1
|
Rahma MN, Suhandi C, Mohammed AFA, El-Rayyes A, Elamin KM, Sulastri E, Wathoni N. The Role and Advancement of Liposomes for Oral Diseases Therapy. Int J Nanomedicine 2025; 20:1865-1880. [PMID: 39975418 PMCID: PMC11837752 DOI: 10.2147/ijn.s492353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 02/21/2025] Open
Abstract
As many as 48.0% of the global population suffers from disabilities caused by oral conditions. These conditions encompass dental caries, periodontal diseases, oral cancers, and other pathologies affecting the hard and soft tissues of the oral and maxillofacial regions. Topical drug treatments in the oral cavity are often ineffective due to the short contact time, which prevents the drug from reaching optimal concentrations necessary for therapeutic effect. Conventional liposomes have several limitations, including low stability, challenges in long-term storage, and rapid clearance by the reticuloendothelial system (RES). These factors significantly reduce their effectiveness in maintaining sustained drug delivery and achieving desired therapeutic outcomes. To overcome these challenges, advanced drug delivery systems have been developed. Among these systems, liposomes have been extensively explored as nanocarriers in targeted drug delivery systems, particularly in mucosal drug delivery, due to their biocompatibility and degradability, making them promising agents for the treatment of oral diseases. To address these issues, extensive research has been conducted to modify the surface of liposomes, optimizing their efficacy, and understanding their mechanisms of action. This review article discusses the role and recent advancements of liposomes in the treatment of oral diseases, highlighting their potential to revolutionize oral health care through improved drug delivery and therapeutic outcomes.
Collapse
Affiliation(s)
- Maya Nurul Rahma
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Ahmed F A Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ali El-Rayyes
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
| | - Khaled M Elamin
- Graduated School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, Central Sulawesi, 94118, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
2
|
Ao H, Song H, Li J, Wang X. Enhanced anti-glioma activity of annonaceous acetogenins based on a novel liposomal co-delivery system with ginsenoside Rh2. Drug Deliv 2024; 31:2324716. [PMID: 38555735 PMCID: PMC10984232 DOI: 10.1080/10717544.2024.2324716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024] Open
Abstract
Annonaceous acetogenins (ACGs) have potent anti-tumor activity, and the problems of their low solubility, hemolysis, and in vivo delivery have been solved by encapsulation into nanoparticles. However, the high toxicity still limits their application in clinic. In this paper, the co-delivery strategy was tried to enhance the in vivo anti-tumor efficacy and reduce the toxic effects of ACGs. Ginsenoside Rh2, a naturally derived biologically active compound, which was reported to have synergistic effect with paclitaxel, was selected to co-deliver with ACGs. And due to its similarity with cholesterol in chemical structure, the co-loading liposomes, (ACGs + Rh2)-Lipo, were successfully constructed using Rh2 instead of cholesterol as the membrane material. The obtained (ACGs + Rh2)-Lipo and ACGs-Lipo had similar mean particle size (about 80 nm), similar encapsulation efficiency (EE, about 97%) and good stability. The MTS assay indicated that (ACGs + Rh2)-Lipo had stronger toxicity in vitro. In the in vivo study, in contrast to ACGs-Lipo, (ACGs + Rh2)-Lipo demonstrated an improved tumor targetability (3.3-fold in relative tumor targeting index) and significantly enhanced the antitumor efficacy (tumor inhibition rate, 72.9 ± 5.4% vs. 60.5 ± 5.4%, p < .05). The body weight change, liver index, and spleen index of tumor-bearing mice showed that Rh2 can attenuate the side effects of ACGs themselves. In conclusion, (ACGs + Rh2)-Lipo not only alleviated the toxicity of ACGs to the organism, but also enhanced their anti-tumor activity, which is expected to break through their bottleneck.
Collapse
Affiliation(s)
- Hui Ao
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| | - Huizhu Song
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| | - Jing Li
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
3
|
Hasan MW, Haseeb M, Gadahi JA, Ehsan M, Wang Q, Lakho SA, Haider A, Aleem MT, Aimulajiang K, Lu M, Xu L, Song X, Li X, Yan R. Nanoparticle containing recombinant excretory/secretory-24 protein of Haemonchus contortus enhanced the cellular immune responses in mice. Front Vet Sci 2024; 11:1470084. [PMID: 39600880 PMCID: PMC11588750 DOI: 10.3389/fvets.2024.1470084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Haemonchus contortus poses a global challenge as a parasite affecting small ruminants, yet the problem of absence of an effective vaccine against H. contortus infection still exists. This investigation sought to appraise the immunological reaction induced by recombinant H. contortus excretory/secretory-24 (rHcES-24) in combination with complete Freund's adjuvant (CFA) and bio-polymeric nanoparticles (NPs) within a murine model. In this study, rHcES-24 was encapsulated in poly(d, l-lactide-co-glycolide) (PLGA) and chitosan (CS) NPs, administered subcutaneously to mice. Researchers analyzed the NPs using scanning electron microscope (SEM) and assessed lymphocyte proliferation, specific antibodies, cytokines, T cell proliferation (CD3e+CD4+, CD3e+CD8a+), and phenotypic alteration in splenocytes (CD11c+CD83+, CD11c+CD86+) through flow cytometry to understand the immune response. The results demonstrated that the administration of nanovaccines (NVs) prompted immune responses towards Th1 pathway. This was indicated by notable enhancements in the production of specific antibodies, heightened cytokine levels, and a robust proliferation of lymphocytes observed in mice that received the NVs compared to control groups. Remarkably, mice vaccinated with the antigen-loaded NPs formulations exhibited considerably higher proportions of splenic dendritic cells (DCs) and T cells in comparison to those receiving the traditional adjuvant or the control groups. Incorporating HcES-24 protein into NPs effectively conferred immunity against H. contortus, paving the way for developing a targeted and commercial vaccine.
Collapse
Affiliation(s)
- Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Javaid Ali Gadahi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiangqiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ali Haider
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Patil SJ, Thorat VM, Koparde AA, Bhosale RR, Bhinge SD, Chavan DD, Tiwari DD. Theranostic Applications of Scaffolds in Current Biomedical Research. Cureus 2024; 16:e71694. [PMID: 39559663 PMCID: PMC11571282 DOI: 10.7759/cureus.71694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Theranostics, a remarkable combination of diagnostics and therapeutics, has given rise to tissue/organ-format theranostic scaffolds that integrate targeted therapy and real-time disease monitoring. The scaffold is a 3D structuring template for cell or tissue attachment and growth. These scaffolds offer unprecedented opportunities for personalized medicine and hold great potential for revolutionizing healthcare. Recent advancements in fabrication techniques have enabled the creation of highly intricate and precisely engineered scaffolds with controllable physical and chemical properties, enhancing their therapeutic potential for tissue engineering and regenerative medicine. This paper proposes a new categorization method for scaffolds in tissue engineering based on the relativity of scaffold design-independent parameters. Five types of scaffolds are defined at different levels, highlighting the importance of understanding and analyzing scaffold types. It possesses the ability to seamlessly integrate diagnostics and therapeutics within a single platform, enhancing the efficacy and precision of personalized medicine. Natural scaffolds derived from biomaterials and synthetic scaffolds fabricated by human intervention are discussed, with synthetic scaffolds offering advantages such as tunable mechanical properties and controlled drug delivery, while natural scaffolds provide inherent biocompatibility and bioactivity, making them ideal for promoting cellular responses. The use of synthetic scaffolds shows great promise in advancing regenerative medicine and improving patient outcomes. The transfer of new technologies and changes in society have accelerated the evolution of health monitoring into the era of personal health monitoring. Using emerging health data, cost-effective analytics, wireless sensor networks, mobile smartphones, and easy internet access, the combination of these technologies is expected to accelerate the transition to personal health monitoring outside of traditional healthcare settings. The main objective of this review article is to provide a comprehensive overview of the theranostic applications of scaffolds in current biomedical research, highlighting their dual role in therapy and diagnostics. The review aims to explore the latest advancements in scaffold design, fabrication, and functionalization, emphasizing how these innovations contribute to improved therapeutic efficacy, targeted drug delivery, and the real-time monitoring of disease progression across various medical fields.
Collapse
Affiliation(s)
- Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshada A Koparde
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, IND
| | - Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
5
|
Liu X, Yu S, Lu X, Zhang Y, Zhong H, Zhou Z, Guan R. Optimization of Preparation Conditions for Quercetin Nanoliposomes Using Response Surface Methodology and Evaluation of Their Stability. ACS OMEGA 2024; 9:17154-17162. [PMID: 38645336 PMCID: PMC11024936 DOI: 10.1021/acsomega.3c09892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Quercetin is a flavonol compound with excellent biological activities. However, quercetin exhibits poor stability and solubility in water, which limits its application. In this study, quercetin nanoliposomes (QUE-NL-1) were prepared using an ultrasonic thin-film dispersion method, and the preparation conditions were optimized using response surface methodology. The optimal conditions for preparing QUE-NL-1 were as follows: an evaporation temperature of 35 °C, a drug concentration of 0.20 mg/mL, and a lipid bile ratio of 4:1. The encapsulation rate of QUE-NL-1 is (63.73 ± 2.09)%, the average particle size is 134.11 nm, and the average absolute value of the zeta potential is 37.50 and PDI = 0.24. By analyzing the storage temperature, storage time, and leakage rate of QUE-NL-1 in simulated gastrointestinal fluid, it was found that quercetin exhibits good stability after embedding and can achieve sustained release in intestinal juice. In addition, the cytotoxicity of QUE-NL-1 was not significant, and the survival rate of Caco-2 cells was >90% when the concentration range of QUE-NL-1 was 0.1-0.4 mg/mL. This study provides an efficient method for preparing QUE-NL-1 with small particle sizes, good stability, and high safety, which is of great significance for expanding the application range of quercetin.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shuzhen Yu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoqin Lu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yao Zhang
- Zhejiang
Provincial Key Lab for Chem and Bio Processing Technology of Farm
Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Zhong
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiyuan Zhou
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongfa Guan
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
6
|
El-Shafai NM, Mostafa YS, Ramadan MS, M El-Mehasseb I. Enhancement efficiency delivery of antiviral Molnupiravir-drug via the loading with self-assembly nanoparticles of pycnogenol and cellulose which are decorated by zinc oxide nanoparticles for COVID-19 therapy. Bioorg Chem 2024; 143:107028. [PMID: 38086240 DOI: 10.1016/j.bioorg.2023.107028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
The target of the study is to modify the efficiency of Molnupiravir-drug (MOL) for COVID-19 therapy via the rearrangement of the building engineering of MOL-drug by loading it with self-assembly biomolecules nanoparticles (NPs) of pycnogenol (Pyc) and cellulose (CNC) which are decorated by zinc oxide nanoparticles. The synthesis and characterization of the modified drug are performing successfully, the loading and release process of the MOL drug on a nano surface is measured by UV-Vis spectroscopy under room temperature and different pH. The release efficiency of the MOL drug is calculated to be 65% (pH 6.8) and 69% (pH 7.4). The modified MOL drug displays 71% (pH 6.8) and 78% (pH 7.4) for CNC@Pyc.MOL nanocomposite, while CNC@Pyc.MOL.ZnO nanocomposite gave values at 76% (pH 6.8) and 78% (pH 7.4), the efficiency recorded after 19 h. The biological activity of the MOL-drug and modified MOL-drug is measured, and the cytotoxicity is performed by SRB technique, where the self-assembly (CNC@Pyc) appears to be a safe healthy, and high viability against the examined cell line. The antioxidant activity and anti-inflammatory are evaluated, where the nanocomposite that has ZnO NPs (CNC@Pyc.MOL.ZnO) gave high efficiency compared to the composite without ZnO NPs. The CPE-inhibition assay is used to identify potential antivirals against CVID-19 (229E virus), the viral inhibition (%) was reported at 37.6 % (for 800 µg/ml) and 18.02 % (for 400 µg/ml) of CNC@Pyc.MOL.ZnO. So, the modified MOL-drug was suggested as a replacement drug for the therapy of COVID-19 compared to MOL-drug, but the results need clinical trials.
Collapse
Affiliation(s)
- Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| | - Yasser S Mostafa
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Mohamed S Ramadan
- Department of Chemistry - Faculty of Science, Alexandria University, Egypt
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| |
Collapse
|