by the rapid switch of the spike protein to a new variant of concern (BA.1/Omicron). The present study describes an efficient, scalable, and adaptable production method of immunogenic SARS-CoV-2 VLPs with therapeutic potential.
Collapse
Affiliation(s)
- Stefan Hirschberg
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Preclinics Certified Products GmbH, 14482 Potsdam, Germany
| | | | | | | | | | - Saveria Germani
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | - Lara Monica
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | | | | | | | | | - Yamen Dwai
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | - Benjamin Scheer
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | | | | | - Christoph Harms
- Center for Stroke Research Berlin with Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany, 10117 Berlin, Germany
| | - Jonas Füner
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | | | - Katja Hanack
- New/Era/Mabs GmbH, 14476 Potsdam, Germany
- Department of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Julian Kamhieh-Milz
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- DHS—Diagnostic HealthCare Solutions GmbH, 13347 Berlin, Germany
| |
Collapse
|
19
|
Saravanakumar S, Chatterjee J. The Use of In Silico Methods to Identify and Assess Antigenic Regions Suitable for the Development of Peptide-based Pan-viral Vaccines. Altern Lab Anim 2023; 51:313-322. [PMID: 37548284 DOI: 10.1177/02611929231193416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The constant evolution of pathogenic viral variants and the emergence of new viruses have reinforced the need for broad-spectrum vaccines to combat such threats. The spread of new viral variants leading to epidemic and pandemic infection can be effectively contained, if broad-spectrum vaccines effective against the newer viral variants are readily available. The development of broad-spectrum, pan-neutralising antibodies against viruses which, in general terms, are very antigenically different - such as HIV, influenza virus and paramyxoviruses - has been reported in the literature. The amino acid sequences used to generate a range of approved recombinant anti-viral vaccines were analysed by using in silico methods, with the aim of identifying highly antigenic peptide regions that may be suitable for the development of broad-spectrum peptide-based anti-viral vaccines. This was achieved through the use of open-source data, an algorithm-driven probability matrix, and published in silico prediction tools (SVMTriP, IEDB-AR, VaxiJen 2.0, AllergenFP v. 1.0, AllerTOP v. 2.0, ToxinPred and ProtParam) to evaluate antigenicity, MHC-I and MHC-II binding potential, immunogenicity, allergenicity, toxicity and physicochemical properties. We report a pan-antigenic peptide region with strong affinity for MHC-I and MHC-II, and good immunogenic potential. According to the output from the relevant in silico tools, the peptide was predicted to be non-toxic, non-allergic and to possess the desired physicochemical properties for potentially successful vaccine production. With further investigation and optimisation, this peptide could be considered for use in the development of a broad-spectrum anti-viral vaccine that may protect against emerging new viruses. Our approach of using in silico methods to identify candidate antigenic peptides with the desired physicochemical properties could potentially circumvent the use of some animal studies for peptide vaccine candidate evaluation.
Collapse
|
20
|
Hajjo R, Momani E, Sabbah DA, Baker N, Tropsha A. Identifying a causal link between prolactin signaling pathways and COVID-19 vaccine-induced menstrual changes. NPJ Vaccines 2023; 8:129. [PMID: 37658087 PMCID: PMC10474200 DOI: 10.1038/s41541-023-00719-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
COVID-19 vaccines have been instrumental tools in the fight against SARS-CoV-2 helping to reduce disease severity and mortality. At the same time, just like any other therapeutic, COVID-19 vaccines were associated with adverse events. Women have reported menstrual cycle irregularity after receiving COVID-19 vaccines, and this led to renewed fears concerning COVID-19 vaccines and their effects on fertility. Herein we devised an informatics workflow to explore the causal drivers of menstrual cycle irregularity in response to vaccination with mRNA COVID-19 vaccine BNT162b2. Our methods relied on gene expression analysis in response to vaccination, followed by network biology analysis to derive testable hypotheses regarding the causal links between BNT162b2 and menstrual cycle irregularity. Five high-confidence transcription factors were identified as causal drivers of BNT162b2-induced menstrual irregularity, namely: IRF1, STAT1, RelA (p65 NF-kB subunit), STAT2 and IRF3. Furthermore, some biomarkers of menstrual irregularity, including TNF, IL6R, IL6ST, LIF, BIRC3, FGF2, ARHGDIB, RPS3, RHOU, MIF, were identified as topological genes and predicted as causal drivers of menstrual irregularity. Our network-based mechanism reconstruction results indicated that BNT162b2 exerted biological effects similar to those resulting from prolactin signaling. However, these effects were short-lived and didn't raise concerns about long-term infertility issues. This approach can be applied to interrogate the functional links between drugs/vaccines and other side effects.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Jordan CDC, Amman, Jordan.
| | - Ensaf Momani
- Department of Basic Medical sciences, Faculty of Medicine, Al Balqa' Applied University, Al-Salt, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Nancy Baker
- ParlezChem, 123 W Union St., Hillsborough, NC, 27278, USA
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Nuzhath T, Spiegelman A, Scobee J, Goidel K, Washburn D, Callaghan T. Primary care physicians' strategies for addressing COVID-19 vaccine hesitancy. Soc Sci Med 2023; 333:116150. [PMID: 37595423 DOI: 10.1016/j.socscimed.2023.116150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE To explore the strategies that primary care physicians use to address patient COVID-19 vaccine hesitancy. METHOD We administered an online survey to 625 primary care physicians from May 14 to May 25, 2021, to assess the messages that primary care physicians use to encourage hesitant patients to get vaccinated against COVID-19.589 physicians from the total pool of 625 provided open-ended responses. We conducted thematic content analysis on the responses based on previous research and themes identified within the data. SETTING The survey was administered online using the survey research firm Dynata. RESULTS Eleven primary themes emerged from our analysis, which included, physicians addressing specific concerns about vaccine safety (including costs versus benefits), physicians helping patients understand what it means to remain unvaccinated, or whether physicians try to connect emotionally through the use of guilt, or personal experience, whether physicians use derisive language to communicate with unvaccinated patients. In addition, a small number of physicians indicated they would not attempt to persuade someone who is vaccine hesitant. CONCLUSIONS Our study shows that while some of the physicians used different strategies to address vaccine hesitancy, some of the physicians used harsh language or did not make any effort to reduce COVID-19 related vaccine hesitancy among their patients. Focused advocacy and training are needed to increase physician engagement in vaccine-related dialogues with their patients. Such efforts will ensure that critical opportunities for patient education and awareness-building are not missed and ensure high levels of vaccination uptake.
Collapse
Affiliation(s)
- Tasmiah Nuzhath
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health. Huntington Ave, Boston, MA, 02115, USA; Department of Health Promotion and Community Health Sciences, School of Public Health, Texas A&M University. 212 Adriance Lab Rd. 1266 TAMU, College Station, TX, USA.
| | | | - Julia Scobee
- Department of Health Law, Policy and Management, School of Public Health, Boston University, 715 Albany Street, Boston, MA, USA
| | - Kirby Goidel
- Department of Political Science, Texas A&M University, 2935, Research Pkwy, College Station, TX, USA
| | - David Washburn
- Department of Health Policy and Management, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA, USA
| | - Timothy Callaghan
- Department of Health Law, Policy and Management, School of Public Health, Boston University, 715 Albany Street, Boston, MA, USA
| |
Collapse
|
22
|
Roy S, Dutta P, Ghosh P. Hierarchical Vaccine Allocation Based on Epidemiological and Behavioral Considerations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2981-2991. [PMID: 37023164 DOI: 10.1109/tcbb.2023.3265317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vaccines have proven useful in curbing contagion from new strains of the SARS-CoV-2 virus. However, equitable vaccine allocation continues to be a significant challenge worldwide, necessitating a comprehensive allocation strategy incorporating heterogeneity in epidemiological and behavioral considerations. In this paper, we present a hierarchical allocation strategy that assigns vaccines to zones and their constituent neighborhoods cost-effectively, based on their population density, susceptibility, infected count, and attitude towards vaccinations. Moreover, it includes a module that tackles vaccine shortages in certain zones by locally transferring vaccines from zones with surplus vaccines. We leverage the epidemiological, socio-demographic, and social media datasets from Chicago and Greece and their constituent community areas to show that the proposed allocation approach assigns vaccines based on the chosen criteria and captures the effects of disparate vaccine adoption rates. We conclude the paper with a lowdown on future efforts to extend this study to design models for effective public policies and vaccination strategies that curtail vaccine purchase costs.
Collapse
|
23
|
Seyedi S, Navid S, Saadatian Z. Relapse of immune thrombocytopenia after receiving AstraZeneca coronavirus disease-2019 vaccine: A case report. Clin Case Rep 2023; 11:e7872. [PMID: 37675411 PMCID: PMC10477723 DOI: 10.1002/ccr3.7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by a low platelets count. In this paper, we present a case of ITP relapse in a 31-year-old Iranian woman as a potential complication of the AstraZeneca vaccine.
Collapse
Affiliation(s)
- Saba Seyedi
- Department of Medical Laboratory Sciences, School of MedicineGonabad University of Medical SciencesGonabadIran
| | - Shadan Navid
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research CenterGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
24
|
Soetjahjo B, Malueka RG, Nurudhin A, Purwoko, Sumardi, Wisaksana R, Adhiputri A, Sudadi, Soeroto AY, Sidharta BRA, Thobari JA, Murni TW, Soewondo W, Herningtyas EH, Sudjud RW, Trisnawati I, Ananda NR, Faried A. Effectiveness and safety of normoxic allogenic umbilical cord mesenchymal stem cells administered as adjunctive treatment in patients with severe COVID-19. Sci Rep 2023; 13:12520. [PMID: 37532730 PMCID: PMC10397314 DOI: 10.1038/s41598-023-39268-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Inflammatory response in COVID-19 contributes greatly to disease severity. Mesenchymal Stem Cells (MSCs) have the potential to alleviate inflammation and reduce mortality and length of stay in COVID-19 patients. We investigated the safety and effectiveness of normoxic-allogenic umbilical cord (NA-UC)-MSCs as an adjunctive treatment in severe COVID-19 patients. A double-blind, multicentric, randomized, placebo-controlled trial involving severe COVID-19 patients was performed from January to June 2021 in three major hospitals across Java, Indonesia. Eligible participants (n = 42) were randomly assigned to two groups (1:1), namely the intervention (n = 21) and control (n = 21) groups. UC-MSCs dose was 1 × 106 /kg body weight on day D0, D3, and D6. The primary outcome was the duration of hospitalization. Meanwhile, the secondary outcomes were radiographical progression (Brixia score), respiratory and oxygenation parameters, and inflammatory markers, in addition to the safety profile of NA-UC-MSCs. NA-UC-MSCs administration did not affect the length of hospital stay of severe COVID-19 patients, nor did it improve the Brixia score or mMRC dyspnoea scale better than placebo. Nevertheless, NA-UC-MSCs led to a better recuperation in oxygenation index (120.80 ± 72.70 baseline vs. 309.63 ± 319.30 D + 22, p = 0.038) and oxygen saturation (97.24 ± 4.10% vs. 96.19 ± 3.75% in placebo, p = 0.028). Additionally, compared to the placebo group, the treatment group had a significantly smaller increase in PCT level at D + 22 (1.43 vs. 12.76, p = 0.011). No adverse effects, including serious ones, were recorded until D + 91. NA-UC-MSCs therapy is a very safe adjunct for COVID-19 patients. It improves the oxygenation profile and carries potential to suppress inflammation.
Collapse
Affiliation(s)
- Bintang Soetjahjo
- Department of Orthopaedics and Traumatology, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Arief Nurudhin
- Department of Internal Medicine, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Purwoko
- Department of Anesthesiology and Intensive Therapy, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Sumardi
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rudi Wisaksana
- Department of Internal Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Artrien Adhiputri
- Department of Pulmonology and Respiratory Medicine, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Sudadi
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Arto Yuwono Soeroto
- Department of Internal Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | | | - Jarir At Thobari
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wahyu Murni
- Department of Surgery, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Widiastuti Soewondo
- Department of Radiology, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Elizabeth Henny Herningtyas
- Department of Clinical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Reza Widianto Sudjud
- Department of Anesthesiology-Intensive Therapy, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ika Trisnawati
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Nur Rahmi Ananda
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Faried
- Department of Neurosurgery, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, 40161, Indonesia.
| |
Collapse
|
25
|
Tajnur R, Rezwan R, Aziz A, Islam MS. An update on vaccine status and the role of nanomedicine against SARS-CoV-2: A narrative review. Health Sci Rep 2023; 6:e1377. [PMID: 37404449 PMCID: PMC10315735 DOI: 10.1002/hsr2.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Background and Aims Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 novel coronavirus, is a highly communicable disease that gave rise to the ongoing pandemic. Despite prompt action across many laboratories in many countries, effective management of this disease is still out of reach. The focus of this review is to describe various vaccination approaches and nanomedicine-based delivery systems against COVID-19. Methods The articles included in this study were searched and added from different electronic databases, including PubMed, Scopus, Cochrane, Embase, and preprint databases. Results Mass immunization with vaccines is currently at the forefront of COVID-19 infection control. Such vaccines are live attenuated vaccines, inactivated vaccines, nucleic acid-based vaccines, protein subunit vaccines, viral-vector vaccines, and virus-like particle platforms. However, many promising avenues are currently being explored in laboratory and clinical settings, including treatment options, prevention, diagnosis, and management of the disease. Soft nanoparticles like lipid nanoparticles (solid lipid nanoparticles (SLNPs), liposomes, nanostructured lipid carriers, nanoemulsions, and protein nanoparticles play an essential role in nanomedicine. Because of their unique and excellent properties, nanomedicines have potential applications in treating COVID-19 disease. Conclusions This review work provides an overview of the therapeutic aspects of COVID-19, including vaccination and the role of nanomedicines in the diagnosis, treatment, and prevention of COVID-19.
Collapse
Affiliation(s)
- Rabeya Tajnur
- Department of PharmacyASA University BangladeshDhakaBangladesh
| | - Refaya Rezwan
- Department of PharmacyState University of BangladeshDhakaBangladesh
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Abdul Aziz
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| |
Collapse
|
26
|
Aroffu M, Manca ML, Pedraz JL, Manconi M. Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements. Expert Opin Drug Deliv 2023; 20:1573-1593. [PMID: 38015659 DOI: 10.1080/17425247.2023.2288856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Vaccination requires innovation to provide effective protection. Traditional vaccines have several drawbacks, which can be overcome with advanced technologies and different administration routes. Over the past 10 years, a significant amount of research has focussed on the delivery of antigens into liposomes due to their dual role as antigen-carrying systems and vaccine adjuvants able to increase the immunogenicity of the carried antigen. AREAS COVERED This review encompasses the progress made over the last 10 years with liposome-based vaccines designed for minimally or noninvasive administration, filling the gaps in previous reviews and providing insights on composition, administration routes, results achieved, and Technology Readiness Level of the most recent formulations. EXPERT OPINION Liposome-based vaccines administered through minimally or noninvasive routes are expected to improve efficacy and complacency of vaccination programs. However, the translation from lab-scale production to large-scale production and collaborations with hospitals, research centers, and companies are needed to allow new products to enter the market and improve the vaccination programs in the future.
Collapse
Affiliation(s)
- Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
27
|
Kaya Ö, Keskinkaya Z, Mermutlu SI, Kılıç SO, Çakır H. COVID-19 Among Patients with Psoriasis: A Single-Center Retrospective Cross-Sectional Study. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:127-135. [PMID: 38633013 PMCID: PMC10986702 DOI: 10.36519/idcm.2023.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/05/2023] [Indexed: 04/19/2024]
Abstract
Objective Psoriasis patients may have been affected by COVID-19 differently than the normal population due to using different types of treatments, including immunosuppressive agents and biological therapies, the probability of lower effectiveness, and different side effects of the vaccines. This study aimed to evaluate the epidemiologic and clinical features of COVID-19 and the effect of the psoriasis treatment on it. Materials and Methods Psoriasis patients followed up in our clinic between March 2020 and July 2022 were evaluated in terms of clinicodemographic characteristics, treatment methods, and COVID-19 vaccination status and compared regarding COVID-19 history. Results A total of 110 patients (female:male ratio=1:1.2) with a mean age of 45.6±14.3 years were evaluated. Thirty patients (27.2%) developed COVID-19 during psoriasis treatment. Unvaccinated patients had COVID-19 (6/11, 55%) more frequently than vaccinated ones (24/99, 24%), but it was not statistically significant (p=0.067). Although patients who received biological therapy were also more frequently infected with SARS-CoV-2 than patients who received other types of therapies (18/53 [34%] versus 12/57 [21%], respectively), the difference was again not statistically significant.A patient with hypertension using acitretin was hospitalized for pulmonary involvement because of COVID-19. No exacerbation of psoriasis was observed in patients who developed COVID-19, while psoriasis flares occurred following COVID-19 mRNA vaccination in two patients. Conclusion Patients with psoriasis should get vaccinated against COVID-19, as vaccination prevents the disease and does not result in serious side effects. Although using biological agents for the treatment of psoriasis could be related to a higher risk of getting COVID-19, these agents do not increase the risk of severe COVID-19. Therefore, they may be beneficial in reducing the risk of both psoriasis exacerbations and severe COVID-19 due to the cytokine storm among patients using biological for psoriasis.However, large-scale and controlled studies are needed to support our conclusions.
Collapse
Affiliation(s)
- Özge Kaya
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University School of Medicine, Çanakkale, Turkey
| | - Zeynep Keskinkaya
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University School of Medicine, Çanakkale, Turkey
| | - Selda Işık Mermutlu
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University School of Medicine, Çanakkale, Turkey
| | - Sevilay Oğuz Kılıç
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University School of Medicine, Çanakkale, Turkey
| | - Haile Çakır
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University School of Medicine, Çanakkale, Turkey
| |
Collapse
|
28
|
Yildiz E, Timur B, Guney G, Timur H. Does the SARS-CoV-2 mRNA vaccine damage the ovarian reserve? Medicine (Baltimore) 2023; 102:e33824. [PMID: 37335728 PMCID: PMC10194489 DOI: 10.1097/md.0000000000033824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/01/2023] [Indexed: 06/21/2023] Open
Abstract
To search whether or not the severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) messenger ribonucleic acid (mRNA) vaccine affects the fertility of women at the 6th months by using AMH, which is an ovarian reserve test. Our study, designed as a prospective case-control study, included 104 women who presented to the GOP EAH obstetrics and gynecology outpatient clinic in January and February 2022. The study group included 74 women who presented to the outpatient clinic and planned to be vaccinated and 30 women who refused to be vaccinated as the control group. Anti-COVID-19 antibody levels in all participants were checked before participation in the study, and participants who were positive were excluded from the study. Blood was taken from the participants in both control and study groups to evaluate their AMH levels before the 2 doses of vaccination. After 2 doses of the vaccine, they were called for follow-up, and serological tests were performed to check whether they were positive for anti-COVID-19 antibodies. Participants in both groups were referred for follow-up after 6 months, samples were taken again for AMH, and the data were recorded. The mean age of the study group was 27.6 ± 5.3 years, and the mean age of the control group was 28.65 ± 5.25 years (P = .298). There was no statistically significant difference between the vaccinated and nonvaccinated groups in terms of AMH levels measured at the 6th month (P = .970). When the vaccinated group was compared in terms of AMH values at the first visit before vaccination and at the 6th month after vaccination, no statistically significant difference was found between them (p:0.127) mRNA vaccination to protect against SARS-CoV-2 does not adversely affect ovarian reserve, which is an indirect indicator of fertility. mRNA vaccines continue to be the most important method of protection against epidemics. Carefully and accurately informing women who are hesitant to get vaccinated is of great importance for the success of the fight against the epidemic.
Collapse
Affiliation(s)
- Elif Yildiz
- Department of Obstetrics and Gynecology, University of Health Sciences, Gaziosmanpasa Training and Research Hospital, Istanbul, Turkey
| | - Burcu Timur
- Department of Obstetrics and Gynecology, University of Health Sciences, Gaziosmanpasa Training and Research Hospital, Istanbul, Turkey
| | - Gurhan Guney
- Department of Obstetrics and Gynecology, Ordu University Training and Research Hospital, Ordu, Turkey
| | - Hakan Timur
- Department of Reproductive Endocrinology and Infertility, Balikesir University Medical Faculty, Balikesir, Turkey
| |
Collapse
|
29
|
Huang T, Zhang S, Dai DF, Wang BS, Zhuang L, Huang HT, Wang ZF, Zhao JS, Li QP, Wu SP, Wang X, Zhang WD, Zhao ZH, Li H, Zhang YP, Yang XL, Jiang XY, Gou JB, Hou LH, Gao LD, Feng ZC. Safety and immunogenicity of heterologous boosting with orally aerosolised or intramuscular Ad5-nCoV vaccine and homologous boosting with inactivated vaccines (BBIBP-CorV or CoronaVac) in children and adolescents: a randomised, open-label, parallel-controlled, non-inferiority, single-centre study. THE LANCET. RESPIRATORY MEDICINE 2023:S2213-2600(23)00129-7. [PMID: 37209700 DOI: 10.1016/s2213-2600(23)00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Heterologous booster immunisation with orally administered aerosolised Ad5-nCoV vaccine (AAd5) has been shown to be safe and highly immunogenic in adults. Here, we aimed to assess the safety and immunogenicity of heterologous booster immunisation with orally administered AAd5 in children and adolescents aged 6-17 years who had received two doses of inactivated vaccine (BBIBP-CorV or CoronaVac). METHODS We did a randomised, open-label, parallel-controlled, non-inferiority study to assess the safety and immunogenicity of heterologous booster immunisation with AAd5 (0·1 mL) or intramuscular Ad5-nCoV vaccine (IMAd5; 0·3 mL) and homologous booster immunisation with inactivated vaccine (BBIBP-CorV or CoronaVac; 0·5 mL) in children (aged 6-12 years) and adolescents (aged 13-17 years) who had received two doses of inactivated vaccine at least 3 months earlier in Hunan, China. Children and adolescents who were previously immunised with two-dose BBIBP-CorV or CoronaVac were recruited for eligibility screening at least 3 months after the second dose. A stratified block method was used for randomisation, and participants were stratified by age and randomly assigned (3:1:1) to receive AAd5, IMAd5, or inactivated vaccine. The study staff and participants were not masked to treatment allocation. Laboratory and statistical staff were masked during the study. In this interim analysis, adverse events within 14 days and geometric mean titre (GMT) of serum neutralising antibodies on day 28 after the booster vaccination, based on the per-protocol population, were used as the primary outcomes. The analysis of non-inferiority was based on comparison using a one-sided 97·5% CI with a non-inferiority margin of 0·67. This study was registered at ClinicalTrials.gov, NCT05330871, and is ongoing. FINDINGS Between April 17 and May 28, 2022, 436 participants were screened and 360 were enrolled: 220 received AAd5, 70 received IMAd5, and 70 received inactivated vaccine. Within 14 days after booster vaccination, vaccine-related adverse reactions were reported: 35 adverse events (in 13 [12%] of 110 children and 22 [20%] of 110 adolescents) in 220 individuals in the AAd5 group, 35 (in 18 [51%] of 35 children and 17 [49%] of 35 adolescents) in 70 individuals in the IMAd5 group, and 13 (in five [14%] of 35 children and eight [23%] of 35 adolescents) in 70 individuals in the inactivated vaccine group. Solicited adverse reactions were also reported: 34 (13 [12%] of 110 children and 21 [10%] of 110 adolescents) in 220 individuals in the AAd5 group, 34 (17 [49%] of 35 children and 17 [49%] of 35 adolescents) in 70 individuals in the IMAd5 group, and 12 (five [14%] of 35 children and seven [20%] of 35 adolescents) in 70 individuals in the inactivated vaccine group. The GMTs of neutralising antibodies against ancestral SARS-CoV-2 Wuhan-Hu-1 (Pango lineage B) in the AAd5 group were significantly higher than the GMTs in the inactivated vaccine group (adjusted GMT ratio 10·2 [95% CI 8·0-13·1]; p<0·0001). INTERPRETATION Our study shows that a heterologous booster with AAd5 is safe and highly immunogenic against ancestral SARS-CoV-2 Wuhan-Hu-1 in children and adolescents. FUNDING National Key R&D Program of China.
Collapse
Affiliation(s)
- Tao Huang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Sheng Zhang
- Faculty of Pediatrics, Chinese PLA General Hospital, Beijing, China; Department of Pediatrics, The Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - De-Fang Dai
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Bu-Sen Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lu Zhuang
- Faculty of Pediatrics, Chinese PLA General Hospital, Beijing, China; Department of Pediatrics, The Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | | | - Zhong-Fang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Bioland, Guangzhou, China
| | - Jun-Shi Zhao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Qiu-Ping Li
- Faculty of Pediatrics, Chinese PLA General Hospital, Beijing, China; Department of Pediatrics, The Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Shi-Po Wu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xue Wang
- CanSino Biologics, Tianjin, China
| | - Wen-Dan Zhang
- Faculty of Pediatrics, Chinese PLA General Hospital, Beijing, China; Department of Pediatrics, The Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Zheng-Hao Zhao
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Hao Li
- CanSino Biologics, Tianjin, China
| | - Yan-Ping Zhang
- Faculty of Pediatrics, Chinese PLA General Hospital, Beijing, China; Department of Pediatrics, The Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xiu-Liang Yang
- Luxi County Center for Disease Control and Prevention, Luxi, China
| | - Xin-Yang Jiang
- Faculty of Pediatrics, Chinese PLA General Hospital, Beijing, China; Department of Pediatrics, The Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | | | - Li-Hua Hou
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | - Li-Dong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China.
| | - Zhi-Chun Feng
- Faculty of Pediatrics, Chinese PLA General Hospital, Beijing, China; Department of Pediatrics, The Seventh Medical Center of the Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China.
| |
Collapse
|
30
|
Teófilo VSG, Pinho PRA, Cordeiro GJ, Saldanha NAF, Matos PMM, Ribeiro RAM, Moreira SM, Miller MSF, Dias ARM, Couto MFR, Norton PMPNS. Spontaneous reporting of adverse reactions associated with the COVID-19 vaccine in health care professionals: A descriptive observational study conducted in a Portuguese hospital. Porto Biomed J 2023; 8:e219. [PMID: 37383526 PMCID: PMC10299789 DOI: 10.1097/j.pbj.0000000000000219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) was classified as a pandemic in March 2020 by the World Health Organization. The Pfizer-BioNTech COVID-19 vaccine was the first to be authorized in the European Union, based on data from phase 1, 2, and 3 clinical trials of limited duration. Concerns have been raised regarding the vaccine's safety profile. Some of the adverse drug reactions (ADRs) associated with vaccines may not have been identified during clinical trials. This study aimed to identify ADRs associated with the Pfizer-BioNTech vaccine in health care professionals at a Portuguese tertiary university hospital. Methods The data used in this analysis consist of ADRs reported through a spontaneous notification system from vaccines administered between December 27, 2020, and January 31, 2021. ADRs were categorized according to the MedDRA terminology. Results A total of 8,605 Pfizer-BioNTech vaccines were administered to 4568 health care professionals. ADRs were reported among 520 of the vaccines, with an incidence of 13.56% in women and 5.31% in men. The mean age of the population reporting ADRs was 41.52 years, with a standard deviation of 9.83 years. The most frequent ADRs were myalgia (n = 274), headache (n = 199), pyrexia (n = 164), injection site pain (n = 160), fatigue (n = 84), nausea (n = 81), chills (n = 65), lymphadenopathy (n = 64), and arthralgia (n = 53). Hypersensitivity reactions occurred in 15 health care professionals, with no anaphylactic reactions observed. A total of four Important Medical Events were observed, which consisted of two cases of syncope, one case of sudden hearing loss, and one case of transverse myelitis. Conclusion The vaccine was well-tolerated among the study participants. Reactogenicity was greater after the second dose. The incidence of ADRs was higher in women and individuals aged between 40 to 49 years. Systemic adverse reactions were most frequently reported. Systematic monitoring of ADRs of COVID-19 vaccines in real-life context is essential for a more robust establishment of its safety profile.
Collapse
Affiliation(s)
- Vanessa S G Teófilo
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Paulo R A Pinho
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Gonçalo J Cordeiro
- Clinical Pharmacology Unit, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Nuno A F Saldanha
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Pedro M M Matos
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Rui A M Ribeiro
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Salomé M Moreira
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Mariana S F Miller
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Andreia R M Dias
- Clinical Pharmacology Unit, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Marta F R Couto
- Clinical Pharmacology Unit, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Pedro M P N S Norton
- Occupational Health Service, Centro Hospitalar Universitário São João, Porto, Portugal
| |
Collapse
|
31
|
Rizk Z, Khan N. The effect of vaccine on COVID-19 spread by function-on-scalar regression model: a case study of Africa. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2023:1-10. [PMID: 37361313 PMCID: PMC10078093 DOI: 10.1007/s10389-023-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 06/28/2023]
Abstract
Aim This paper aimed to study the effect of the vaccine on the reproduction rate of coronavirus in Africa from January 2021 to November 2021. Subject and methods Functional data analysis (FDA), a relatively new area in statistics, can describe, analyze, and predict data collected over time, space, or other continuum measures in many countries every day and is increasingly common across scientific domains. For our data, the first step of functional data is smoothing. We used the B-spline method to smooth our data. Then, we apply the function-on-scalar and Bayes function-on-scalar models to fit our data. Results Our results indicate a statistically significant relationship between the vaccine and the rate of virus reproduction and spread. When the vaccination rate falls, the reproduction rate also decreases. Furthermore, we found that the effect of latitude and the region on the reproduction rate depends on the region. We discovered that in Middle Africa, from the beginning of the year until the end of the summer, the impact is negative, implying that the virus spread due to a decrease in the vaccination rates. Conclusion The study found that vaccination rates significantly impact the virus's reproduction rate.
Collapse
Affiliation(s)
- Zeinab Rizk
- School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013 Jiangxi China
- Department of applied and mathematical statistics, Faculty of Commerce, Damietta university, Damietta El-Gadeeda City, Damietta Governorate 34511 Egypt
| | - Nasrullah Khan
- College of statistical sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
32
|
Yang J, Huo X, Jiang Q, Liao Y, Zhang C, Yu L, Wang Q, Niu T, Li C, Pi N, Li Y, Zhao H, Zhang Y, Tan Y, Liao W, Li Y, Fan S, Li Q. Preclinical safety evaluation of intradermal SARS-CoV-2 inactivated vaccine (Vero cells) administration in macaques. Vaccine 2023; 41:2837-2845. [PMID: 37003910 PMCID: PMC10027951 DOI: 10.1016/j.vaccine.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute and highly pathogenic infectious disease in humans caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Six months after immunization with the SARS-CoV-2 vaccine, however, antibodies are almost depleted. Intradermal immunization could be a new way to solve the problem of nondurable antibody responses against SARS-CoV-2 or the poor immune protection against variant strains. We evaluated the preclinical safety of a SARS-CoV-2 vaccine for intradermal immunization in rhesus monkeys. The results showed that there were no obvious abnormalities in the general clinical condition, food intake, body weight or ophthalmologic examination except for a reaction at the local vaccination site. In the hematology examination, bone marrow imaging, serum biochemistry, and routine urine testing, the related indexes of each group fluctuated to different degrees after administration, but there was no dose-response or time-response correlation. The neutralization antibody and ELISpot results also showed that strong humoral and cellular immunity could be induced after vaccination, and the levels of neutralizing antibodies increased with certain dose- and time-response trends. The results of a repeated-administration toxicity test in rhesus monkeys intradermally inoculated with a SARS-CoV-2 inactivated vaccine showed good safety and immunogenicity.
Collapse
Affiliation(s)
- Jinling Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Xinqian Huo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Qinfang Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Caixing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Qiyan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Tingting Niu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Cong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Na Pi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Yun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Ying Tan
- Yunnan Institute of Materia Medica, Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation Kunming 650111, China
| | - Wenping Liao
- Yunnan Institute of Materia Medica, Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation Kunming 650111, China
| | - Yong Li
- Yunnan Institute of Materia Medica, Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation Kunming 650111, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China.
| |
Collapse
|
33
|
Muazzam A, Naseem F, Shakil M, Visvizi A, Klemens J. Surviving COVID-19: Biopsychosocial Impacts, Death Anxiety, and Coping Strategies. Vaccines (Basel) 2023; 11:705. [PMID: 36992289 PMCID: PMC10057707 DOI: 10.3390/vaccines11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
As the COVID-19 pandemic erupted, attempts to contain the spread of the virus took two concurrent forms, including mobility restrictions (aka lockdowns) and the race to produce a vaccine. However, it is quite striking that, amidst both the lockdown and the race to produce a vaccine, the question of how COVID-19 survivors/patients coped with the disease has not received the degree of attention it deserved. To navigate this issue, we employed a sample consisting of 100 COVID-19 survivors; this paper explores the relationship between the biopsychosocial (BPS) impacts of COVID-19, death anxiety, and coping strategies. In this context, the mediating role of death anxiety is placed in the spotlight. The analysis reveals a significant positive association between the BPS impact of COVID-19 and death anxiety and a significant negative association between death anxiety and coping strategies among COVID-19 survivors. Thus, death anxiety mediates the relationship between the BPS impact and the coping strategies that COVID-19 survivors adopt. Given the general recognition of the validity of the BPS model in contemporary medical science and practice, a thorough examination of COVID-19 survivors and their experiences related to surviving is necessary to match the challenges of today, including the increased probability of pandemics.
Collapse
Affiliation(s)
- Amina Muazzam
- Department of Psychology, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Faiqa Naseem
- Department of Psychology, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Muneeba Shakil
- Department of Humanities, COMSATS University Islamabad, Lahore Campus, 1.5 KM Defence Road, Off Raiwind Road, Lahore 54000, Pakistan
| | - Anna Visvizi
- Institute of International Studies (ISM), SGH Warsaw School of Economics, Al. Niepodległości 162, 02-554 Warsaw, Poland
- Effat College of Business, Effat University, Jeddah 21551, Saudi Arabia
| | - Jolanta Klemens
- PSYCHOMedical, ul. W. Broniewskiego 39, 43-300 Bielsko-Biała, Poland
| |
Collapse
|
34
|
Lyophilization Scale-Up to Industrial Manufacturing: A Modeling Framework including Probabilistic Success Prediction. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
35
|
Estimation of the Effectiveness of a Tighter, Reinforced Quarantine for the Coronavirus Disease 2019 (COVID-19) Outbreak: Analysis of the Third Wave in South Korea. J Pers Med 2023; 13:jpm13030402. [PMID: 36983584 PMCID: PMC10054349 DOI: 10.3390/jpm13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
It has been claimed that a tighter, reinforced quarantine strategy was advocated to reduce the transmission of coronavirus disease 2019 (COVID-19) during major outbreaks; however, there have been no prior quantitative studies examining the effectiveness and duration of such a reinforced quarantine. Consequently, the purpose of this research was to determine the impact of a “tighter, reinforced” quarantine during the third COVID-19 breakout wave in South Korea, which occurred between late 2020 and early 2021. The efficacy of the quarantine was determined by comparing the number of newly diagnosed COVID-19 patients between the “prediction model” and “actual observed data.” Two prediction models were developed using the autoregressive integrated moving average (ARIMA; 1, 0, 0) model. The effect of a “tighter, reinforced” quarantine, which would show as an immediate drop in the number of new cases, predicted its efficacy by lowering the number of new cases by 20,400. In addition, the efficacy of the quarantine lasted up to more than three months. The findings of our investigation confirmed the beneficial influence of “tighter, controlled” quarantine laws during a widespread COVID-19 epidemic. During an epidemic, when the population has not yet developed immunity to respiratory viral diseases, our study may be evidence for implementing stricter quarantine restrictions in order to reduce the number of new cases.
Collapse
|
36
|
Gholami F, Hamidi Farahani R, Karimi Rahjerdi A, Ahi M, Sheidaei A, Gohari K, Rahimi Z, Ansarifar A, Basiri P, Moradi M, Jahangiri A, Naderi K, Ghasemi S, Khatami P, Honari M, Khodaverdloo S, Shooshtari M, Mehr Azin H, Moradi S, Shafaghi B, Allahyari H, Monazah A, Khodaei Poor A, Taghva Z, Bakhshande H, Karimi Nia M, Solaymani Dodaran M, Forooghizade M. Phase II randomized, double blind, placebo controlled, clinical trial of safety and immunogenicity of an inactivated SARS-CoV-2 vaccine FAKHRAVAC in adults aged 18-70 years. BMC Infect Dis 2023; 23:118. [PMID: 36829111 PMCID: PMC9951829 DOI: 10.1186/s12879-023-08079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The FAKHRAVAC®, an inactivated SARS-CoV-2 vaccine, was assessed for safety and immunogenicity in a phase II trial. METHODS We did a phase II, single-centered, randomized, double-blind, placebo-controlled clinical trial of the FAKHRAVAC inactivated SARS-CoV-2 vaccine on adults aged 18 to 70. The two parallel groups received two intramuscular injections of either a 10-µg vaccine or a placebo at 2-week intervals. The participants' immunogenicity responses and the occurrence of solicited and unsolicited adverse events were compared over the study period of up to 6 months. Immunogenicity outcomes include serum neutralizing antibody activity and specific IgG antibody levels. RESULTS Five hundred eligible participants were randomly (1:1) assigned to vaccine or placebo groups. The median age of the participants was 36 years, and 75% were male. The most frequent local adverse reaction was tenderness (21.29% after the first dose and 8.52% after the second dose), and the most frequent systemic adverse reaction was headache (11.24% after the first dose and 8.94% after the second dose). Neutralizing antibody titers two and four weeks after the second injection in the vaccine group showed about 3 and 6 times increase compared to the placebo group (GMR = 2.69, 95% CI 2.32-3.12, N:309) and (GMR = 5.51, 95% CI 3.94-8.35, N:285). A four-fold increase in the neutralizing antibody titer was seen in 69.6% and 73.4% of the participants in the vaccine group two and four weeks after the second dose, respectively. Specific ELIZA antibody response against a combination of S1 and RBD antigens 4 weeks after the second injection increased more than three times in the vaccine compared to the placebo group (GMR = 3.34, 95% CI 2.5-4.47, N:142). CONCLUSIONS FAKHRAVAC® is safe and induces a significant humoral immune response to the SARS-CoV-2 virus at 10-µg antigen dose in adults aged 18-70. A phase III trial is needed to assess the clinical efficacy. TRIAL REGISTRATION Trial Registry Number: Ref., IRCT20210206050259N2 ( http://irct.ir ; registered on 08/06/2021).
Collapse
Affiliation(s)
- Fatemeh Gholami
- grid.411746.10000 0004 4911 7066Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Karimi Rahjerdi
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran ,grid.419654.bStem Cell Technology Research Center (STRC), Tehran, Iran
| | - Mohammadreza Ahi
- grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sheidaei
- grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Kimiya Gohari
- grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rahimi
- grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Akram Ansarifar
- grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Pouria Basiri
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Milad Moradi
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Arash Jahangiri
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Kosar Naderi
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran ,grid.419654.bStem Cell Technology Research Center (STRC), Tehran, Iran
| | - Soheil Ghasemi
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Pezhman Khatami
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Mohsen Honari
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | | | | | - Hajar Mehr Azin
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Sohrab Moradi
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Batool Shafaghi
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | | | - Arina Monazah
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | | | - Zahra Taghva
- Milad Daro Noor Pharmaceutical (MDNP) Company IR, Tehran, Iran
| | - Hooman Bakhshande
- grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Solaymani Dodaran
- grid.411746.10000 0004 4911 7066Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
37
|
Miao G, Chen Z, Cao H, Wu W, Chu X, Liu H, Zhang L, Zhu H, Cai H, Lu X, Shi J, Liu Y, Feng T. From Immunogen to COVID-19 vaccines: Prospects for the post-pandemic era. Biomed Pharmacother 2023; 158:114208. [PMID: 36800265 PMCID: PMC9805901 DOI: 10.1016/j.biopha.2022.114208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
The COVID-19 pandemic has affected millions of people and posed an unprecedented burden on healthcare systems and economies worldwide since the outbreak of the COVID-19. A considerable number of nations have investigated COVID-19 and proposed a series of prevention and treatment strategies thus far. The pandemic prevention strategies implemented in China have suggested that the spread of COVID-19 can be effectively reduced by restricting large-scale gathering, developing community-scale nucleic acid testing, and conducting epidemiological investigations, whereas sporadic cases have always been identified in numerous places. Currently, there is still no decisive therapy for COVID-19 or related complications. The development of COVID-19 vaccines has raised the hope for mitigating this pandemic based on the intercross immunity induced by COVID-19. Thus far, several types of COVID-19 vaccines have been developed and released to into financial markets. From the perspective of vaccine use in globe, COVID-19 vaccines are beneficial to mitigate the pandemic, whereas the relative adverse events have been reported progressively. This is a review about the development, challenges and prospects of COVID-19 vaccines, and it can provide more insights into all aspects of the vaccines.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China,Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Hengsong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhao Wu
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Xi Chu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Leyao Zhang
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Hongfei Zhu
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital &The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Xiaolan Lu
- Department of Clinical laboratory, Canglang Hospital of Suzhou, Suzhou, China.
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Molecular and Celluar Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Yuan Liu
- Department of Infectious Disease,The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
38
|
Cauvi DM, Hawisher D, Derunes J, De Maio A. Phosphatidylcholine Liposomes Reprogram Macrophages toward an Inflammatory Phenotype. MEMBRANES 2023; 13:141. [PMID: 36837644 PMCID: PMC9968183 DOI: 10.3390/membranes13020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Phospholipids are the major components of cellular membranes and cell-derived vesicles such as exosomes. They are also key components of artificial lipid nanoparticles, allowing the encapsulation and transport of various biological or chemical cargos. Both artificial and natural vesicles could be captured by cells delivering important information that could modulate cellular functions. However, the potential contribution of phospholipids within vesicles altering cellular physiology has been largely underestimated. Here, we showed that macrophages exposed to liposomes made exclusively with palmitoyl oleoyl phosphatidylcholine (POPC) in vivo resulted in a dramatic alteration of the transcriptome profile. Differential gene expression analysis indicated that the exposure to POPC liposomes resulted in a change in the expression of 1598 genes. Moreover, 146 genes were upregulated, and 69 genes were downregulated by incubation with POPC liposomes in contrast to palmitoyl oleoyl phosphatidylserine (POPS) exposure. Signaling pathway impact analysis revealed that 24 signaling pathways were significantly modulated after exposure to POPC liposomes, including the activation of the NF-κB pathway. Indeed, the expression of several cytokines (TNF-α, IL-6, and IL-10) and chemokines (Cxcl1 and Cxcl2) were increased. These observations were validated by the exposure of macrophages to POPC liposomes in culture conditions. In addition, the proteomic analysis of peritoneal cells exposed to POPC liposomes performed by mass spectrometry revealed that the expression of 107 proteins was downregulated after POPC exposure, whereas the expression of 12 proteins was significantly upregulated by this treatment, including seven proteins involved in the neutrophil degranulation pathway. This observation was confirmed by flow cytometry analysis showing the rapid recruitment of neutrophils into the peritoneal cavity after POPC exposure. Overall, these findings demonstrate that the presence of phospholipids within artificial and natural vesicles could be responsible for changes in the function of target cells.
Collapse
|
39
|
Hitler L, Eze JF, Nwagu AD, Edet HO, Unimuke TO, Eno EA, Osabor VN, Adeyinka AS. Computational Study of the Interaction of C
12
P
12
and C
12
N
12
Nanocages with Alendronate Drug Molecule. ChemistrySelect 2023. [DOI: 10.1002/slct.202203607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Louis Hitler
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - John F. Eze
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - Adanna D. Nwagu
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - Henry O. Edet
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - Ededet A. Eno
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry Faculty of Physical Sciences University of Calabar Calabar Nigeria
| | - Vincent N. Osabor
- Department of Pure and Applied Chemistry Faculty of Physical Sciences University of Calabar Calabar Nigeria
| | | |
Collapse
|
40
|
Nisar S, Wakeel A, Tahir W, Tariq M. Minimizing Viral Transmission in COVID-19 Like Pandemics: Technologies, Challenges, and Opportunities. IEEE SENSORS JOURNAL 2023; 23:922-932. [PMID: 36913229 PMCID: PMC9983691 DOI: 10.1109/jsen.2022.3170521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2022] [Indexed: 05/06/2023]
Abstract
Coronavirus (COVID-19) pandemic has incurred huge loss to human lives throughout the world. Scientists, researchers, and doctors are trying their best to develop and distribute the COVID-19 vaccine throughout the world at the earliest. In current circumstances, different tracking systems are utilized to control or stop the spread of the virus till the whole population of the world gets vaccinated. To track and trace patients in COVID-19 like pandemics, various tracking systems based on different technologies are discussed and compared in this paper. These technologies include, cellular, cyber, satellite-based radio navigation and low range wireless technologies. The main aim of this paper is to conduct a comprehensive survey that can overview all such tracking systems, which are used in minimizing the spread of COVID-19 like pandemics. This paper also highlights the shortcoming of each tracking systems and suggests new mechanisms to overcome such limitations. In addition, the authors propose some futuristic approaches to track patients in prospective pandemics, based on artificial intelligence and big data analysis. Potential research directions, challenges, and the introduction of next-generation tracking systems for minimizing the spread of prospective pandemics, are also discussed at the end.
Collapse
Affiliation(s)
- Shibli Nisar
- Department of Electrical EngineeringMilitary College of SignalsNational University of Sciences and Technology (NUST) Rawalpindi 46000 Pakistan
| | - Abdul Wakeel
- Department of Electrical EngineeringMilitary College of SignalsNational University of Sciences and Technology (NUST) Rawalpindi 46000 Pakistan
| | - Wania Tahir
- Department of Electrical EngineeringBalochistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Quetta 87300 Pakistan
| | - Muhammad Tariq
- Department of Electrical EngineeringNational University of Computer and Emerging Sciences Islamabad 44000 Pakistan
| |
Collapse
|
41
|
Hossaini Alhashemi S, Ahmadi F, Dehshahri A. Lessons learned from COVID-19 pandemic: Vaccine platform is a key player. Process Biochem 2023; 124:269-279. [PMID: 36514356 PMCID: PMC9731819 DOI: 10.1016/j.procbio.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak and emergence of COVID-19 resulted in the development of different vaccines based on various platforms to combat the disease. While the conventional platforms of inactivated/live attenuated, subunit proteins and virus-like particles (VLPs) have provided efficient and safe vaccines, novel platforms of viral vector- and nucleic acid-based vaccines opened up new horizons for vaccine development. The emergence of COVID-19 pandemic showed that the availability of platforms with high possibility of quick translation from bench to bedside is a prerequisite step in vaccine development in pandemics. Moreover, parallel development of different platforms as well as considering the shipping, storage condition, distribution infrastructure and route of administration are key players for successful and robust response. This review highlights the lessons learned from the current COVID-19 pandemic in terms of vaccine development to provide quick response to future outbreaks of infectious diseases and the importance of vaccine platform in its storage condition and shipping. Finally, the potential application of current COVID-19 vaccine platforms in the treatment of non-infectious diseases has been discussed.
Collapse
Affiliation(s)
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, Algahtani M, Theyab A, Alsharif KF, Albrakati A, Bayram R, Abdel-Daim MM, Doghish AS. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023; 157:113977. [PMID: 36370519 PMCID: PMC9637516 DOI: 10.1016/j.biopha.2022.113977] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is a worldwide pandemic caused by SARS-coronavirus-2 (SARS-CoV-2). Less than a year after the emergence of the Covid-19 pandemic, many vaccines have arrived on the market with innovative technologies in the field of vaccinology. Based on the use of messenger RNA (mRNA) encoding the Spike SARS-Cov-2 protein or on the use of recombinant adenovirus vectors enabling the gene encoding the Spike protein to be introduced into our cells, these strategies make it possible to envisage the vaccination in a new light with tools that are more scalable than the vaccine strategies used so far. Faced with the appearance of new variants, which will gradually take precedence over the strain at the origin of the pandemic, these new strategies will allow a much faster update of vaccines to fight against these new variants, some of which may escape neutralization by vaccine antibodies. However, only a vaccination policy based on rapid and massive vaccination of the population but requiring a supply of sufficient doses could make it possible to combat the emergence of these variants. Indeed, the greater the number of infected individuals, the faster the virus multiplies, with an increased risk of the emergence of variants in these RNA viruses. This review will discuss SARS-CoV-2 pathophysiology and evolution approaches in altered transmission platforms and emphasize the different mutations and how they influence the virus characteristics. Also, this article summarizes the common vaccines and the implication of the mutations and genetic variety of SARS-CoV-2 on the COVID-19 biomedical arbitrations.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences, Lublin 50A Doświadczalna Street, 20-280, Lublin, Poland.
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory sciences, College of Applied medical sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Roula Bayram
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
43
|
Mikołajczyk M, Lewandowski RA, Goncharuk AG. Impact of Improper Storage of ChAdOx1-S (AstraZeneca) Vaccine on Its Efficacy and Safety. Vaccines (Basel) 2022; 11:vaccines11010093. [PMID: 36679938 PMCID: PMC9865338 DOI: 10.3390/vaccines11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background: In May 2021, there was an incident regarding giving patients AstraZeneca vaccines stored improperly. They were stored at room temperature (21 degrees centigrade) for 18 h, 12 h longer than the producer recommends. Aim of the study: The paper aims to contribute to the body of knowledge concerning the efficacy and safety of the ChAdOx1-S (AstraZeneca) vaccine concerning the requirements for cold supply chain specification. Patients and methods: Improperly stored vaccines were given to 44 patients, and 39 of them decided to take part in the study. The Control group consisted of 56 people vaccinated on the same days by the same medical teams, using properly stored medicines. Results: The concentration of anti-S1 SARS-CoV-2 Spike protein IgG antibodies did not differ significantly between the groups. Examined group median 70 kU/L (20;100). Control group median 66 kU/L (32.75;100), p = 0.751. We did not observe any COVID-19 infections in either the control or examined group for half a year after the incident. People from each group reported that local and systemic adverse events occurred directly after the first and second doses. In the control group, one case of spontaneously subsiding face edema and joint pain was observed. There were no severe or fatal adverse events. There were no significant differences between the groups, besides the fatigue, after the second dose. Conclusion: AstraZeneca vaccine ChAdOx1-S stored at 21 degrees centigrade for 18 h before vaccination has the same safety profile (p < 0.05) and the same efficacy (p < 0.05) as the vaccines stored in conditions recommended by the producer.
Collapse
Affiliation(s)
- Marek Mikołajczyk
- Allergology Department of the Voivodeship Rehabilitation Hospital for Children in Ameryka, 11-015 Olsztynek, Poland
| | - Roman A. Lewandowski
- Institute of Management and Quality Science, Faculty of Economics, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Anatoliy G. Goncharuk
- Hauge School of Management, NLA University College, 4633 Kristiansand, Norway
- Correspondence:
| |
Collapse
|
44
|
Elmancy L, Alkhatib H, Daou A. SARS-CoV-2: An Analysis of the Vaccine Candidates Tested in Combatting and Eliminating the COVID-19 Virus. Vaccines (Basel) 2022; 10:2086. [PMID: 36560496 PMCID: PMC9785262 DOI: 10.3390/vaccines10122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), better known as COVID-19, is a highly contagious virus, transferable via air droplets from close human-human contact. The pandemic has led to over 6.5 million deaths worldwide, making it the largest global health crisis since the influenza pandemic in 1918. SARS-CoV-2 rapidly spread around the world, forcing the World Health Organization (WHO) to deem it a global health pandemic after three months of its initiation. The virus has wreaked havoc on many countries worldwide, overwhelming healthcare systems, hence damaging many economies. Even though research has progressed the understanding of the SARS-CoV-2 virus, the information gathered about the vaccine trials and their findings have been scarcely distributed to the public in a single study. The information available to scientists has therefore given researchers a pathway to building an efficacious vehicle to substantially decrease the spread of the virus. The vaccines formulated had many challenges due to multiple factors such as viral mutations and clinical trial delays. This paper will aim to educate readers on the processes that the vaccine candidates took, and better understand the procedures; additionally, we'll look at all candidates' findings that went into clinical trials, assessing, analyzing, and evaluating the 27 vaccine candidates that went into phase III trials and the 13 candidates that went into either phase I/II trials.
Collapse
Affiliation(s)
| | - Hala Alkhatib
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
45
|
Abufares HI, Oyoun Alsoud L, Alqudah MAY, Shara M, Soares NC, Alzoubi KH, El-Huneidi W, Bustanji Y, Soliman SSM, Semreen MH. COVID-19 Vaccines, Effectiveness, and Immune Responses. Int J Mol Sci 2022; 23:15415. [PMID: 36499742 PMCID: PMC9737588 DOI: 10.3390/ijms232315415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has captivated the globe's attention since its emergence in 2019. This highly infectious, spreadable, and dangerous pathogen has caused health, social, and economic crises. Therefore, a worldwide collaborative effort was made to find an efficient strategy to overcome and develop vaccines. The new vaccines provide an effective immune response that safeguards the community from the virus' severity. WHO has approved nine vaccines for emergency use based on safety and efficacy data collected from various conducted clinical trials. Herein, we review the safety and effectiveness of the WHO-approved COVID-19 vaccines and associated immune responses, and their impact on improving the public's health. Several immunological studies have demonstrated that vaccination dramatically enhances the immune response and reduces the likelihood of future infections in previously infected individuals. However, the type of vaccination and individual health status can significantly affect immune responses. Exposure of healthy individuals to adenovirus vectors or mRNA vaccines causes the early production of antibodies from B and T cells. On the other hand, unhealthy individuals were more likely to experience harmful events due to relapses in their existing conditions. Taken together, aligning with the proper vaccination to a patient's case can result in better outcomes.
Collapse
Affiliation(s)
- Haneen Imad Abufares
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Leen Oyoun Alsoud
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad A. Y. Alqudah
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohd Shara
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Nelson C. Soares
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Karem H. Alzoubi
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad H. Semreen
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
46
|
Abstract
The United States Food and Drug Administration recently issued emergency use authorization for 2 mRNA vaccines for preventing COVID-19 disease caused by SARS-CoV-2 virus infections. BNT162b2 from Pfizer-BioNTech and mRNA-1273 by Moderna are planned for use in mass-immunization programs to curb the pandemic. A brief overview of COVID-19 mRNA vaccines is provided, describing the SARS-CoV-2 RNA, how mRNA vaccines work and the advantages of mRNA over other vaccine platforms. The Pfizer-BioNTech collaboration journey to short-list mRNA vaccine candidates and finally selecting BNT162b2 based on safety data is outlined, followed by the Phase 3 study of BNT162b2 demonstrating 95% efficacy in preventing COVID-19 infections. Studies regarding mRNA-1273 (Moderna) are described, including extended immunogenicity data up to 119 days. The Phase 3 COVE study of mRNA-1273 eventually showed vaccine efficacy of 94.5%. Recommendations for future mRNA vaccine development are provided, including ongoing safety surveillance, evaluation in under-represented groups in previous studies and improving mRNA vaccine thermostability. Finally, further logistical considerations are required for manufacturing, storing, distribution and implementing mass vaccination programs to curb the pandemic.
Collapse
Affiliation(s)
- Shyh Poh Teo
- Department of Internal Medicine, Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
47
|
Haghighi M, Khorasani A, Karimi P, Keshavarz R, Mahdavi M. Different Formulations of Inactivated SARS-CoV-2 Vaccine Candidates in Human Compatible Adjuvants: Potency Studies in Mice Showed Different Platforms of Immune Responses. Viral Immunol 2022; 35:663-672. [PMID: 36534465 DOI: 10.1089/vim.2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several inactivated SARS-CoV-2 vaccines have been approved for human use, but are not highly potent. In this study, different formulations of the inactivated SARS-CoV-2 virus were developed in Alum, Montanide 51VG, and Montanide ISA720VG adjuvants, followed by assessment of immune responses. The SARS-CoV-2 virus was inactivated with formalin and formulated in the adjuvants. BALB/c mice were immunized subcutaneously with 4 μg of vaccines on days 0 and 14; (IL-4) and (IFN-g), cytotoxic T lymphocyte (CTL) activity, and specific immunoglobulin G (IgG) titer and IgG1, IgG2a, and IgG2a/IgG1 ratio, and anti-receptor-binding domain (RBD) IgG response were assessed 2 weeks after the final immunization. Immunization with SARS-CoV-2-Montanide ISA51VG showed a significant increase in the IFN-γ cytokine versus SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0033). Cytokine IL-4 response in SARS-CoV-2-Alum group showed a significant increase compared with SARS-CoV-2-Montanide ISA51VG, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0206). In addition, SARS-CoV-2-Montanide ISA51VG vaccine induced the highest IFN-γ/IL-4 cytokine ratio versus other groups (p < 0.0004). CTL activity in SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA720VG groups showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0075). Specific IgG titer in SARS-CoV-2-Montanide ISA51 VG and SARS-CoV-2-Montanide ISA720VG showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0143). Results from specific IgG1and IgG2a in SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA51VG, and SARS-CoV-2-Montanide ISA720VG vaccine showed a significant increase compared with phosphate buffer saline (PBS) group (p < 0.0001), but SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA 720VG groups showed the highest IgG2a/IgG1 ratio and a significant increase compared with SARS-CoV-2-Alum group (p < 0.0379). Moreover, inactivated SARS-CoV-2+Alum and SARS-CoV-2-Montanide ISA 720VG groups demonstrated a significant increase in anti-RBD IgG response versus the SARS-CoV-2-Montanide ISA51VG group. It seems that the type of vaccine formulation is a critical parameter, influencing the immunologic pattern and vaccine potency and human-compatible oil-based adjuvants were more potent than Alum adjuvant in the vaccine formulation.
Collapse
Affiliation(s)
- Melika Haghighi
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Pegah Karimi
- Department of Biochemistry, Faculty of Basic Sciences, Islamic Azad University, Tehran, Iran
| | - Rouhollah Keshavarz
- PPD Tuberculin Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
48
|
Abdolmaleki G, Taheri MA, Paridehpour S, Mohammadi NM, Tabatabaei YA, Mousavi T, Amin M. A comparison between SARS-CoV-1 and SARS-CoV2: an update on current COVID-19 vaccines. Daru 2022; 30:379-406. [PMID: 36050585 PMCID: PMC9436716 DOI: 10.1007/s40199-022-00446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2022] [Indexed: 10/31/2022] Open
Abstract
Since the outbreak of the novel coronavirus disease 2019 (COVID-19) in Wuhan, China, many health care systems have been heavily engaged in treating and preventing the disease, and the year 2020 may be called as "historic COVID-19 vaccine breakthrough". Due to the COVID-19 pandemic, many companies have initiated investigations on developing an efficient and safe vaccine against the virus. From Moderna and Pfizer in the United States to PastocoVac in Pasteur Institute of Iran and the University of Oxford in the United Kingdom, different candidates have been introduced to the market. COVID-19 vaccine research has been facilitated based on genome and structural information, bioinformatics predictions, epitope mapping, and data obtained from the previous developments of severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1) and middle east respiratory syndrome coronavirus (MERS-CoV) vaccine candidates. SARS-CoV genome sequence is highly homologous to the one in COVID-19 and both viruses use the same receptor, angiotensin-converting enzyme 2 (ACE2). Moreover, the immune system responds to these viruses, partially in the same way. Considering the on-going COVID-19 pandemic and previous attempts to manufacture SARS-CoV vaccines, this paper is going to discuss clinical cases as well as vaccine challenges, including those related to infrastructures, transportation, possible adverse reactions, utilized delivery systems (e.g., nanotechnology and electroporation) and probable vaccine-induced mutations.
Collapse
Affiliation(s)
- Gelareh Abdolmaleki
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Mina Azam Taheri
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Sarina Paridehpour
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Neshaut Mashreghi Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Ahmadi Tabatabaei
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Praphawatvet T, Cui Z, Williams RO. Pharmaceutical dry powders of small molecules prepared by thin-film freezing and their applications – A focus on the physical and aerosol properties of the powders. Int J Pharm 2022; 629:122357. [DOI: 10.1016/j.ijpharm.2022.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
|
50
|
Elbadawi MH, Altayib LS, Birier ABG, Ali LE, Hasabo EA, Esmaeel MAM, Elmahi OK, Balla Babiker AF, Abdallah BA, Babkir IM, Mohammed LA, Abdelgadir LSA, Ibrahim ME, Elnemaa OH, Saeed OA, Osman RO, Mohamed Ahmed RM, Dafaallah RA, Hamza WA, Ahmed WY, Ahmed YM, Siralkhatim ZB, Babiker AF, Abdelgadir LS, Alryah MOA. Beliefs and barriers of COVID-19 vaccination hesitancy among Sudanese healthcare workers in Sudan: A cross sectional study. Hum Vaccin Immunother 2022; 18:2132082. [PMID: 36399718 DOI: 10.1080/21645515.2022.2132082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccine hesitancy is one of the major global health impedances. Due to the unprecedented developing rate, the COVID-19 vaccine engendered a high level of hesitancy worldwide. The aim of this study is to assess hesitancy of COVID-19 vaccine among healthcare workers in Sudan. An online-based cross-sectional survey was conducted in Sudan between May and June 2021 using conventional sampling. An anonymous online questionnaire was distributed to healthcare workers (HCW) through different social media platforms and 930 healthcare workers agreed to participate. Data were cleaned in excel sheet and then statistically analyzed using R software version 4.0.2. Of total participants, 67.3% of them were females. Over three-fifths of the study participants agreed that COVID-19 vaccine is important and should be mandatory. A total of 570 (61.3%) agreed that COVID-19 vaccines are safe, whilst 584 (62.8%) had concerns regarding side effects of the vaccine and 533 (57.3%) believe insufficient trials were conducted. A total of 375 (40.3%) accept vaccination absolutely, while 292 (31.4%) accept with some hesitation and only 48 (5.2%) refuse absolutely. Insufficient information about side effects (42.6%) and the vaccine (39.9%) were the most common concerns regarding COVID-19 vaccination. Majority of Sudanese healthcare workers believed that COVID-19 vaccination should be mandatory. A high reliance on social media was observed among healthcare workers in Sudan for information on the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Lina S Altayib
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Laila E Ali
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | | | - Osman K Elmahi
- Faculty of Medicine, Ibn Sina University, Khartoum, Sudan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|