1
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
2
|
Zhou G, Xu R, Groth T, Wang Y, Yuan X, Ye H, Dou X. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:607-630. [PMID: 38481114 DOI: 10.1089/ten.teb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine. Impact statement This article reviews the combination of bioactive herbal compounds with biomaterials in the promotion of skin, cartilage, bone, neural, and heart regeneration, due to the anti-inflammatory, antibacterial, antioxidative, and proangiogenic effects of the herbal compounds, but also their effects on the improvement of mechanic strength and stability of biomaterial scaffolds. This review provides a promising direction for the next generation of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruojiao Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingyu Yuan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
de Oliveira D, Luiz GP, Scussel R, Fagundes MI, Galvani NC, Abel JDS, Zaccaron RP, de Bem Silveira G, de Andrade TAM, Lock Silveira PC, Andrez Machado-de-Ávila R. The combined treatment of gold nanoparticles associated with photobiomodulation accelerate the healing of dermonecrotic lesion. J Drug Target 2024; 32:172-185. [PMID: 38155427 DOI: 10.1080/1061186x.2023.2298848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Introduction: The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the Loxosceles simillis, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.Methodology: For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.Results: All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.Conclusion: With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.
Collapse
Affiliation(s)
- Daysiane de Oliveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gabriel Paulino Luiz
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rahisa Scussel
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Mirian Ivens Fagundes
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Nathália Coral Galvani
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Jessica da Silva Abel
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Thiago Antônio Moretti de Andrade
- Postgraduate in Biomedical Sciences, University Center of Herminio Ometto Foundation, Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | | |
Collapse
|
4
|
Ita K, Roshanaei S. Artificial intelligence for skin permeability prediction: deep learning. J Drug Target 2024; 32:334-346. [PMID: 38258521 DOI: 10.1080/1061186x.2024.2309574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Researchers have put in significant laboratory time and effort in measuring the permeability coefficient (Kp) of xenobiotics. To develop alternative approaches to this labour-intensive procedure, predictive models have been employed by scientists to describe the transport of xenobiotics across the skin. Most quantitative structure-permeability relationship (QSPR) models are derived statistically from experimental data. Recently, artificial intelligence-based computational drug delivery has attracted tremendous interest. Deep learning is an umbrella term for machine-learning algorithms consisting of deep neural networks (DNNs). Distinct network architectures, like convolutional neural networks (CNNs), feedforward neural networks (FNNs), and recurrent neural networks (RNNs), can be employed for prediction. METHODS In this project, we used a convolutional neural network, feedforward neural network, and recurrent neural network to predict skin permeability coefficients from a publicly available database reported by Cheruvu et al. The dataset contains 476 records of 145 chemicals, xenobiotics, and pharmaceuticals, administered on the human epidermis in vitro from aqueous solutions of constant concentration either saturated in infinite dose quantities or diluted. All the computations were conducted with Python under Anaconda and Jupyterlab environment after importing the required Python, Keras, and Tensorflow modules. RESULTS We used a convolutional neural network, feedforward neural network, and recurrent neural network to predict log kp. CONCLUSION This research work shows that deep learning networks can be successfully used to digitally screen and predict the skin permeability of xenobiotics.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Vallejo, CA, USA
| | | |
Collapse
|
5
|
Ita K, Prinze J. Machine learning for skin permeability prediction: random forest and XG boost regression. J Drug Target 2024; 32:57-65. [PMID: 37962433 DOI: 10.1080/1061186x.2023.2284096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Background: Machine learning algorithms that can quickly and easily estimate skin permeability (Kp) are increasingly being used in drug delivery research. The linear free energy relationship (LFER) developed by Abraham is a practical technique for predicting Kp. The permeability coefficients and Abraham solute descriptor values for 175 organic compounds have been documented in the scientific literature.Purpose: The purpose of this project was to use a publicly available dataset to make skin permeability predictions using the random forest and XBoost regression techniques.Methods: We employed Pandas-based methods in JupyterLab to predict permeability coefficient (Kp) from solute descriptors (excess molar refraction [E], combined dipolarity/polarizability [S], overall solute hydrogen bond acidity and basicity [A and B], and the McGowan's characteristic molecular volume [V]).Results: The random forest and XG Boost regression models established statistically significant association between the descriptors and the skin permeability coefficient.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Vallejo, CA, USA
| | - Joyce Prinze
- College of Pharmacy, Touro University, Vallejo, CA, USA
| |
Collapse
|
6
|
Nagarajan K, Thamarai R, Kamaraj C, Al-Ghanim KA, Subramaniam K, Malafaia G. Green synthesis and evaluation of dual herb-extracted DHM-AgNPs: Antimicrobial efficacy and low ecotoxicity in agricultural and aquatic systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122849. [PMID: 39405879 DOI: 10.1016/j.jenvman.2024.122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Uncontrolled applications of weedicide and fertilizer can harm the soil ecology, and most significantly, earthworms are hazardous soil engineers. Thus, we aimed at the toxicity and histopathological alterations in the earthworm Eudrilus euginae following exposure to glyphosate (weedicide), urea (fertilizer), and environmentally friendly dual herb-mixed silver nanoparticles (DHM-AgNPs). The DHM-AgNPs were synthesized using a blend of Alfinia officinarum and Curcuma longa aqueous leaf extracts with 1 mM silver nitrate. The color change from yellow to brown after an hour of incubation was a significant indicator of successful DHM-AgNP synthesis. Characterization of the DHM-AgNPs using UV-Vis spectra indicated a surface plasmon resonance (SPR) peak at 430 nm. In addition to FT-IR spectroscopy and XRD analysis, SEM, TEM, and SEM investigations were performed to identify the DHM-AgNPs. The XPS analysis revealed the oxidation state and surface chemical composition, and Ag NP's specific surface area and degree of porosity were measured using BET. Furthermore, different concentrations of urea and glyphosate were administered to Artemia nauplii and E. euginae to assess their toxicity. The mortality rate for E. euginae exposed to a higher urea concentration (10 g/kg of soil) was 100%. In contrast, a % mortality rate of 83% was noted at 0.5 g/kg of soil. The maximum mortality (90 ± 0.64%) was observed at a 10 mL/kg/L concentration for glyphosate. In contrast, low mortality was noted in E. euginae and A. nauplii exposed with gradient concentrations of DHM-AgNPs compared to glyphosate and urea. As aquaculture and foodborne diseases are widespread, DHM-AgNPs showed significant anti-Vibrio activity against pathogenic Vibrio-related bacteria, inhibiting 80% at 100,100 μg/L, which is of great concern. This study suggests the potential use of DHM-AgNPs in field aqua and crops culture for eco-friendly pest control and anti-Vibrio activity without causing soil and environmental pollution. Further research is warranted to determine the efficacy, safety, and cost-effectiveness of DHM-AgNPs in aqua and agricultural practices.
Collapse
Affiliation(s)
- Kalimuthu Nagarajan
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Rajkumar Thamarai
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia.
| | - Kalidass Subramaniam
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, And Biodiversity, Federal University of Uberl^andia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biology of the Parasite-Host Relationship (PPGBRPH), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Brazil.
| |
Collapse
|
7
|
Chen Y, Tang Y, Li Y, Rui Y, Zhang P. Enhancing the Efficacy of Active Pharmaceutical Ingredients in Medicinal Plants through Nanoformulations: A Promising Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1598. [PMID: 39404324 PMCID: PMC11478102 DOI: 10.3390/nano14191598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This article explores the emerging field of nanomedicine as a drug delivery system, aimed at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The traditional methods of applying medicinal plants present several limitations, such as low bioavailability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting. Nanoformulations represent an innovative approach in drug preparation that employs nanotechnology to produce nanoscale particles or carriers, which are designed to overcome these limitations. Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability of drugs, particularly for the poorly soluble components of medicinal plants. These formulations effectively enhance solubility, thereby facilitating better absorption and utilization by the human body, which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery, ensuring precise administration to the lesion site and minimizing side effects on healthy tissues. Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic action, and enhance the stability of treatment effects. However, nanoformulations present certain limitations and potential risks; their stability and safety require further investigation, particularly regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate substantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants, offering novel approaches and methodologies for their development and application.
Collapse
Affiliation(s)
- Yuhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
- Tangshan Jinhai New Material Co., Ltd., Tangshan 063000, China
- Faculty of Resources and Environment, China Agricultural University, Shanghe County Baiqiao Town Science and Technology Courtyard, Jinan 250100, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Ren H, Zhang J, Jiang Y, Hao S, You J, Yin Z. C-di-GMP@ZIF-8 nanocomposite injectable hydrogel based on modified chitosan and hyaluronic acid for infected wound healing by activating STING signaling. Int J Biol Macromol 2024; 280:135660. [PMID: 39284469 DOI: 10.1016/j.ijbiomac.2024.135660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
The treatment of infected wounds relies on antibiotics; however, increasing drug resistance has made therapeutic processes more difficult. Activating self-innate immune abilities may provide a promising alternative to treat wounds with bacterial infections. In this work, we constructed an immunogenic injectable hydrogel crosslinked by the Schiff base reaction of carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA) and encapsulated with stimulator of interferon genes (STING) agonist c-di-GMP loaded ZIF-8 nanoparticles (c-di-GMP@ZIF-8). Nanocubic ZIF-8 was screened as the most efficient intracellular drug delivery vector from five differently-shaped morphologies. The NOCC/AHA hydrogel released c-di-GMP@ZIF-8 more quickly (43 %) in acidic environment (pH = 5.5) of infected wounds compared with 34 % in non-infected wound environment (pH = 7.4) at 96 h due to pH-responsive degradation performance. The released c-di-GMP@ZIF-8 was found to activate the STING signaling of macrophages and enhance the secretion of IFN-β, CCL2, and CXCL12 5.8-7.6 times compared with phosphate buffer saline control, which effectively inhibited S. aureus growth and promoted fibroblast migration. In rat models with infected wounds, the c-di-GMP@ZIF-8 nanocomposite hydrogels improved infected wound healing by promoting granulation tissue regeneration, alleviating S. aureus-induced inflammation, and improving angiogenesis. Altogether, this study demonstrated a feasible strategy using STING-targeted and pH-responsive hydrogels for infected wound management.
Collapse
Affiliation(s)
- Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Jinpeng Zhang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Yungang Jiang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Shuai Hao
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Jiongming You
- Department of Orthopedic, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, Zhejiang, China.
| | - Zhenglu Yin
- Yangzhou Second People's Hospital (North District Hospital of Northern Jiangsu People's Hospital) Affiliated to Nanjing University, Yangzhou 225007, Jiangsu, China.
| |
Collapse
|
9
|
Kumar M, Chopra S, Mahmood S, Mirza MA, Bhatia A. Formulation, Optimization, and Evaluation of Non-Propellent Foam-Based Formulation for Burn Wounds Treatment. J Pharm Sci 2024; 113:2795-2807. [PMID: 38992795 DOI: 10.1016/j.xphs.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Burn injuries worldwide pose significant health risks due to frequent microbial infections, which worsen complications and increase mortality rates. The conventional antimicrobial formulations are available in the form of ointments and creams. These formulations are very greasy and stick to the clothes. The applications of these formulations by finger or applicator produce pain in the affected area and incur the possibility of microbial infection. To overcome these hurdles, authors developed a novel non-propellent foam (NPF) based formulation containing chlorhexidine for effective topical delivery. Initially, NPF containing Labrasol® (26.7%), sodium lauryl sulfate (1.2%), hydroxy propyl methyl cellulose (0.56%), butylated hydroxytoluene (0.1%), ethanol (1%), and distilled water was prepared and assessed for its consistency, and ability to form foam. The NPF was statistically optimized using the Box-Behnken design to determine the effect of polymer and surfactants on the critical foam properties. The optimized formulation showed a collapse time of 45 s with a unique nature of collapsing upon slight touch which is highly beneficial for burn patients with microbial infection. The diffusion study showed that more than 90% of the drug was released within 6 h. The skin permeation study showed that 23% of the total drug permeated through the skin after 6 h with 7.64 µg/cm2/h permeation flux. The developed formulation showed good antibacterial activity. The minimum inhibitory concentration of prepared NPF was found to be 2.5 µg/mL, 2.5 µg/mL, and 5.0 µg/mL against E. coli (MTCC-1687), P. aeruginosa (MTCC-1688), and S aureus (MTCC-737) respectively. The developed NPF formulation showed quick collapse time, excellent spreadability, good anti-bacterial activity, and a non-sticky nature representing a promising avenue for burn wound treatment without using any applicator.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
10
|
Demyashkin G, Sataieva T, Shevkoplyas L, Kuevda T, Ahrameeva M, Parshenkov M, Mimuni A, Pimkin G, Atiakshin D, Shchekin V, Shegay P, Kaprin A. Burn Wound Healing Activity of Hydroxyethylcellulose Gels with Different Water Extracts Obtained from Various Medicinal Plants in Pseudomonas aeruginosa-Infected Rabbits. Int J Mol Sci 2024; 25:8990. [PMID: 39201676 PMCID: PMC11354801 DOI: 10.3390/ijms25168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Burn injuries represent a significant problem in clinical practice due to the high risk of infection and the prolonged healing process. Recently, more attention has been given to natural remedies such as water extracts of various medicinal plants, which possess anti-inflammatory and wound healing properties. The aim of this study is to evaluate the efficacy and safety of Satureja montana L. and other water extracts in a burn wound model. The study involved male Californian rabbits (n = 52) divided into eight groups. Burn wounds were modeled on the animals and subsequently treated with gels based on Satureja montana L. and other water extracts. The reparative potential of the epidermis (assessed by Ki-67 expression), the state of local immunity (measured by the number of CD-45 cells), and the anti-inflammatory role of mast cells (measured by tryptase levels) were evaluated. Bacteriological and morphological studies were conducted. The most pronounced bactericidal, reparative, and immunostimulatory effects were observed after the treatment using a gel mixture of water extracts from Satureja montana L., Salvia sclarea, Coriandrum sativum L., and Lavandula angustifolia in equal proportions (1:1:1:1). The other gels also demonstrated high efficacy in treating burn wounds, especially when using a strain of Pseudomonas aeruginosa resistant to several antibiotics. Immunohistochemical studies showed a significant increase in the number of Ki-67-positive cells in the basal layer of the epidermis and a decrease in the number of CD-45-positive cells, indicating improved proliferative activity and reduced inflammation. This study confirms the hypothesis that the use of water extract mixtures significantly enhances the reparative potential, improves the immune response in the treatment of burns, and promotes wound healing. These findings pave the way for further research and the application of complex phytotherapeutic agents, specifically water extracts of medicinal plants containing phenols and antioxidants in burn wound therapy.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Tatiana Sataieva
- Department of Microbiology, Virology and Immunology, Crimean Federal University Named after V.I. Vernadsky, Order of the Red Banner of Labor Medical Institute Named after. S. I. Georgievsky, Lenina Blvd, 5/7, Simferopol 295006, Russia; (T.S.); (L.S.)
| | - Ludmila Shevkoplyas
- Department of Microbiology, Virology and Immunology, Crimean Federal University Named after V.I. Vernadsky, Order of the Red Banner of Labor Medical Institute Named after. S. I. Georgievsky, Lenina Blvd, 5/7, Simferopol 295006, Russia; (T.S.); (L.S.)
| | - Tatyana Kuevda
- Department Field of Crop/Laboratory of Processing and Standardization of Essential oil Raw Materials, Research Institute of Agriculture of Crimea, Kievskaya St., 150, Simferopol 295043, Russia; (T.K.); (M.A.)
| | - Maria Ahrameeva
- Department Field of Crop/Laboratory of Processing and Standardization of Essential oil Raw Materials, Research Institute of Agriculture of Crimea, Kievskaya St., 150, Simferopol 295043, Russia; (T.K.); (M.A.)
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Alexander Mimuni
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Georgy Pimkin
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, Moscow 117198, Russia;
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, Moscow 117198, Russia;
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, Moscow 117198, Russia
| |
Collapse
|
11
|
Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:385-398. [PMID: 38693014 DOI: 10.1016/j.joim.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; 22(4): 385-398.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
13
|
Mahajan A, Sharma G, Thakur A, Singh B, Mehta H, Mittal N, Dogra S, Katare OP. Tofacitinib in dermatology: a potential opportunity for topical applicability through novel drug-delivery systems. Nanomedicine (Lond) 2024; 19:79-101. [PMID: 38197372 DOI: 10.2217/nnm-2023-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Tofacitinib is a first-generation JAK inhibitor approved by the US FDA for treating rheumatoid arthritis. It exhibits a broad-spectrum inhibitory effect with abilities to block JAK-STAT signalling. The primary objective of this review is to obtain knowledge about cutting-edge methods for effectively treating a variety of skin problems by including tofacitinib into formulations that are based on nanocarriers. The review also highlights clinical trials and offers an update on published clinical patents. Nanocarriers provide superior performance compared to conventional treatments in terms of efficacy, stability, drug bioavailability, target selectivity and sustained drug release. Current review has the potential to make significant contributions to the ongoing discussion involving dermatological treatments and the prospective impact of nanotechnology on transforming healthcare within this field.
Collapse
Affiliation(s)
- Akanksha Mahajan
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sunil Dogra
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
14
|
Kumar M, Kumar D, Singh S, Chopra S, Mahmood S, Bhatia A. Quality by Design Perspective for Designing Foam-based Formulation: Current State of Art. Curr Pharm Des 2024; 30:410-419. [PMID: 38747045 DOI: 10.2174/0113816128289965240123074111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/16/2024] [Indexed: 05/18/2024]
Abstract
Foam-based delivery systems contain one or more active ingredients and dispersed solid or liquid components that transform into gaseous form when the valve is actuated. Foams are an attractive and effective delivery approach for medical, cosmetic, and pharmaceutical uses. The foams-based delivery systems are gaining attention due to ease of application as they allow direct application onto the affected area of skin without using any applicator or finger, hence increasing the compliance and satisfaction of the patients. In order to develop foam-based delivery systems with desired qualities, it is vital to understand which type of material and process parameters impact the quality features of foams and which methodologies may be utilized to investigate foams. For this purpose, Quality-by-Design (QbD) approach is used. It aids in achieving quality-based development during the development process by employing the QbD concept. The critical material attributes (CMAs) and critical process parameters (CPPs) were discovered through the first risk assessment to ensure the requisite critical quality attributes (CQAs). During the initial risk assessment, the high-risk CQAs were identified, which affect the foam characteristics. In this review, the authors discussed the various CMAs, CPPs, CQAs, and risk factors associated in order to develop an ideal foam-based formulation with desired characteristics.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Shubham Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| |
Collapse
|
15
|
Huang X, Shi L, Lin Y, Zhang C, Liu P, Zhang R, Chen Q, Ouyang X, Gao Y, Wang Y, Sun T. Pycnoporus sanguineus Polysaccharides as Reducing Agents: Self-Assembled Composite Nanoparticles for Integrative Diabetic Wound Therapy. Int J Nanomedicine 2023; 18:6021-6035. [PMID: 37908670 PMCID: PMC10614664 DOI: 10.2147/ijn.s427055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Diabetic foot ulcers (DFU) are severe complications of diabetes, posing significant health and societal challenges. Elevated levels of reactive oxygen species (ROS) at the ulcer site hinder wound healing in most patients, while individuals with diabetes are also more susceptible to bacterial infections. This study aims to synthesize a comprehensive therapeutic material using polysaccharides from Pycnoporus sanguineus to promote DFU wound healing, reduce ROS levels, and minimize bacterial infections. Methods Polysaccharides from P.sanguineus were employed as reducing and stabilizing agents to fabricate polysaccharide-based composite particles (PCPs) utilizing silver ions as templates. PCPs were characterized via UV-Vis, TEM, FTIR, XRD, and DLS. The antioxidant, antimicrobial, and cytotoxic properties of PCPs were assessed through in vitro and cellular experiments. The effects and mechanisms of PCPs on wound healing were evaluated using a diabetic ulcer mouse model. Results PCPs exhibited spherical particles with an average size of 57.29±22.41 nm and effectively combined polysaccharides' antioxidant capacity with silver nanoparticles' antimicrobial function, showcasing synergistic therapeutic effects. In vitro and cellular experiments demonstrated that PCPs reduced cellular ROS levels by 54% at a concentration of 31.25 μg/mL and displayed potent antibacterial activity at 8 μg/mL. In vivo experiments revealed that PCPs enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), promoting wound healing in DFUs and lowering the risk of bacterial infections. Conclusion The synthesized PCPs offer a novel strategy for the comprehensive treatment of DFU. By integrating antioxidant and antimicrobial functions, PCPs effectively promote wound healing and alleviate patient suffering. The present study demonstrates a new strategy for the integrated treatment of diabetic wounds and expands the way for developing and applying the polysaccharide properties of P. sanguineus.
Collapse
Affiliation(s)
- Xiaofei Huang
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Lihua Shi
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yin Lin
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Cong Zhang
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Penghui Liu
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Ran Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Qiqi Chen
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xudong Ouyang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yuanyuan Gao
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yingshuai Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Tongyi Sun
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| |
Collapse
|
16
|
Chauhan N, Kumar M, Chaurasia S, Garg Y, Chopra S, Bhatia A. A Comprehensive Review on Drug Therapies and Nanomaterials used in Orthodontic Treatment. Curr Pharm Des 2023; 29:3154-3165. [PMID: 38018198 DOI: 10.2174/0113816128276153231117054242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
Orthodontic treatment typically requires an extended duration of 1-2 years to complete the treatment. Accelerating the rate of tooth movement during orthodontic treatment is essential for shortening the overall treatment duration. After the completion of orthodontic treatment, a prominent concern arises in the form of orthodontic relapse, where the teeth tend to revert to their original positions. This issue affects approximately 60% of the global population, underscoring the importance of implementing effective measures to address orthodontic relapse. An approach in this regard involves the targeted administration of herbal and synthetic drugs applied directly to the specific area of interest to facilitate tooth movement and prevent orthodontic relapse. Apart from this, researchers are investigating the feasibility of utilizing different types of nanoparticles to improve the process of orthodontic tooth movement. In recent years, there has been a noticeable increase in the number of studies examining the effects of various drugs on orthodontics. However, the currently available literature does not provide significant evidence relating to orthodontic tooth movement. In this review, the authors provide valuable information about the drugs and nanomaterials that are capable of further enhancing the rate of orthodontic tooth movement and reducing the risk of orthodontic relapse. However, a notable hurdle remains, i.e., there is no marketed formulation available that can enhance orthodontic tooth movement and reduce treatment time. Therefore, researchers should try herbal-synthetic approaches to achieve a synergistic effect that can enhance orthodontic tooth movement. In this nutshell, there is an urgent need to develop a non-invasive, patient-compliant, and cost-effective formulation that will provide quality treatment and ultimately reduce the treatment time. Another critical issue is orthodontic relapse, which can be addressed by employing drugs that slow down osteoclastogenesis, thereby preventing tooth movement after treatment. Nevertheless, extensive research is still required to overcome this challenge in the future.
Collapse
Affiliation(s)
- Nitasha Chauhan
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Simran Chaurasia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| |
Collapse
|
17
|
Kumar M, Kumar D, Chopra S, Mahmood S, Bhatia A. Microbubbles: Revolutionizing Biomedical Applications with Tailored Therapeutic Precision. Curr Pharm Des 2023; 29:3532-3545. [PMID: 38151837 DOI: 10.2174/0113816128282478231219044000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. OBJECTIVE The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery. METHODS The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution. RESULTS Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites. CONCLUSION The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| |
Collapse
|