1
|
Castanho Martins M, Dixon ED, Lupo G, Claudel T, Trauner M, Rombouts K. Role of PNPLA3 in Hepatic Stellate Cells and Hepatic Cellular Crosstalk. Liver Int 2024. [PMID: 39394864 DOI: 10.1111/liv.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
AIMS Since its discovery, the patatin-like phospholipase domain containing 3 (PNPLA3) (rs738409 C>G p.I148M) variant has been studied extensively to unravel its molecular function. Although several studies proved a causal relationship between the PNPLA3 I148M variant and MASLD development and particularly fibrosis, the pathological mechanisms promoting this phenotype have not yet been fully clarified. METHODS We summarise the latest data regarding the PNPLA3 I148M variant in hepatic stellate cells (HSCs) activation and macrophage biology or the path to inflammation-induced fibrosis. RESULTS Elegant but contradictory studies have ascribed PNPLA3 a hydrolase or an acyltransferase function. The PNPLA3 I148M results in hepatic lipid accumulation, which predisposes the hepatocyte to lipotoxicity and lipo-apoptosis, producing DAMPs, cytokines and chemokines leading to recruitment and activation of macrophages and HSCs, propagating fibrosis. Recent studies showed that the PNPLA3 I148M variant alters HSCs biology via attenuation of PPARγ, AP-1, LXRα and TGFβ activity and signalling. CONCLUSIONS The advent of refined techniques in isolating HSCs has made PNPLA3's direct role in HSCs for liver fibrosis development more apparent. However, many other mechanisms still need detailed investigations.
Collapse
Affiliation(s)
- Maria Castanho Martins
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Emmanuel Dauda Dixon
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Giulia Lupo
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| |
Collapse
|
2
|
Zheng H, Sechi LA, Navarese EP, Casu G, Vidili G. Metabolic dysfunction-associated steatotic liver disease and cardiovascular risk: a comprehensive review. Cardiovasc Diabetol 2024; 23:346. [PMID: 39342178 PMCID: PMC11439309 DOI: 10.1186/s12933-024-02434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), poses a significant global health challenge due to its increasing prevalence and strong association with cardiovascular disease (CVD). This comprehensive review summarizes the current knowledge on the MASLD-CVD relationship, compares analysis of how different terminologies for fatty liver disease affect cardiovascular (CV) risk assessment using different diagnostic criteria, explores the pathophysiological mechanisms connecting MASLD to CVD, the influence of MASLD on traditional CV risk factors, the role of noninvasive imaging techniques and biomarkers in the assessment of CV risk in patients with MASLD, and the implications for clinical management and prevention strategies. By incorporating current research and clinical guidelines, this review provides a comprehensive overview of the complex interplay between MASLD and cardiovascular health.
Collapse
Affiliation(s)
- Haixiang Zheng
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100, Sassari, Italy
| | - Eliano Pio Navarese
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gavino Casu
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Azienda Ospedaliero, 07100, Sassari, Italy.
| |
Collapse
|
3
|
Herrera-Marcos LV, Arbones-Mainar JM, Osada J. Lipoprotein Lipidomics as a Frontier in Non-Alcoholic Fatty Liver Disease Biomarker Discovery. Int J Mol Sci 2024; 25:8285. [PMID: 39125855 PMCID: PMC11311740 DOI: 10.3390/ijms25158285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease characterized by the build-up of fat in the liver of individuals in the absence of alcohol consumption. This condition has become a burden in modern societies aggravated by the lack of appropriate predictive biomarkers (other than liver biopsy). To better understand this disease and to find appropriate biomarkers, a new technology has emerged in the last two decades with the ability to explore the unmapped role of lipids in this disease: lipidomics. This technology, based on the combination of chromatography and mass spectrometry, has been extensively used to explore the lipid metabolism of NAFLD. In this review, we aim to summarize the knowledge gained through lipidomics assays exploring tissues, plasma, and lipoproteins from individuals with NAFLD. Our goal is to identify common features and active pathways that could facilitate the finding of a reliable biomarker from this field. The most frequent observation was a variable decrease (1-9%) in polyunsaturated fatty acids in phospholipids and non-esterified fatty acids in NAFLD patients, both in plasma and liver. Additionally, a reduction in phosphatidylcholines is a common feature in the liver. Due to the scarcity of studies, further research is needed to properly detect lipoprotein, plasma, and tissue lipid signatures of NAFLD etiologies, and NAFLD subtypes, and to define the relevance of this technology in disease management strategies in the push toward personalized medicine.
Collapse
Affiliation(s)
- Luis V. Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (L.V.H.-M.); (J.O.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, E-50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, E-28029 Madrid, Spain
| | - Jose M. Arbones-Mainar
- Instituto de Investigación Sanitaria (IIS) Aragon, E-50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, E-28029 Madrid, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, E-50013 Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), E-50009 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (L.V.H.-M.); (J.O.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, E-50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
4
|
Johnson SM, Bao H, McMahon CE, Chen Y, Burr SD, Anderson AM, Madeyski-Bengtson K, Lindén D, Han X, Liu J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024; 15:4847. [PMID: 38844467 PMCID: PMC11156938 DOI: 10.1038/s41467-024-49224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Scott M Johnson
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Department of Cell Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cailin E McMahon
- Molecular Biology and Genetics Department; Cornell College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Stephanie D Burr
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Aaron M Anderson
- Department of Developmental Biology; Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences; BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM); BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition; Mayo Clinic in Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Qadri S, Yki-Järvinen H. Surveillance of the liver in type 2 diabetes: important but unfeasible? Diabetologia 2024; 67:961-973. [PMID: 38334817 PMCID: PMC11058902 DOI: 10.1007/s00125-024-06087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Fatty liver plays a pivotal role in the pathogenesis of the metabolic syndrome and type 2 diabetes. According to an updated classification, any individual with liver steatosis and one or more features of the metabolic syndrome, without excess alcohol consumption or other known causes of steatosis, has metabolic dysfunction-associated steatotic liver disease (MASLD). Up to 60-70% of all individuals with type 2 diabetes have MASLD. However, the prevalence of advanced liver fibrosis in type 2 diabetes remains uncertain, with reported estimates of 10-20% relying on imaging tests and likely overestimating the true prevalence. All stages of MASLD impact prognosis but fibrosis is the best predictor of all-cause and liver-related mortality risk. People with type 2 diabetes face a two- to threefold increase in the risk of liver-related death and hepatocellular carcinoma, with 1.3% progressing to severe liver disease over 7.7 years. Because reliable methods for detecting steatosis are lacking, MASLD mostly remains an incidental finding on imaging. Regardless, several medical societies advocate for universal screening of individuals with type 2 diabetes for advanced fibrosis. Proposed screening pathways involve annual calculation of the Fibrosis-4 (FIB-4) index, followed by a secondary test such as transient elastography (TE) for intermediate-to-high-risk individuals. However, owing to unsatisfactory biomarker specificity, these pathways are expected to channel approximately 40% of all individuals with type 2 diabetes to TE and 20% to tertiary care, with a false discovery rate of up to 80%, raising concerns about feasibility. There is thus an urgent need to develop more effective strategies for surveying the liver in type 2 diabetes. Nonetheless, weight loss through lifestyle changes, pharmacotherapy or bariatric surgery remains the cornerstone of management, proving highly effective not only for metabolic comorbidities but also for MASLD. Emerging evidence suggests that fibrosis biomarkers may serve as tools for risk-based targeting of weight-loss interventions and potentially for monitoring response to therapy.
Collapse
Affiliation(s)
- Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
6
|
Johnson S, Bao H, McMahon C, Chen Y, Burr S, Anderson A, Madeyski-Bengtson K, Lindén D, Han X, Liu J. Substrate-Specific Function of PNPLA3 Facilitates Hepatic VLDL-Triglyceride Secretion During Stimulated Lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.553213. [PMID: 37693552 PMCID: PMC10491159 DOI: 10.1101/2023.08.30.553213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.
Collapse
|
7
|
Jeong S, Kim HJ, Han HW. Sex-separated NAFLD/NASH Scores May Improve Predictive Performance. Clin Gastroenterol Hepatol 2023; 21:855-856. [PMID: 35623590 DOI: 10.1016/j.cgh.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Korea
| | - Hye Jun Kim
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Korea
| | - Hyun Wook Han
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Korea
| |
Collapse
|
8
|
Ioannidou D, Makri ES, Polyzos SA, Ntenti C, Agapakis D, Germanidis G, Goulas A. An association study of the PNPLA3 I148M polymorphism (rs738409) with serum lipids in patients with dyslipidemia. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Aim: One single nucleotide polymorphism (SNP) rs738409 in the patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene has been considered a major genetic risk factor of nonalcoholic fatty liver disease (NAFLD). Data have indicated that NAFLD is related to insulin resistance and dyslipidemia, but whether rs738409 is associated with circulating lipid and lipoproteins is not fully elucidated. The main aim of this study was to assess the association of rs738409 with lipid and lipoprotein levels in patients with dyslipidemia.
Methods: This was a post-hoc analysis of a study in patients with dyslipidemia recruited on an outpatient basis. Morning blood samples were collected after a 12-h fast. Genomic DNA was extracted from whole-blood samples.
Results: One hundred seventy-five patients with dyslipidemia were included (97 women). Lipid levels [total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C)] or glycosylated hemoglobin (HbA1c) were not associated with the SNP, even after adjustment for gender, body mass index (BMI) and type 2 diabetes mellitus (T2DM), using either the additive (CC vs. CG vs. GG) or the dominant (CC vs. GG + CG) inheritance model. When data were stratified for obesity, significant associations between the variant and TC (P = 0.014) or LDL-C levels (P = 0.046) in the non-obese were observed. Pairwise comparison revealed significant changes only in TC between CC and CG genotypes (P = 0.012).
Conclusions: No association was shown between rs738409 SNP and lipid/lipoprotein levels in patients with dyslipidemia. In subgroup analysis, TC was higher in non-obese, but not in obese, patients with CC, compared to CG carriers.
Collapse
Affiliation(s)
- Despoina Ioannidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelia S. Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Charikleia Ntenti
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Agapakis
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, Gastroenterology and Hepatology Section, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Qadri S, Yki-Järvinen H. The quest for the missing links in fatty liver genetics: Deep learning to the rescue! Cell Rep Med 2022; 3:100862. [PMID: 36543096 PMCID: PMC9798017 DOI: 10.1016/j.xcrm.2022.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Park, MacLean, et al. conduct an exome-wide association study of liver fat content in the Penn Medicine BioBank.1 By leveraging machine learning-assisted analysis of clinical CT scans to quantify steatosis, they uncover previously undescribed liver fat-associated genetic variants.
Collapse
Affiliation(s)
- Sami Qadri
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hannele Yki-Järvinen
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland,Corresponding author
| |
Collapse
|
10
|
Meroni M, Longo M, Paolini E, Tria G, Ripolone M, Napoli L, Moggio M, Fracanzani AL, Dongiovanni P. Expanding the phenotypic spectrum of non-alcoholic fatty liver disease and hypertriglyceridemia. Front Nutr 2022; 9:967899. [PMID: 36185699 PMCID: PMC9521372 DOI: 10.3389/fnut.2022.967899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background and aims Hypertriglyceridemia is a common feature of metabolic syndrome (MetS), as well as of non-alcoholic fatty liver disease (NAFLD), which is considered the hepatic manifestation of MetS. Fat accumulation in hepatocytes may alter mitochondrial homeostasis predisposing to advanced liver disease. Here, we report a case of a 40-year-old woman with early aggressive NAFLD due to severe hypertriglyceridemia that ensued from a combination of genetic variants and additional metabolic risk factors. Methods Genetic screening was performed by using whole-exome sequencing (WES), and mitochondrial structures were evaluated by TEM. Results At presentation, the patient is reported to have hepatomegaly, hypertriglyceridemia, and raised transaminases. Genetic analysis revealed that the patient beard heritable alterations in genes implicated in lipid handling, among which APOB, APOE, CETP, and HSPG2, accompanied by missense mutations in genes involved in mitochondrial function, i.e., AK2, ALG6, ASPA, NDUFAF1, POLG, and TMEM70. Abdominal ultrasound (US) and transient elastography were suggestive of severe hepatic steatosis and fibrosis. A liver biopsy confirmed the diagnosis of non-alcoholic steatohepatitis (NASH)-related fibrosis. Thus, to better outline whether mutations involved in lipid remodeling and mitochondrial function may also affect organelles’ morphology, we exploited TEM. Along with multifaceted abnormalities of mitochondrial architecture that have been already observed in patients with NAFLD, astonishing ultrastructural defects, such as mitochondrial vacuolization, sub-compartmentalization, and onion-like mitochondria, were identified. Conclusion The anomalies reported may expand the phenotypic spectrum of mitochondrial abnormalities observed in patients with NAFLD, which may contribute to the switching toward a progressive disease.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Paola Dongiovanni,
| |
Collapse
|
11
|
Association of rs738409 Polymorphism in Adiponutrin Gene with Liver Steatosis and Atherosclerosis Risk Factors in Greek Children and Adolescents. Nutrients 2022; 14:nu14173452. [PMID: 36079710 PMCID: PMC9459993 DOI: 10.3390/nu14173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) shares several risk factors with atherosclerosis, as it is associated with components of the metabolic syndrome. However, genetic variations have also been linked to the risk of NAFLD, such as adiponutrin/patatin-like phospholipase domain-containing the protein 3 (PNPLA3) rs738409 polymorphism. The aim of the study was to determine the associations of thePNPLA3 rs738409 polymorphism with NAFLD and atherosclerosis risk factors in children and adolescents from northern Greece. A total of 91 children/adolescents who followed a Mediterranean eating pattern with no particular restrictions were studied. They were divided into three subgroups, according to their body mass index (BMI) and the presence or absence of liver disease. Diagnosis of NAFLD was based on a liver ultrasound, while the distribution of the PNPLA3 rs738409 polymorphism was investigated in all the participants. From the components of metabolic syndrome, only BMI, waist circumference, blood pressure, and the homeostasis model of insulin resistance (HOMA-IR) differed significantly between groups. The rs738409 polymorphism was significantly associated with BMI and NAFLD, while lipid values had no significant association with either NAFLD or gene polymorphism. This study shows that in Greekchildren, there is a significant association between the rs738409polymorphism in the PNPLA3 gene and hepatic steatosis, regardless of bodyweight.
Collapse
|
12
|
Dearlove DJ, Hodson L. Intrahepatic triglyceride content: influence of metabolic and genetics drivers. Curr Opin Clin Nutr Metab Care 2022; 25:241-247. [PMID: 35762159 DOI: 10.1097/mco.0000000000000838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Intrahepatic triglyceride (IHTG) content is determined by substrate flux to, fatty acid synthesis and partitioning within, and triglyceride disposal from the liver. Dysregulation of these processes may cause IHTG accumulation, potentially leading to nonalcoholic fatty liver disease. The aetiology of IHTG accumulation has not been fully elucidated; however, environmental factors and heritability are important. Here, we review recent evidence regarding the contribution of metabolic and genetic components of IHTG accumulation. RECENT FINDINGS Obesity and insulin resistance are the primary metabolic drivers for IHTG accumulation. These risk factors have pronounced and seemingly overlapping effects on all processes involved in determining IHTG content. The strong and interchangeable associations between obesity, insulin resistance and IHTG make it challenging to determine their relative contributions. Genome-wide association studies have identified a growing list of single nucleotide polymorphisms associated with IHTG content and recent work has begun to elucidate their mechanistic effects. The mechanisms underlying metabolic and genetic drivers of IHTG appear to be distinct. SUMMARY Both metabolic and genetic factors influence IHTG content by apparently distinct mechanisms. Further work is needed to determine metabolic and genetic interaction effects, which may lead to more personalized and potentially efficacious therapeutic interventions. The development of a comprehensive polygenic risk score for IHTG content may help facilitate this.
Collapse
Affiliation(s)
- David J Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
13
|
Velenosi TJ, Ben-Yakov G, Podszun MC, Hercun J, Etzion O, Yang S, Nadal C, Haynes-Williams V, Huang WCA, Gonzalez-Hodar L, Brychta RJ, Takahashi S, Akkaraju V, Krausz KW, Walter M, Cai H, Walter PJ, Muniyappa R, Chen KY, Gonzalez FJ, Rotman Y. Postprandial Plasma Lipidomics Reveal Specific Alteration of Hepatic-derived Diacylglycerols in Nonalcoholic Fatty Liver Disease. Gastroenterology 2022; 162:1990-2003. [PMID: 35283114 PMCID: PMC9117487 DOI: 10.1053/j.gastro.2022.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Hepatic energy metabolism is a dynamic process modulated by multiple stimuli. In nonalcoholic fatty liver disease (NAFLD), human studies typically focus on the static fasting state. We hypothesized that unique postprandial alterations in hepatic lipid metabolism are present in NAFLD. METHODS In a prospective clinical study, 37 patients with NAFLD and 10 healthy control subjects ingested a standardized liquid meal with pre- and postprandial blood sampling. Postprandial plasma lipid kinetics were characterized at the molecular lipid species level by untargeted lipidomics, cluster analysis, and lipid particle isolation, then confirmed in a mouse model. RESULTS There was a specific increase of multiple plasma diacylglycerol (DAG) species at 4 hours postprandially in patients with NAFLD but not in controls. This was replicated in a nonalcoholic steatohepatitis mouse model, where postprandial DAGs increased in plasma and concomitantly decreased in the liver. The increase in plasma DAGs appears early in the disease course, is dissociated from NAFLD severity and obesity, and correlates with postprandial insulin levels. Immunocapture isolation of very low density lipoprotein in human samples and stable isotope tracer studies in mice revealed that elevated postprandial plasma DAGs reflect hepatic secretion of endogenous, rather than meal-derived lipids. CONCLUSIONS We identified a selective insulin-related increase in hepatic secretion of endogenously derived DAGs after a mixed meal as a unique feature of NAFLD. DAGs are known to be lipotoxic and associated with atherosclerosis. Although it is still unknown whether the increased exposure to hepatic DAGs contributes to extrahepatic manifestations and cardiovascular risk in NAFLD, our study highlights the importance of extending NAFLD research beyond the fasting state.
Collapse
Affiliation(s)
- Thomas J. Velenosi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Gil Ben-Yakov
- Liver & Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH,Liver Diseases Branch, NIDDK, NIH
| | - Maren C. Podszun
- Liver & Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH,Liver Diseases Branch, NIDDK, NIH
| | | | | | | | | | | | | | - Lila Gonzalez-Hodar
- Liver & Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH,Liver Diseases Branch, NIDDK, NIH
| | | | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Vikas Akkaraju
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | | | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, NIH
| | | | | | - Kong Y. Chen
- Diabetes, Endocrinology and Obesity Branch, NIDDK, NIH
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH)
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland; Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Tavaglione F, Jamialahmadi O, De Vincentis A, Qadri S, Mowlaei ME, Mancina RM, Ciociola E, Carotti S, Perrone G, Bruni V, Gallo IF, Tuccinardi D, Bianco C, Prati D, Manfrini S, Pozzilli P, Picardi A, Caricato M, Yki-Järvinen H, Valenti L, Vespasiani-Gentilucci U, Romeo S. Development and Validation of a Score for Fibrotic Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol 2022; 21:1523-1532.e1. [PMID: 35421583 DOI: 10.1016/j.cgh.2022.03.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Noninvasive assessment of histological features of nonalcoholic fatty liver disease (NAFLD) has been an intensive research area over the last decade. Herein, we aimed to develop a simple noninvasive score using routine laboratory tests to identify, among individuals at high risk for NAFLD, those with fibrotic nonalcoholic steatohepatitis (NASH) defined as NASH, NAFLD activity score ≥4, and fibrosis stage ≥2. METHODS The derivation cohort included 264 morbidly obese individuals undergoing intraoperative liver biopsy in Rome, Italy. The best predictive model was developed and internally validated using a bootstrapping stepwise logistic regression analysis (2000 bootstrap samples). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). External validation was assessed in 3 independent European cohorts (Finland, n = 370; Italy, n = 947; England, n = 5368) of individuals at high risk for NAFLD. RESULTS The final predictive model, designated as Fibrotic NASH Index (FNI), combined aspartate aminotransferase, high-density lipoprotein cholesterol, and hemoglobin A1c. The performance of FNI for fibrotic NASH was satisfactory in both derivation and external validation cohorts (AUROC = 0.78 and AUROC = 0.80-0.95, respectively). In the derivation cohort, rule-out and rule-in cutoffs were 0.10 for sensitivity ≥0.89 (negative predictive value, 0.93) and 0.33 for specificity ≥0.90 (positive predictive value, 0.57), respectively. In the external validation cohorts, sensitivity ranged from 0.87 to 1 (negative predictive value, 0.99-1) and specificity from 0.73 to 0.94 (positive predictive value, 0.12-0.49) for rule-out and rule-in cutoff, respectively. CONCLUSION FNI is an accurate, simple, and affordable noninvasive score which can be used to screen for fibrotic NASH in individuals with dysmetabolism in primary health care.
Collapse
Affiliation(s)
- Federica Tavaglione
- Clinical Medicine and Hepatology Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University, Rome, Italy; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden.
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Antonio De Vincentis
- Internal Medicine Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University, Rome, Italy; Clinical Lecturer of Internal Medicine, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mohammad Erfan Mowlaei
- Department of Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Simone Carotti
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy; Predictive Molecular Diagnostic Unit, Department of Pathology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Giuseppe Perrone
- Predictive Molecular Diagnostic Unit, Department of Pathology, Campus Bio-Medico University Hospital, Rome, Italy; Research Unit of Pathology, Campus Bio-Medico University, Rome, Italy
| | - Vincenzo Bruni
- Bariatric Surgery Unit, Campus Bio-Medico University, Rome, Italy
| | | | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Cristiana Bianco
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniele Prati
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Antonio Picardi
- Clinical Medicine and Hepatology Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University, Rome, Italy
| | - Marco Caricato
- Unit of Colon and Rectal Surgery, Department of General Surgery, Campus Bio-Medico University, Rome, Italy
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Umberto Vespasiani-Gentilucci
- Clinical Medicine and Hepatology Unit, Department of Internal Medicine and Geriatrics, Campus Bio-Medico University, Rome, Italy.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
15
|
Xia M, Ma S, Huang Q, Zeng H, Ge J, Xu W, Wu Q, Wu L, Li X, Ma H, Chen L, Li Q, Aleteng Q, Hu Y, He W, Pan B, Lin H, Zheng Y, Wang S, Tang H, Gao X. NAFLD-related gene polymorphisms and all-cause and cause-specific mortality in an Asian population: the Shanghai Changfeng Study. Aliment Pharmacol Ther 2022; 55:705-721. [PMID: 35023183 DOI: 10.1111/apt.16772] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The PNPLA3 and TM6SF2 gene variants have been found to cause NAFLD with a favourable cardiovascular risk profile. AIMS To investigate the effects of the NAFLD risk alleles on the all-cause and cause-specific mortality in 5581 Chinese adults. METHODS The genome-wide genotypes were detected using a genotyping array and serum lipoprotein profiles were examined using 1H NMR platform. Liver fat content (LFC) was measured using a quantitative ultrasound method. The vital status was determined using official registration data. RESULTS Genome-wide association analysis showed that a series of variants in PNPLA3 were associated with LFC, including rs738409 C>G variant (P = 8.6 × 10-7 ). Further analyses validated the associations of TM6SF2 rs58542926 C>T and MBOAT7 rs641738 C>T variants with NAFLD. During 29 425.1 person-years of follow-up, the overall mortality was 816 per 100 000 person-years, where 299 deaths were attributable to cardiovascular disease and 85 to liver disease. The PNPLA3 rs738409 C>G variant was independently associated with increased liver-specific mortality (P for trend = 0.034) but reduced cardiovascular mortality (P for trend = 0.047). A composite genetic-predisposition score of PNPLA3, TM6SF2, and MBOAT7 risk alleles presented similar opposite effects on liver-specific and cardiovascular mortality. Moreover, interactions of the NAFLD risk alleles with adiposity for liver-specific mortality were found (Pinteraction < 0.05). The reduced serum VLDL1 concentration was responsible for the increased liver-specific mortality related to NAFLD risk alleles. CONCLUSION The PNPLA3 rs738409 C>G variant and its combination with TM6SF2 rs58542926 C>T and MBOAT7 rs641738 C>T variants increase liver-specific mortality but reduce cardiovascular mortality in overweight/obese Chinese.
Collapse
Affiliation(s)
- Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Jieyu Ge
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Li Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoming Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Qiqige Aleteng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wanyuan He
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of Cardiology Zhongshan Hospital, State Key Laboratory of Genetic Engineering School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Villani R, Magnati GP, De Girolamo G, Sangineto M, Romano AD, Cassano T, Serviddio G. Genetic Polymorphisms and Clinical Features in Diabetic Patients With Fatty Liver: Results From a Single-Center Experience in Southern Italy. Front Med (Lausanne) 2021; 8:737759. [PMID: 34746177 PMCID: PMC8566437 DOI: 10.3389/fmed.2021.737759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic background may be involved in the promotion and progression of non-alcoholic fatty liver disease (NAFLD). Previous studies have suggested that the single nucleotide polymorphisms (SNPs) may be associated with the specific clinical features in the patients with hepatic steatosis; however, data on the patients with diabetes from Southern Italy are lacking. We enrolled 454 patients and 260 of them had type 2 diabetes. We studied the PNPLA3 rs738409, LPIN1 rs13412852, KLF6 rs3750861, SOD2 rs4880, TM6SF2 rs58542926, and ZNF624 rs12603226 SNPs and their distribution in the study population. Lipid profile, liver stiffness, and kidney function were also studied to understand the potential role of the SNPs in the development of clinical phenotypes. No differences were observed in the distribution of polymorphisms between the diabetic and non-diabetic subjects. Carriers of risk allele G for PNPLA3 rs738409 SNP showed a lower mean value of serum triglycerides and a higher liver stiffness. Risk allele for KLF6 rs3750861 and SOD2 rs4880 polymorphism had a lower estimated glomerular filtration rate (eGFR) value, whereas no differences in the glucose and glycated hemoglobin level were observed in the subgroups by the different genotypes. Genetic polymorphisms are useful to identify the patients at higher risk of development of liver fibrosis and lower eGFR values in the patients with diabetes and NAFLD. Their use in clinical practice may help the clinicians to identify the patients who require a more strict follow-up program.
Collapse
Affiliation(s)
- Rosanna Villani
- C.U.R.E. (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Grazia Pia Magnati
- C.U.R.E. (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe De Girolamo
- C.U.R.E. (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Moris Sangineto
- C.U.R.E. (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonino Davide Romano
- C.U.R.E. (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- C.U.R.E. (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Abstract
The acronym nonalcoholic fatty-liver disease (NAFLD) groups a heterogeneous patient population. Although in many patients the primary driver is metabolic dysfunction, a complex and dynamic interaction of different factors (i.e., sex, presence of one or more genetic variants, coexistence of different comorbidities, diverse microbiota composition, and various degrees of alcohol consumption among others) takes place to determine disease subphenotypes with distinct natural history and prognosis and, eventually, different response to therapy. This review aims to address this topic through the analysis of existing data on the differential contribution of known factors to the pathogenesis and clinical expression of NAFLD, thus determining the different clinical subphenotypes observed in practice. To improve our understanding of NAFLD heterogeneity and the dominant drivers of disease in patient subgroups would predictably impact on the development of more precision-targeted therapies for NAFLD.
Collapse
Affiliation(s)
- Marco Arrese
- Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Juan P. Arab
- Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Francisco Barrera
- Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Benedikt Kaufmann
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, California
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Translational Medicine, Department of Transfusion, Medicine and Hematology, Fondazione IRCCS Ca' Granda, Pad Marangoni, Milan, Italy
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, California
| |
Collapse
|
18
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
19
|
Lonardo A, Arab JP, Arrese M. Perspectives on Precision Medicine Approaches to NAFLD Diagnosis and Management. Adv Ther 2021; 38:2130-2158. [PMID: 33829368 PMCID: PMC8107169 DOI: 10.1007/s12325-021-01690-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Precision medicine defines the attempt to identify the most effective approaches for specific subsets of patients based on their genetic background, clinical features, and environmental factors. Nonalcoholic fatty liver disease (NAFLD) encompasses the alcohol-like spectrum of liver disorders (steatosis, steatohepatitis with/without fibrosis, and cirrhosis and hepatocellular carcinoma) in the nonalcoholic patient. Recently, disease renaming to MAFLD [metabolic (dysfunction)-associated fatty liver disease] and positive criteria for diagnosis have been proposed. This review article is specifically devoted to envisaging some clues that may be useful to implementing a precision medicine-oriented approach in research and clinical practice. To this end, we focus on how sex and reproductive status, genetics, intestinal microbiota diversity, endocrine and metabolic status, as well as physical activity may interact in determining NAFLD/MAFLD heterogeneity. All these factors should be considered in the individual patient with the aim of implementing an individualized therapeutic plan. The impact of considering NAFLD heterogeneity on the development of targeted therapies for NAFLD subgroups is also extensively discussed.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria, Ospedale Civile di Baggiovara, 1135 Via Giardini, 41126, Modena, Italy.
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Mouskeftara T, Goulas A, Ioannidou D, Ntenti C, Agapakis D, Assimopoulou A, Gika H. A Study of Blood Fatty Acids Profile in Hyperlipidemic and Normolipidemic Subjects in Association with Common PNPLA3 and ABCB1 Polymorphisms. Metabolites 2021; 11:metabo11020090. [PMID: 33557317 PMCID: PMC7915980 DOI: 10.3390/metabo11020090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 01/06/2023] Open
Abstract
Adiponutrin (patatin-like phospholipase domain-containing 3; PNPLA3), encoded in humans by the PNPLA3 gene, is a protein associated with lipid droplet and endoplasmic reticulum membranes, where it is apparently involved in fatty acid redistribution between triglycerides and phospholipids. A common polymorphism of PNPLA3 (I148M, rs738409), linked to increased PNPLA3 presence on lipid droplets, is a strong genetic determinant of non-alcoholic fatty liver disease (NAFLD) and of its progression. P-glycoprotein (Pgp, MDR1—multidrug resistance protein 1, ABCB1—ATP-binding cassette sub-family B member 1), encoded by the ABCB1 gene, is another membrane protein implicated in lipid homeostasis and steatosis. In the past, common ABCB1 polymorphisms have been associated with the distribution of serum lipids but not with fatty acids (FA) profiles. Similarly, data on the effect of PNPLA3 I148M polymorphism on blood FAs are scarce. In this study, a gas chromatography-flame ionization detection (GC-FID) method was optimized, allowing us to analyze twenty FAs (C14: 0, C15: 0, C15: 1, C16: 0, C16: 1, C17: 0, C17: 1, C18: 0, C18: 1cis, C18: 2cis, C20: 0, C20: 1n9, C20: 2, C20: 3n6, C20: 4n6, C20: 5, C23: 0, C24: 0, C24: 1 and C22: 6) in whole blood, based on the indirect determination of the fatty acids methyl esters (FAMES), in 62 hyperlipidemic patients and 42 normolipidemic controls. FA concentrations were then compared between the different genotypes of the rs738409 and rs2032582 (ABCB1 G2677T) polymorphisms, within and between the hyperlipidemic and normolipidemic groups. The rs738409 polymorphism appears to exert a significant effect on the distribution of blood fatty acids, in a lipidemic and fatty acid saturation state-depending manner. The effect of rs2032582 was less pronounced, but the polymorphism did appear to affect the relative distribution of blood fatty acids between hyperlipidemic patients and normolipidemic controls.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Antonis Goulas
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.); (D.I.); (C.N.)
| | - Despoina Ioannidou
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.); (D.I.); (C.N.)
| | - Charikleia Ntenti
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.); (D.I.); (C.N.)
| | - Dimitris Agapakis
- Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Andreana Assimopoulou
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece;
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|