1
|
Guptha PM, Kanoujia J, Kishore A, Raina N, Wahi A, Gupta PK, Gupta M. A comprehensive review of the application of 3D-bioprinting in chronic wound management. Expert Opin Drug Deliv 2024; 21:1573-1594. [PMID: 38809187 DOI: 10.1080/17425247.2024.2355184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings. AREAS COVERED This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents. EXPERT OPINION The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.
Collapse
Affiliation(s)
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Wahi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
2
|
Sarkar Z, Singh H, Iqubal MK, Baboota S, Khan S, Parveen R, Ali J. Involvement of macromolecules in 3D printing for wound healing management: A narrative review. Int J Biol Macromol 2024; 282:136991. [PMID: 39476921 DOI: 10.1016/j.ijbiomac.2024.136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Wound healing comprises four overlapping stages involving complex biochemical and cellular processes. Any lapse in this procedure causes irregular healing, which generates clinical and financial burdens for the health system. Personalized treatment is preferred to overcome the limitations of classical as well as modern methods of wound healing. This review discusses recently developed 3D printing models for personalized treatment with varying degrees of success. It is an effective approach for treating wounds by developing custom dressings tailored to the patient's needs and reducing incidents of infections. Additionally, incorporating natural or synthetic polymers can further enhance their effectiveness. Macromolecular polymers, laminin, cellulose, collagen, gelatin, etc. that make up the bulk of 3D printable bio-inks, have been essential in diverse 3D bioprinting technologies throughout the layered 3D manufacturing processes. The polymers need to be tailored for the specific requirements of printing and effector functions in cancer treatment, dental & oral care, biosensors, and muscle repair. We have explored how 3D printing can be utilized to fasten the process of wound healing at each of the four stages. The benefits as well as the future prospects are also discussed in this article.
Collapse
Affiliation(s)
- Zinataman Sarkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Harshita Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
4
|
Wang H, Karnik I, Uttreja P, Zhang P, Vemula SK, Repka MA. Development of Mathematical Function Control-Based 3D Printed Tablets and Effect on Drug Release. Pharm Res 2024:10.1007/s11095-024-03780-5. [PMID: 39433693 DOI: 10.1007/s11095-024-03780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE The application of 3D printing technology in drug delivery is often limited by the challenges of achieving precise control over drug release profiles. The goal of this study was to apply surface equations to construct 3D printed tablet models, adjust the functional parameters to obtain multiple tablet models and to correlate the model parameters with the in vitro drug release behavior. METHODS This study reports the development of 3D-printed tablets using surface geometries controlled by mathematical functions to modulate drug release. Utilizing fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) technology, personalized drug delivery systems were produced using thermoplastic polymers. Different tablet shapes (T1-T5) were produced by varying the depth of the parabolic surface (b = 4, 2, 0, -2, -4 mm) to assess the impact of surface curvature on drug dissolution. RESULTS The T5 formulation, with the greatest surface curvature, demonstrated the fastest drug release, achieving complete release within 4 h. In contrast, T1 and T2 tablets exhibited a slower release over approximately 6 h. The correlation between surface area and drug release rate was confirmed, supporting the predictions of the Noyes-Whitney equation. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses verified the uniform dispersion of acetaminophen and the consistency of the internal structures, respectively. CONCLUSIONS The precise control of tablet surface geometry effectively tailored drug release profiles, enhancing patient compliance and treatment efficacy. This novel approach offers significant advancements in personalized medicine by providing a highly reproducible and adaptable platform for optimizing drug delivery.
Collapse
Affiliation(s)
- Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Indrajeet Karnik
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Peilun Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
5
|
Kumi M, Chen T, Zhang Z, Wang A, Li G, Hou Z, Cheng T, Wang J, Wang T, Li P. Integration of Hydrogels and 3D Bioprinting Technologies for Chronic Wound Healing Management. ACS Biomater Sci Eng 2024; 10:5995-6016. [PMID: 39228365 DOI: 10.1021/acsbiomaterials.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tian Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
6
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
7
|
Li S, Zhang H, Sun L, Zhang X, Guo M, Liu J, Wang W, Zhao N. 4D printing of biological macromolecules employing handheld bioprinters for in situ wound healing applications. Int J Biol Macromol 2024; 280:135999. [PMID: 39326614 DOI: 10.1016/j.ijbiomac.2024.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In situ bioprinting may be preferred over standard in vitro bioprinting in specific cases when de novo tissues are to be created directly on the appropriate anatomical region in the live organism, employing the body as a bioreactor. So far, few efforts have been made to create in situ tissues that can be safely halted and immobilized during printing in preclinical live animals. However, the technique has to be improved significantly in order to manufacture complex tissues in situ, which may be attainable in the future thanks to multidisciplinary advances in tissue engineering. Thanks to the biological macromolecules, natural and synthetic hydrogels and polymers are among the most used biomaterials in in situ bioprinting procedure. Bioprinters, which encounter multiple challenges, including cross-linking the printed structure, adjusting the rheology parameters, and printing various constructs. The introduction of handheld 3D and 4D bioprinters might potentially overcome the difficulties and problems associated with using traditional bioprinters. Studies showed that this technique could be efficient in wound healing and skin tissue regeneration. This study aims to analyze the benefits and difficulties associated with materials in situ 4D printing via handheld bioprinters.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Hongyang Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Lei Sun
- Department of Thoracic surgery, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Xinyue Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Meiqi Guo
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Jingyang Liu
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| |
Collapse
|
8
|
Abuhamad AY, Masri S, Fadilah NIM, Alamassi MN, Maarof M, Fauzi MB. Application of 3D-Printed Bioinks in Chronic Wound Healing: A Scoping Review. Polymers (Basel) 2024; 16:2456. [PMID: 39274089 PMCID: PMC11397625 DOI: 10.3390/polym16172456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
Chronic wounds, such as diabetic foot ulcers, pressure ulcers, and venous ulcers, pose significant clinical challenges and burden healthcare systems worldwide. The advent of 3D bioprinting technologies offers innovative solutions for enhancing chronic wound care. This scoping review evaluates the applications, methodologies, and effectiveness of 3D-printed bioinks in chronic wound healing, focusing on bioinks incorporating living cells to facilitate wound closure and tissue regeneration. Relevant studies were identified through comprehensive searches in databases, including PubMed, Scopus, and Web of Science databases, following strict inclusion criteria. These studies employ various 3D bioprinting techniques, predominantly extrusion-based, to create bioinks from natural or synthetic polymers. These bioinks are designed to support cell viability, promote angiogenesis, and provide structural integrity to the wound site. Despite these promising results, further research is necessary to optimize bioink formulations and printing parameters for clinical application. Overall, 3D-printed bioinks offer a transformative approach to chronic wound care, providing tailored and efficient solutions. Continued development and refinement of these technologies hold significant promise for improving chronic wound management and patient outcomes.
Collapse
Affiliation(s)
- Asmaa Y Abuhamad
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Syafira Masri
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohammed Numan Alamassi
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Manira Maarof
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mh Busra Fauzi
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
9
|
Thakur B, Bhardwaj A, Luke AM, Wahjuningrum DA. Effectiveness of traditional band and loop space maintainer vs 3D-printed space maintainer following the loss of primary teeth: a randomized clinical trial. Sci Rep 2024; 14:14081. [PMID: 38890410 PMCID: PMC11189383 DOI: 10.1038/s41598-024-61743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
This study evaluates the efficacy of 3D-printed band and loop space maintainers (3D-BLSMs) to mitigate concerns caused by early primary tooth loss in children when compared to their conventional equivalents. Over 9 months, 62 participants aged 6 to 12 years participated in a randomized clinical study. This study evaluated their failure rates (de-cementation, debonding, solder breakage, loop breakage, band breakage, and abutment tooth fracture), gingival health, and patient overall satisfaction. Random assignments were made to place the participants in two groups: traditional band and loop space maintainers or the 3D-BLSMs. The findings show that at 9 months, 3D-BLSMs provided significantly higher survival rates (77.4%) than conventional maintainers (51.6%, p < 0.01). Gum inflammation was mild in both groups, highlighting the need for good oral hygiene. In both groups, patient satisfaction exceeded 90%. Although there was some pain at first with 3D-BLSMs, this eventually subsided and aesthetic preferences disappeared. There were no negative consequences noted, and both groups needed ongoing dental treatment. In conclusion, with excellent patient satisfaction in both groups, 3D-printed space maintainers offer greater long-term durability in reducing dental concerns following early primary tooth loss.
Collapse
Affiliation(s)
- Bhagyashree Thakur
- Division of District Early Intervention Centre, Department of Dentistry, Thane Civil Hospital, Thane, 400601, India
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, 60132, Surabaya, Indonesia
| | - Anuj Bhardwaj
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, 60132, Surabaya, Indonesia
- Department of Conservative Dentistry and Endodontics, College of Dental Sciences & Hospital, Rau, Indore, 453331, India
| | - Alexander Maniangat Luke
- Department of Clinical Science, College of Dentistry, Ajman University, Ajman P.O. Box 346, Al-Jurf, UAE
- Centre of Medical and Bio-Allied Health Sciences Research (CMBAHSR), Ajman University, Ajman P.O. Box 346, Al-Jurf, UAE
| | - Dian Agustin Wahjuningrum
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, 60132, Surabaya, Indonesia.
| |
Collapse
|
10
|
Uchida DT, Bruschi ML. Pharmaceutical applications and requirements of resins for printing by digital light processing (DLP). Pharm Dev Technol 2024; 29:445-456. [PMID: 38641968 DOI: 10.1080/10837450.2024.2345144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The digital light processing (DLP) printer has proven to be effective in biomedical and pharmaceutical applications, as its printing method does not induce shear and a strong temperature on the resin. In addition, the DLP printer has good resolution and print quality, which makes it possible to print complex structures with a customized shape, being used for various purposes ranging from jewelry application to biomedical and pharmaceutical areas. The big disadvantage of DLP is the lack of a biocompatible and non-toxic resin on the market. To overcome this limitation, an ideal resin for biomedical and pharmaceutical use is needed. The resin must have appropriate properties, so that the desired format is printed when with a determined wavelength is applied. Thus, the aim of this work is to bring the basic characteristics of the resins used by this printing method and the minimum requirements to start printing by DLP for pharmaceutical and biomedical applications. The DLP method has proven to be effective in obtaining pharmaceutical devices such as drug delivery systems. Furthermore, this technology allows the printing of devices of ideal size, shape and dosage, providing the patient with personalized treatment.
Collapse
Affiliation(s)
- Denise Tiemi Uchida
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
11
|
Sathisaran I. 3D printing and bioprinting in the battle against diabetes and its chronic complications. Front Bioeng Biotechnol 2024; 12:1363483. [PMID: 38863489 PMCID: PMC11165705 DOI: 10.3389/fbioe.2024.1363483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes is a metabolic disorder characterized by high blood sugar. Uncontrolled blood glucose affects the circulatory system in an organism by intervening blood circulation. The high blood glucose can lead to macrovascular (large blood vessels) and microvascular (small blood vessels) complications. Due to this, the vital organs (notably brain, eyes, feet, heart, kidneys, lungs and nerves) get worsen in diabetic patients if not treated at the earliest. Therefore, acquiring treatment at an appropriate time is very important for managing diabetes and other complications that are caused due to diabetes. The root cause for the occurrence of various health complications in diabetic patients is the uncontrolled blood glucose levels. This review presents a consolidated account of the applications of various types of three-dimensional (3D) printing and bioprinting technologies in treating diabetes as well as the complications caused due to impaired blood glucose levels. Herein, the development of biosensors (for the diagnosis), oral drug formulations, transdermal drug carriers, orthotic insoles and scaffolds (for the treatment) are discussed. Next to this, the fabrication of 3D bioprinted organs and cell-seeded hydrogels (pancreas engineering for producing insulin and bone engineering for managing bone defects) are explained. As the final application, 3D bioprinting of diabetic disease models for high-throughput screening of ant-diabetic drugs are discussed. Lastly, the challenges and future perspective associated with the use of 3D printing and bioprinting technologies against diabetes and its related chronic complications have been put forward.
Collapse
Affiliation(s)
- Indumathi Sathisaran
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
12
|
Kammona O, Tsanaktsidou E, Kiparissides C. Recent Developments in 3D-(Bio)printed Hydrogels as Wound Dressings. Gels 2024; 10:147. [PMID: 38391477 PMCID: PMC10887944 DOI: 10.3390/gels10020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter take several months to heal or do not heal (non-healing chronic wounds), are usually prone to microbial infection and represent an important source of morbidity since they affect millions of people worldwide. Typical wound treatments comprise surgical (e.g., debridement, skin grafts/flaps) and non-surgical (e.g., topical formulations, wound dressings) methods. Modern experimental approaches include among others three dimensional (3D)-(bio)printed wound dressings. The present paper reviews recently developed 3D (bio)printed hydrogels for wound healing applications, especially focusing on the results of their in vitro and in vivo assessment. The advanced hydrogel constructs were printed using different types of bioinks (e.g., natural and/or synthetic polymers and their mixtures with biological materials) and printing methods (e.g., extrusion, digital light processing, coaxial microfluidic bioprinting, etc.) and incorporated various bioactive agents (e.g., growth factors, antibiotics, antibacterial agents, nanoparticles, etc.) and/or cells (e.g., dermal fibroblasts, keratinocytes, mesenchymal stem cells, endothelial cells, etc.).
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Yayehrad AT, Siraj EA, Matsabisa M, Birhanu G. 3D printed drug loaded nanomaterials for wound healing applications. Regen Ther 2023; 24:361-376. [PMID: 37692197 PMCID: PMC10491785 DOI: 10.1016/j.reth.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia, PO Box: 79
| | - Ebrahim Abdella Siraj
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia, PO Box: 79
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia, PO Box: 1176
| | - Motlalepula Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Gebremariam Birhanu
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
14
|
Pita-Vilar M, Concheiro A, Alvarez-Lorenzo C, Diaz-Gomez L. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Carbohydr Polym 2023; 321:121298. [PMID: 37739531 DOI: 10.1016/j.carbpol.2023.121298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 09/24/2023]
Abstract
Chronic wounds, especially diabetic ulcers, pose a significant challenge in regenerative medicine. Cellulose derivatives offer remarkable wound management properties, such as effective absorption and retention of wound exudates, maintaining an optimal moisture environment crucial for successful chronic wound regeneration. However, conventional dressings have limited efficacy in managing and healing these types of skin lesions, driving scientists to explore innovative approaches. The emergence of 3D printing has enabled personalized dressings that meet individual patient needs, improving the healing process and patient comfort. Cellulose derivatives meet the demanding requirements for biocompatibility, printability, and biofabrication necessary for 3D printing of biologically active scaffolds. However, the potential applications of nanocellulose and cellulose derivative-based inks for wound regeneration remain largely unexplored. Thus, this review provides a comprehensive overview of recent advancements in cellulose-based inks for 3D printing of personalized wound dressings. The composition and biofabrication approaches of cellulose-based wound dressings are thoroughly discussed, including the functionalization with bioactive molecules and antibiotics for improved wound regeneration. Similarly, the in vitro and in vivo performance of these dressings is extensively examined. In summary, this review aims to highlight the exceptional advantages and diverse applications of 3D printed cellulose-based dressings in personalized wound care.
Collapse
Affiliation(s)
- Maria Pita-Vilar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Nosrati H, Heydari M, Khodaei M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing. Mater Today Bio 2023; 23:100823. [PMID: 37928254 PMCID: PMC10622885 DOI: 10.1016/j.mtbio.2023.100823] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Wound care and treatment can be critical from a clinical standpoint. While different strategies for the management and treatment of skin wounds have been developed, the limitations inherent in the current approaches necessitate the development of more effective alternative strategies. Advances in tissue engineering have resulted in the development of novel promising approaches for accelerating wound healing. The use of various biomaterials capable of accelerating the regeneration of damaged tissue is critical in tissue engineering. In this regard, cerium oxide nanoparticles (CeO2 NPs) have recently received much attention because of their excellent biological properties, such as antibacterial, anti-inflammatory, antioxidant, and angiogenic features. The incorporation of CeO2 NPs into various polymer-based scaffolds developed for wound healing applications has led to accelerated wound healing due to the presence of CeO2 NPs. This paper discusses the structure and functions of the skin, the wound healing process, different methods for the synthesis of CeO2 NPs, the biological properties of CeO2 NPs, the role of CeO2 NPs in wound healing, the use of scaffolds containing CeO2 NPs for wound healing applications, and the potential toxicity of CeO2 NPs.
Collapse
Affiliation(s)
- Hamed Nosrati
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Morteza Heydari
- Department of Immune Medicine, University of Regensburg, Regensburg, Germany
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| |
Collapse
|
16
|
Saini R, Jeyaraman M, Jayakumar T, Iyengar KP, Jeyaraman N, Jain VK. Evolving Role of Negative Pressure Wound Therapy with Instillation and Dwell Time (NPWTi-d-) in Management of Trauma and Orthopaedic Wounds: Mechanism, Applications and Future Perspectives. Indian J Orthop 2023; 57:1968-1983. [PMID: 38009182 PMCID: PMC10673762 DOI: 10.1007/s43465-023-01018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/07/2023] [Indexed: 11/28/2023]
Abstract
Introduction Negative Pressure Wound Therapy (NPWT) is a well-established method to promote wound healing by delivering negative pressure (a vacuum) at the wound site. Enhancement of NPWT techniques may allow an innovative way of treating trauma and orthopaedic wounds which provide unique challenges. We explore the role of negative pressure wound therapy with instillation and dwell time (NPWTi-d-) in the management of trauma and orthopaedic wounds. Materials and Methods A comprehensive search strategy was conducted using databases of PubMed, Web of Science, Google Scholar, and Cochrane Library with the search words of 'NPWTid' or 'NPWTi-d-' or 'NPWT with instillation' or 'Negative pressure wound treatment with instillation' to generate this narrative review. The mechanism of action of NPWTi-d-, installation solutions and current applications in the trauma and orthopaedic wounds is evaluated. Results NPWTi-d- provides additional mechanism to promote wound healing in a spectrum of acute and chronic orthopaedic wounds. The technique allows local delivery of hydration and elution of antibiotics to support growth of healthy granulation tissue. Various mechanism of actions contribute in drawing the wound edges together, reduce oedema, help decontamination, deliver local antibiotic and promote healing. Conclusion NPWTi-d- permits an enhanced, supplementary technique to encourage wound healing in challenging traumatic and orthopaedic wounds. Future applications of NPWTi-d- will depend on cost-effectiveness analysis and development of its application guidelines based on longitudinal, randomized controlled research trials.
Collapse
Affiliation(s)
- Ravi Saini
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu India
| | - Tarun Jayakumar
- Department of Orthopaedics, KIMS-Sunshine Hospital, Hyderabad, Telangana India
| | | | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu India
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
17
|
Metwally WM, El-Habashy SE, El-Hosseiny LS, Essawy MM, Eltaher HM, El-Khordagui LK. Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing. Biofabrication 2023; 16:015001. [PMID: 37751750 DOI: 10.1088/1758-5090/acfd60] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
There is a constant demand for novel materials/biomedical devices to accelerate the healing of hard-to-heal wounds. Herein, an innovative 3D-printed bioinspired construct was developed as an antibacterial/regenerative scaffold for diabetic wound healing. Hyaluronic/chitosan (HA/CS) ink was used to fabricate a bilayer scaffold comprising a dense plain hydrogel layer topping an antibacterial/regenerative nanofibrous layer obtained by incorporating the hydrogel with polylactic acid nanofibrous microspheres (MS). These were embedded with nano ZnO (ZNP) or didecyldimethylammonium bromide (DDAB)-treated ZNP (D-ZNP) to generate the antibacterial/healing nano/micro hybrid biomaterials, Z-MS@scaffold and DZ-MS@scaffold. Plain and composite scaffolds incorporating blank MS (blank MS@scaffold) or MS-free ZNP@scaffold and D-ZNP@scaffold were used for comparison. 3D printed bilayer constructs with customizable porosity were obtained as verified by SEM. The DZ-MS@scaffold exhibited the largest total pore area as well as the highest water-uptake capacity andin vitroantibacterial activity. Treatment ofStaphylococcus aureus-infected full thickness diabetic wounds in rats indicated superiority of DZ-MS@scaffold as evidenced by multiple assessments. The scaffold afforded 95% wound-closure, infection suppression, effective regulation of healing-associated biomarkers as well as regeneration of skin structure in 14 d. On the other hand, healing of non-diabetic acute wounds was effectively accelerated by the simpler less porous Z-MS@scaffold. Information is provided for the first-time on the 3D printing of nanofibrous scaffolds using non-electrospun injectable bioactive nano/micro particulate constructs, an innovative ZNP-functionalized 3D-printed formulation and the distinct bioactivity of D-ZNP as a powerful antibacterial/wound healing promotor. In addition, findings underscored the crucial role of nanofibrous-MS carrier in enhancing the physicochemical, antibacterial, and wound regenerative properties of DDAB-nano ZnO. In conclusion, innovative 3D-printed DZ-MS@scaffold merging the MS-boosted multiple functionalities of ZNP and DDAB, the structural characteristics of nanofibrous MS in addition to those of the 3D-printed bilayer scaffold, provide a versatile bioactive material platform for diabetic wound healing and other biomedical applications.
Collapse
Affiliation(s)
- Walaa M Metwally
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lobna S El-Hosseiny
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Alexandria 21500, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
18
|
Kitano H, Ishikawa T, Masaoka Y, Komiyama K, Takahashi M, Hidai C. The EGF Motif With CXDXXXXYXCXC Sequence Suppresses Fibrosis in a Mouse Skin Wound Model. In Vivo 2023; 37:1486-1497. [PMID: 37369508 PMCID: PMC10347959 DOI: 10.21873/invivo.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND/AIM Fibrosis is an essential process for wound healing, but excessive fibrosis, such as keloids and hypertrophic scars, can cause cosmetic and functional problems. These lesions are caused by abnormal deposition and shrinkage of collagen fibers. The light chain of FIX, a plasma protein essential for hemostasis, has the amino acid sequence CXDXXXXYXCXC in the EGF domain. Peptides containing this sequence inhibited stromal growth in a mouse transplant tumor model. In this study, the effect of the FIX light chain on wound healing was studied. MATERIALS AND METHODS A full-layer wound was made on the back of each mouse, and cDNA encoding the light chain of mouse FIX (F9-LC) in an expression vector was injected locally once each week using a non-viral vector. Histochemical analysis of the wound was then performed to assess the effects on wound healing. Moreover, the effect of F9-LC on fibroblasts was studied in vitro. RESULTS Macroscopic observation showed that wounds with forced expression of F9-LC appeared flatter and had fewer wrinkles than control wounds. Tissue collagen staining and immunostaining revealed that administration of F9-LC suppressed collagen 1 and 3 deposition and decreased α-smooth muscle actin expression. Electron microscopy revealed sparse and disorganized collagen fibers in the F9-LC-treated mice. In experiments using fibroblasts, addition of a recombinant protein of the FIX light chain disrupted the typical spindle shape and alignment of fibroblasts. CONCLUSION F9-LC is a new candidate for use in treatments to regulate excessive fibrosis and contraction in wound healing.
Collapse
Affiliation(s)
- Hisataka Kitano
- Division of Oral Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tomomi Ishikawa
- Division of Oral Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yoh Masaoka
- Division of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhiro Komiyama
- Division of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mamiko Takahashi
- Division of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Chiaki Hidai
- Division of Medical Education, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Sharma A, Dheer D, Singh I, Puri V, Kumar P. Phytoconstituent-Loaded Nanofibrous Meshes as Wound Dressings: A Concise Review. Pharmaceutics 2023; 15:pharmaceutics15041058. [PMID: 37111544 PMCID: PMC10143731 DOI: 10.3390/pharmaceutics15041058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
In the past, wounds were treated with natural materials, but modern wound dressings include functional elements to expedite the process of healing and to improve skin recovery. Due to their exceptional properties, nanofibrous wound dressings are now the most cutting-edge and desirable option. Similar in structure to the skin’s own extracellular matrix (ECM), these dressings can promote tissue regeneration, wound fluid transportation, and air ductility for cellular proliferation and regeneration owing to their nanostructured fibrous meshes or scaffolds. Many academic search engines and databases, such as Google Scholar, PubMed, and Sciencedirect, were used to conduct a comprehensive evaluation of the literature for the purposes of this investigation. Using the term “nanofibrous meshes” as a keyword, this paper focuses on the importance of phytoconstituents. This review article summarizes the most recent developments and conclusions from studies on bioactive nanofibrous wound dressings infused with medicinal plants. Several wound-healing methods, wound-dressing materials, and wound-healing components derived from medicinal plants were also discussed.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Correspondence: (V.P.); (P.K.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Correspondence: (V.P.); (P.K.)
| |
Collapse
|