1
|
Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol Rev 2023; 103:1137-1191. [PMID: 36239451 PMCID: PMC9886361 DOI: 10.1152/physrev.00037.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
Collapse
Affiliation(s)
- Joseph A Taylor
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David B Bartlett
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas A Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Guo Y, Piasecki J, Swiecicka A, Ireland A, Phillips BE, Atherton PJ, Stashuk D, Rutter MK, McPhee JS, Piasecki M. Circulating testosterone and dehydroepiandrosterone are associated with individual motor unit features in untrained and highly active older men. GeroScience 2022; 44:1215-1228. [PMID: 34862585 PMCID: PMC9213614 DOI: 10.1007/s11357-021-00482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 10/31/2022] Open
Abstract
Long-term exercise training has been considered as an effective strategy to counteract age-related hormonal declines and minimise muscle atrophy. However, human data relating circulating hormone levels with motor nerve function are scant. The aims of the study were to explore associations between circulating sex hormone levels and motor unit (MU) characteristics in older men, including masters athletes competing in endurance and power events. Forty-three older men (mean ± SD age: 69.9 ± 4.6 years) were studied based on competitive status. The serum concentrations of dehydroepiandrosterone (DHEA), total testosterone (T) and estradiol were quantified using liquid chromatography mass spectrometry. Intramuscular electromyographic signals were recorded from vastus lateralis (VL) during 25% of maximum voluntary isometric contractions and processed to extract MU firing rate (FR), and motor unit potential (MUP) features. After adjusting for athletic status, MU FR was positively associated with DHEA levels (p = 0.019). Higher testosterone and estradiol were associated with lower MUP complexity; these relationships remained significant after adjusting for athletic status (p = 0.006 and p = 0.019, respectively). Circulating DHEA was positively associated with MU firing rate in these older men. Higher testosterone levels were associated with reduced MUP complexity, indicating reduced electrophysiological temporal dispersion, which is related to decreased differences in conduction times along axonal branches and/or MU fibres. Although evident in males only, this work highlights the potential of hormone administration as a therapeutic interventional strategy specifically targeting human motor units in older age.
Collapse
Affiliation(s)
- Yuxiao Guo
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Agnieszka Swiecicka
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Alex Ireland
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON Canada
| | - Martin K. Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Jones EJ, Chiou S, Atherton PJ, Phillips BE, Piasecki M. Ageing and exercise-induced motor unit remodelling. J Physiol 2022; 600:1839-1849. [PMID: 35278221 PMCID: PMC9314090 DOI: 10.1113/jp281726] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
A motor unit (MU) comprises the neuron cell body, its corresponding axon and each of the muscle fibres it innervates. Many studies highlight age-related reductions in the number of MUs, yet the ability of a MU to undergo remodelling and to expand to rescue denervated muscle fibres is also a defining feature of MU plasticity. Remodelling of MUs involves two coordinated processes: (i) axonal sprouting and new branching growth from adjacent surviving neurons, and (ii) the formation of key structures around the neuromuscular junction to resume muscle-nerve communication. These processes rely on neurotrophins and coordinated signalling in muscle-nerve interactions. To date, several neurotrophins have attracted focus in animal models, including brain-derived neurotrophic factor and insulin-like growth factors I and II. Exercise in older age has demonstrated benefits in multiple physiological systems including skeletal muscle, yet evidence suggests this may also extend to peripheral MU remodelling. There is, however, a lack of research in humans due to methodological limitations which are easily surmountable in animal models. To improve mechanistic insight of the effects of exercise on MU remodelling with advancing age, future research should focus on combining methodological approaches to explore the in vivo physiological function of the MU alongside alterations of the localised molecular environment.
Collapse
Affiliation(s)
- Eleanor J. Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Shin‐Yi Chiou
- School of SportExercise, and Rehabilitation Sciences, MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
4
|
Jones EJ, Piasecki J, Ireland A, Stashuk DW, Atherton PJ, Phillips BE, McPhee JS, Piasecki M. Lifelong exercise is associated with more homogeneous motor unit potential features across deep and superficial areas of vastus lateralis. GeroScience 2021; 43:1555-1565. [PMID: 33763775 PMCID: PMC8492837 DOI: 10.1007/s11357-021-00356-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Motor unit (MU) expansion enables rescue of denervated muscle fibres helping to ameliorate age-related muscle atrophy, with evidence to suggest master athletes are more successful at this remodelling. Electrophysiological data has suggested MUs located superficially are larger than those located deeper within young muscle. However, the effects of ageing and exercise on MU heterogeneity across deep and superficial aspects of vastus lateralis (VL) remain unclear. Intramuscular electromyography was used to record individual MU potentials (MUPs) and near fibre MUPs (NFMs) from deep and superficial regions of the VL during 25% maximum voluntary contractions, in 83 males (15 young (Y), 17 young athletes (YA), 22 old (O) and 29 master athletes (MA)). MUP size and complexity were assessed using area and number of turns, respectively. Multilevel mixed effects linear regression models were performed to investigate the effects of depth in each group. MUP area was greater in deep compared with superficial MUs in Y (p<0.001) and O (p=0.012) but not in YA (p=0.071) or MA (p=0.653). MUP amplitude and NF MUP area were greater, and MUPs were more complex in deep MUPs from Y, YA and O (all p<0.05) but did not differ across depth in MA (all p>0.07). These data suggest MU characteristics differ according to depth within the VL which may be influenced by both ageing and exercise. A more homogenous distribution of MUP size and complexity across muscle depths in older athletes may be a result of a greater degree of age-related MU adaptations.
Collapse
Affiliation(s)
- Eleanor J Jones
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Alex Ireland
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
5
|
Piasecki J, Inns TB, Bass JJ, Scott R, Stashuk DW, Phillips BE, Atherton PJ, Piasecki M. Influence of sex on the age-related adaptations of neuromuscular function and motor unit properties in elite masters athletes. J Physiol 2021; 599:193-205. [PMID: 33006148 DOI: 10.1113/jp280679] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Masters athletes maintain high levels of activity into older age and allow an examination of the effects of aging dissociated from the effects of increased sedentary behaviour. Evidence suggests masters athletes are more successful at motor unit remodelling, the reinnervation of denervated fibres acting to preserve muscle fibre number, but little data are available in females. Here we used intramuscular electromyography to demonstrate that motor units sampled from the tibialis anterior show indications of remodelling from middle into older age and which does not differ between males and females. The age-related trajectory of motor unit discharge characteristic differs according to sex, with female athletes progressing to a slower firing pattern that was not observed in males. Our findings indicate motor unit remodelling from middle to older age occurs to a similar extent in male and female athletes, with discharge rates progressively slowing in females only. ABSTRACT Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, although the majority of studies have focused on males, with little available data on female athletes. Functional assessments of strength, balance and motor control were performed in 30 masters athletes (16 male) aged 44-83 years. Intramuscular needle electrodes were used to sample individual motor unit potentials (MUPs) and near-fibre MUPs in the tibialis anterior (TA) during isometric contractions at 25% maximum voluntary contraction, and used to determine discharge characteristics (firing rate, variability) and biomarkers of peripheral MU remodelling (MUP size, complexity, stability). Multilevel mixed-effects linear regression models examined effects of age and sex. All aspects of neuromuscular function deteriorated with age (P < 0.05) with no age × sex interactions, although males were stronger (P < 0.001). Indicators of MU remodelling also progressively increased with age to a similar extent in both sexes (P < 0.05), whilst MU firing rate progressively decreased with age in females (p = 0.029), with a non-significant increase in males (p = 0.092). Masters athletes exhibit age-related declines in neuromuscular function that are largely equal across males and females. Notably, they also display features of MU remodelling with advancing age, probably acting to reduce muscle fibre loss. The age trajectory of MU firing rate assessed at a single contraction level differed between sexes, which may reflect a greater tendency for females to develop a slower muscle phenotype.
Collapse
Affiliation(s)
- Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Thomas B Inns
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Joseph J Bass
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Reece Scott
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Molecular and neural adaptations to neuromuscular electrical stimulation; Implications for ageing muscle. Mech Ageing Dev 2020; 193:111402. [PMID: 33189759 PMCID: PMC7816160 DOI: 10.1016/j.mad.2020.111402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Muscle atrophy and functional declines observed with advancing age can be minimized via various NMES protocols. Animal models have shown that NMES induces motor axon regeneration and promotes axonal outgrowth and fibre reinnervation. The activation of BDNF-trkB contributes to promotion of nerve growth and survival and mediates neuroplasticity. NMES is able to regulate muscle protein homeostasis and elevate oxidative enzyme activity.
One of the most notable effects of ageing is an accelerated decline of skeletal muscle mass and function, resulting in various undesirable outcomes such as falls, frailty, and all-cause mortality. The loss of muscle mass directly leads to functional deficits and can be explained by the combined effects of individual fibre atrophy and fibre loss. The gradual degradation of fibre atrophy is attributed to impaired muscle protein homeostasis, while muscle fibre loss is a result of denervation and motor unit (MU) remodelling. Neuromuscular electrical stimulation (NMES), a substitute for voluntary contractions, has been applied to reduce muscle mass and functional declines. However, the measurement of the effectiveness of NMES in terms of its mechanism of action on the peripheral motor nervous system and neuromuscular junction, and multiple molecular adaptations at the single fibre level is not well described. NMES mediates neuroplasticity and upregulates a number of neurotropic factors, manifested by increased axonal sprouting and newly formed neuromuscular junctions. Repeated involuntary contractions increase the activity levels of oxidative enzymes, increase fibre capillarisation and can influence fibre type conversion. Additionally, following NMES muscle protein synthesis is increased as well as functional capacity. This review will detail the neural, molecular, metabolic and functional adaptations to NMES in human and animal studies.
Collapse
|
7
|
Haynes EMK, Neubauer NA, Cornett KMD, O'Connor BP, Jones GR, Jakobi JM. Age and sex-related decline of muscle strength across the adult lifespan: a scoping review of aggregated data. Appl Physiol Nutr Metab 2020; 45:1185-1196. [PMID: 32598857 DOI: 10.1139/apnm-2020-0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Muscle strength is sex-related and declines with advancing age; yet, a comprehensive comparative evaluation of age-related strength loss in human females and males has not been undertaken. To do so, segmented piecewise regression analysis was performed on aggregated data from studies published from 1990 to 2018 and are available in CINAHL, EMBASE, MEDLINE, and PsycINFO databases. The search identified 5613 articles that were reviewed for physical assessment results stratified by sex and age. Maximal isometric and isokinetic 60°·s-1 knee extension (KE) and knee flexion (KF) contractions from 57 studies and 15 283 subjects (N = 7918 females) had sufficient data reported on females and males for meaningful statistical evaluation to be undertaken. The analysis revealed that isometric KE and KF strength undergo similar rapid declines in both sexes late in the sixth decade of life. Yet, there is an abrupt age-related decline in KE 60°·s-1 peak torque earlier in females (aged 41.8 years) than males (aged 66.7 years). In the assessment of KF peak torque, an age-related acceleration in strength loss was only identified in males (aged 49.3 years). The results suggest that age-related isometric strength loss is similar between sexes while the characteristics of KE and KF peak torque decline are sex-related, which likely explains the differential rate of age-related functional decline. Novelty Inclusion of muscle strength and torque of KE and KF data from >15 000 subjects. Isometric KE and KF strength loss are similar between sexes. Isokinetic 60°·s-1 KE torque decline accelerates 25 years earlier in females and female age-related KF peak torque decline does not accelerate with age.
Collapse
Affiliation(s)
- E M K Haynes
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - N A Neubauer
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - K M D Cornett
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - B P O'Connor
- Psychology, School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - G R Jones
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - J M Jakobi
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|