1
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
2
|
Yamoto K, Saitsu H, Ohkubo Y, Kagami M, Ogata T. Pathogenic sequence variant and microdeletion affecting HMGA2 in Silver-Russell syndrome: case reports and literature review. Clin Epigenetics 2024; 16:73. [PMID: 38840187 PMCID: PMC11155105 DOI: 10.1186/s13148-024-01688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Silver-Russell syndrome (SRS) is a representative imprinting disorder characterized by pre- and postnatal growth failure. We encountered two Japanese SRS cases with a de novo pathogenic frameshift variant of HMGA2 (NM_003483.6:c.138_141delinsCT, p.(Lys46Asnfs*16)) and a de novo ~ 3.4 Mb microdeletion at 12q14.2-q15 involving HMGA2, respectively. Furthermore, we compared clinical features in previously reported patients with various genetic conditions leading to compromised IGF2 expression, i.e., HMGA2 aberrations, PLAG1 aberrations, IGF2 aberrations, and H19/IGF2:IG-DMR epimutations (hypomethylations). The results provide further support for HMGA2 being involved in the development of SRS and imply some characteristic features in patients with HMGA2 aberrations.
Collapse
Affiliation(s)
- Kaori Yamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1, Handayama, Chuo-ku, Hamamatsu, 431-3192, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1, Handayama, Chuo-ku, Hamamatsu, 431-3192, Japan
| | - Yumiko Ohkubo
- Department of Pediatrics, Shizuoka Saiseikai Hospital, Shizuoka, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1, Handayama, Chuo-ku, Hamamatsu, 431-3192, Japan.
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan.
| |
Collapse
|
3
|
Wu K, Zhu Y, Zhu Q. Prenatal diagnosis of Silver-Russell syndrome with 8q12 deletion including the PLAG1 gene: a case report and review. Front Genet 2024; 15:1387649. [PMID: 38826801 PMCID: PMC11140101 DOI: 10.3389/fgene.2024.1387649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Silver-Russell syndrome (SRS) is a clinically and genetically heterogeneous disorder. A retrospective analysis predicted that the live birth prevalence of SRS in Estonia is 1:15,886 [Yakoreva et al., Eur J Hum Genet, 2019, 27(11), 1649-1658]. The most common causative genetic mechanism in the proband is loss of paternal methylation in the imprinted control region 1 (ICR1) at 11p15.5 chromosome. A few studies suggested that inherited or de novo loss-of-function alterations of the PLAG1 gene, including the whole-gene deletion and intragenic pathogenic variants, could cause a rare type of SRS. To date, less than 20 unrelated PLAG1-related SRS cases have been reported, and the clinical information about these cases is limited. We report the first prenatal case of SRS with 8q12 deletion (including the PLAG1 gene). The fetus presented with intrauterine growth retardation, small for gestational age, relative macrocephaly at birth, and a protruding forehead. Unlike classical SRS cases, the fetus had micrognathia and did not show body asymmetry. We hope that the literature review in this study provides new insights into genotype-phenotype relationships of PLAG1-related SRS.
Collapse
Affiliation(s)
- Ke Wu
- Laboratory of Prenatal Diagnosis Center, Quzhou Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China
| | - Yuying Zhu
- Prenatal Diagnosis Center, Quzhou Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China
| | - Qiumin Zhu
- Obstetrics Department, Quzhou Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
4
|
Maharaj AV, Cottrell E, Thanasupawat T, Joustra SD, Triggs-Raine B, Fujimoto M, Kant SG, van der Kaay D, Clement-de Boers A, Brooks AS, Aguirre GA, Martín del Estal I, Castilla de Cortázar Larrea MI, Massoud A, van Duyvenvoorde HA, De Bruin C, Hwa V, Klonisch T, Hombach-Klonisch S, Storr HL. Characterization of HMGA2 variants expands the spectrum of Silver-Russell syndrome. JCI Insight 2024; 9:e169425. [PMID: 38516887 PMCID: PMC11063932 DOI: 10.1172/jci.insight.169425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.
Collapse
Affiliation(s)
- Avinaash V. Maharaj
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sjoerd D. Joustra
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Masanobu Fujimoto
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Sarina G. Kant
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Danielle van der Kaay
- Division of Paediatric Endocrinology, Department of Paediatrics, Erasmus University Medical Centre, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Agnes Clement-de Boers
- Department of Paediatrics, Juliana Children’s Hospital/Haga Teaching Hospital, The Hague, Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Ahmed Massoud
- Department of Paediatrics and Child Health, HCA Healthcare UK, London, United Kingdom
| | - Hermine A. van Duyvenvoorde
- Laboratory for Diagnostic Genome analysis (LDGA), Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Christiaan De Bruin
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, and
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, and
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| |
Collapse
|
5
|
Dong P, Zhang N, Zhang Y, Liu CX, Li CL. Clinical characterization of PLAG1- related Silver-Russell syndrome:A clinical report. Eur J Med Genet 2023; 66:104837. [PMID: 37673301 DOI: 10.1016/j.ejmg.2023.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is a rare genetic disorder that is mainly associated with prenatal and postnatal growth retardation. Loss of methylation on chromosome 11p15 and maternal uniparental disomy on chromosome 7 (upd(7)mat) are two common causes, accounting for approximately 50% and 10% of all patients, respectively. Pathogenic variants of genes, such as HMGA2, IGF2, CDKN1C, and PLAG1, have also been detected in patients with SRS. So far, SRS caused by PLAG1 alterations have only been described in two sporadic cases and three families. PATIENT PRESENTATION The genetic and clinical manifestations of SRS in a patient carrying a novel variant of PLAG1 were reported and these results were compared with those of five previously reported cases. Trio-based whole-exome sequencing revealed a heterozygous variation in PLAG1 (NM_002655.3: c.131del; p.(Asn44Thrfs*6)) in an infant girl with clinical suspicion of SRS. Familial studies confirmed that the mutation was inherited from her father. As seen in previously reported cases, the patient presented with prenatal and postnatal growth retardation, relative macrocephaly at birth, prominent forehead during infancy, and triangular face. However, no clinical characteristics such as feeding difficulties, hypothyroidism, or psychomotor and speech delay. CONCLUSIONS This study identified the sixth documented case of PLAG1 variants leading to SRS and expanded our knowledge of the molecular spectrum of SRS phenotypes.
Collapse
Affiliation(s)
- Ping Dong
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, PR China.
| | - Nan Zhang
- Department of Child Healthcare, Northwest Women's and Children's Hospital, Xi'an, Shaanxi Province, PR China
| | - Ying Zhang
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, PR China
| | - Chun-Xue Liu
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, PR China
| | - Chun-Lan Li
- Department of Gyneocology, Children's Hospital of Anhui Province, Anhui Hospital of Children's Hospital of Fudan University, Hefei, Anhui Province, PR China.
| |
Collapse
|
6
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Ciancia S, Goedegebuure WJ, Grootjen LN, Hokken-Koelega ACS, Kerkhof GF, van der Kaay DCM. Computer-aided facial analysis as a tool to identify patients with Silver-Russell syndrome and Prader-Willi syndrome. Eur J Pediatr 2023:10.1007/s00431-023-04937-x. [PMID: 36947243 PMCID: PMC10257592 DOI: 10.1007/s00431-023-04937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Genetic syndromes often show facial features that provide clues for the diagnosis. However, memorizing these features is a challenging task for clinicians. In the last years, the app Face2Gene proved to be a helpful support for the diagnosis of genetic diseases by analyzing features detected in one or more facial images of affected individuals. Our aim was to evaluate the performance of the app in patients with Silver-Russell syndrome (SRS) and Prader-Willi syndrome (PWS). We enrolled 23 pediatric patients with clinically or genetically diagnosed SRS and 29 pediatric patients with genetically confirmed PWS. One frontal photo of each patient was acquired. Top 1, top 5, and top 10 sensitivities were analyzed. Correlation with the specific genetic diagnosis was investigated. When available, photos of the same patient at different ages were compared. In the SRS group, Face2Gene showed top 1, top 5, and top 10 sensitivities of 39%, 65%, and 91%, respectively. In 41% of patients with genetically confirmed SRS, SRS was the first syndrome suggested, while in clinically diagnosed patients, SRS was suggested as top 1 in 33% of cases (p = 0.74). Face2Gene performed better in younger patients with SRS: in all patients in whom a photo taken at a younger age than the age of enrollment was available, SRS was suggested as top 1, albeit with variable degree of probability. In the PWS group, the top 1, top 5, and top 10 sensitivities were 76%, 97%, and 100%, respectively. PWS was suggested as top 1 in 83% of patients genetically diagnosed with paternal deletion of chromosome 15q11-13 and in 60% of patients presenting with maternal uniparental disomy of chromosome 15 (p = 0.17). The performance was uniform throughout the investigated age range (1-15 years). CONCLUSION In addition to a thorough medical history and detailed clinical examination, the Face2Gene app can be a useful tool to support clinicians in identifying children with a potential diagnosis of SRS or PWS. WHAT IS KNOWN • Several genetic syndromes present typical facial features that may provide clues for the diagnosis. • Memorizing all syndromic facial characteristics is a challenging task for clinicians. WHAT IS NEW • Face2Gene may represent a useful support for pediatricians for the diagnosis of genetic syndromes. • Face2Gene app can be a useful tool to integrate in the diagnostic path of patients with SRS and PWS.
Collapse
Affiliation(s)
- Silvia Ciancia
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
- Post-Graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Wesley J Goedegebuure
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Lionne N Grootjen
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gerthe F Kerkhof
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Daniëlle C M van der Kaay
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands.
| |
Collapse
|
8
|
Baba N, Lengyel A, Pinti E, Yapici E, Schreyer I, Liehr T, Fekete G, Eggermann T. Microdeletions in 1q21 and 8q12.1 depict two additional molecular subgroups of Silver-Russell syndrome like phenotypes. Mol Cytogenet 2022; 15:19. [PMID: 35562807 PMCID: PMC9107271 DOI: 10.1186/s13039-022-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is a genetic disorder characterized by intrauterine and postnatal growth restriction, relative macrocephaly at birth, body asymmetry and typical facial features. Clinical and molecular heterogeneity is described in SRS. Common causes are loss of methylation of the imprinting center 1 in 11p15 and maternal uniparental disomy of chromosome 7. Other genetic alterations include disturbances of imprinted regions in 14q32, 7q32 and 11p15 as well as submicroscopic deletions and duplications. Single nucleotide variants in genes like IGF2, HMGA2, PLAG1, CDKN1C have also been identified in patients with SRS phenotypes. However, routine molecular diagnostics usually focus on 11p15 and chromosome 7, while less frequent causes are not systematically addressed. Results Here we report two patients with SRS features in which molecular karyotyping revealed microdeletions in 1q21 and 8q12.1 respectively. In a 3.5-year-old girl with postnatal growth restriction, feeding difficulties, relative macrocephaly and distinct SRS features a 2 Mb deletion in 1q21.1q21.2 was identified. Our second case is a 1.5-year-old boy with intrauterine and postnatal growth restriction, feeding difficulties and distinct facial features with a 77 kb deletion in 8q12.1 affecting PLAG1 as the only protein-encoding gene with known function. Conclusions The 1q21 region has not yet been assigned as an SRS region, although six patients with the same deletion and SRS features including relative macrocephaly have been described before. This new case adds to the evidence that distal 1q21 should be annotated as an SRS candidate region. The PLAGL1 alteration is the smallest deletion in 8q12.1 ever reported in a patient with SRS phenotype and it finally confirms that PLAG1 is the SRS causing gene in 8q12.1. To increase the diagnostic yield in patients with suspected SRS, we recommend both molecular karyotyping and next generation sequencing-based approaches.
Collapse
Affiliation(s)
- Naomi Baba
- Institute of Human Genetics, University of Jena, Jena, Germany.,Praxis Für Humangenetik, Zentrum Für Ambulante Medizin, Jena, Germany
| | - Anna Lengyel
- 2Nd Department of Pediatrics, Semmelweis University Budapest, Budapest, Hungary
| | - Eva Pinti
- 2Nd Department of Pediatrics, Semmelweis University Budapest, Budapest, Hungary
| | - Elzem Yapici
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Isolde Schreyer
- Institute of Human Genetics, University of Jena, Jena, Germany.,Praxis Für Humangenetik, Zentrum Für Ambulante Medizin, Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, University of Jena, Jena, Germany
| | - György Fekete
- 2Nd Department of Pediatrics, Semmelweis University Budapest, Budapest, Hungary
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Deng R, McCalman MT, Bossuyt TP, Barakat TS. Case Report: Two New Cases of Chromosome 12q14 Deletions and Review of the Literature. Front Genet 2021; 12:716874. [PMID: 34539745 PMCID: PMC8441011 DOI: 10.3389/fgene.2021.716874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Interstitial deletions on the long arm of chromosome 12 (12q deletions) are rare, and are associated with intellectual disability, developmental delay, failure to thrive and congenital anomalies. The precise genotype-phenotype correlations of different deletions has not been completely resolved. Ascertaining individuals with overlapping deletions and complex phenotypes may help to identify causative genes and improve understanding of 12q deletion syndromes. We here describe two individuals with non-overlapping 12q14 deletions encountered at our clinical genetics outpatient clinic and perform a review of all previously published interstitial 12q deletions to further delineate genotype-phenotype correlations. Both individuals presented with a neurodevelopmental disorder with various degrees of intellectual disability, failure to thrive and dysmorphic features. Previously, larger deletions overlapping large parts of the deletions encountered in both individuals have been described. Whereas, individual 1 seems to fit into the previously described phenotypic spectrum of the 12q14 microdeletion syndrome, individual 2 displays more severe neurological symptoms, which are likely caused by haploinsufficiency of the BAF complex member SMARCC2, which is included in the deletion. We furthermore perform a review of all previously published interstitial 12q deletions which we found to cluster amongst 5 regions on chromosome 12, to further delineate genotype-phenotype correlations, and we discuss likely disease relevant genes for each of these deletion clusters. Together, this expands knowledge on deletions on chromosome 12q which might facilitate patient counseling. Also, it illustrates that re-analysis of previously described microdeletions syndromes in the next generation sequencing era can be useful to delineate genotype-phenotype correlations and identify disease relevant genes in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Melysia T McCalman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Thomas P Bossuyt
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Fernandez-Luque L, Al Herbish A, Al Shammari R, Argente J, Bin-Abbas B, Deeb A, Dixon D, Zary N, Koledova E, Savage MO. Digital Health for Supporting Precision Medicine in Pediatric Endocrine Disorders: Opportunities for Improved Patient Care. Front Pediatr 2021; 9:715705. [PMID: 34395347 PMCID: PMC8358399 DOI: 10.3389/fped.2021.715705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Digitalization of healthcare delivery is rapidly fostering development of precision medicine. Multiple digital technologies, known as telehealth or eHealth tools, are guiding individualized diagnosis and treatment for patients, and can contribute significantly to the objectives of precision medicine. From a basis of "one-size-fits-all" healthcare, precision medicine provides a paradigm shift to deliver a more nuanced and personalized approach. Genomic medicine utilizing new technologies can provide precision analysis of causative mutations, with personalized understanding of mechanisms and effective therapy. Education is fundamental to the telehealth process, with artificial intelligence (AI) enhancing learning for healthcare professionals and empowering patients to contribute to their care. The Gulf Cooperation Council (GCC) region is rapidly implementing telehealth strategies at all levels and a workshop was convened to discuss aspirations of precision medicine in the context of pediatric endocrinology, including diabetes and growth disorders, with this paper based on those discussions. GCC regional investment in AI, bioinformatics and genomic medicine, is rapidly providing healthcare benefits. However, embracing precision medicine is presenting some major new design, installation and skills challenges. Genomic medicine is enabling precision and personalization of diagnosis and therapy of endocrine conditions. Digital education and communication tools in the field of endocrinology include chatbots, interactive robots and augmented reality. Obesity and diabetes are a major challenge in the GCC region and eHealth tools are increasingly being used for management of care. With regard to growth failure, digital technologies for growth hormone (GH) administration are being shown to enhance adherence and response outcomes. While technical innovations become more affordable with increasing adoption, we should be aware of sustainability, design and implementation costs, training of HCPs and prediction of overall healthcare benefits, which are essential for precision medicine to develop and for its objectives to be achieved.
Collapse
Affiliation(s)
| | | | - Riyad Al Shammari
- National Center for Artificial Intelligence, Saudi Data and Artificial Intelligence Authority, Riyadh, Saudi Arabia
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain
| | - Bassam Bin-Abbas
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma Deeb
- Paediatric Endocrine Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - David Dixon
- Connected Health and Devices, Merck, Ares Trading SA, Aubonne, Switzerland
| | - Nabil Zary
- Institute for Excellence in Health Professions Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Martin O. Savage
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, United Kingdom
| |
Collapse
|
12
|
Meyer R, Begemann M, Hübner CT, Dey D, Kuechler A, Elgizouli M, Schara U, Ambrozaityte L, Burnyte B, Schröder C, Kenawy A, Kroisel P, Demuth S, Fekete G, Opladen T, Elbracht M, Eggermann T. One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver-Russell syndrome. Orphanet J Rare Dis 2021; 16:42. [PMID: 33482836 PMCID: PMC7821667 DOI: 10.1186/s13023-021-01683-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is an imprinting disorder which is characterised by severe primordial growth retardation, relative macrocephaly and a typical facial gestalt. The clinical heterogeneity of SRS is reflected by a broad spectrum of molecular changes with hypomethylation in 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat) as the most frequent findings. Monogenetic causes are rare, but a clinical overlap with numerous other disorders has been reported. However, a comprehensive overview on the contribution of mutations in differential diagnostic genes to phenotypes reminiscent to SRS is missing due to the lack of appropriate tests. With the implementation of next generation sequencing (NGS) tools this limitation can now be circumvented. Main body We analysed 75 patients referred for molecular testing for SRS by a NGS-based multigene panel, whole exome sequencing (WES), and trio-based WES. In 21/75 patients a disease-causing variant could be identified among them variants in known SRS genes (IGF2, PLAG1, HMGA2). Several patients carried variants in genes which have not yet been considered as differential diagnoses of SRS. Conclusions WES approaches significantly increase the diagnostic yield in patients referred for SRS testing. Several of the identified monogenetic disorders have a major impact on clinical management and genetic counseling.
Collapse
Affiliation(s)
- Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Thomas Hübner
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Daniela Dey
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Magdeldin Elgizouli
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrike Schara
- Department of Neuropediatrics, University Children's Hospital, University Duisburg-Essen, Essen, Germany
| | - Laima Ambrozaityte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Carmen Schröder
- Zentrum Für Kinder- Und Jugendmedizin, Abt. Allgemeine Pädiatrie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Asmaa Kenawy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Gyorgy Fekete
- II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Thomas Opladen
- Division for Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Novel Variant in PLAG1 in a Familial Case with Silver-Russell Syndrome Suspicion. Genes (Basel) 2020; 11:genes11121461. [PMID: 33291420 PMCID: PMC7762056 DOI: 10.3390/genes11121461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Silver-Russell syndrome (SRS) is a rare growth-related genetic disorder that is mainly associated with prenatal and postnatal growth retardation. Molecular causes are not clear in all cases, the most common ones being loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). However, pathogenic variants in genes such as CDKN1C, HMGA2, IGF2, or PLAG1 have also been described. Previously, two families and one sporadic case have been reported with PLAG1 alterations. Here, we present a case of a female with clinical suspicion of SRS (i.e., intrauterine and postnatal growth retardation, triangular face, psychomotor delay, speech delay, feeding difficulties). No alterations in methylation or copy number were detected at chromosomes 11p15 and 7 using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The custom panel study by next-generation sequencing (NGS) revealed a frameshift variant in the PLAG1 gene (NM_002655.3:c.551delA; p.(Lys184Serfs *45)). Familial studies confirmed that the variant was inherited from the mother and it was also present in other family members. New evidence of pathogenic alterations in the HMGA2-PLAG1-IGF2 pathway suggest the importance of studying and taking into account these genes as alternative molecular causes of Silver-Russell syndrome.
Collapse
|